169
Views
7
CrossRef citations to date
0
Altmetric
Original Research

Beneficial Effect of TaON-Ag Nanocomposite Titanium on Antibacterial Capacity in Orthopedic Application

ORCID Icon, ORCID Icon, , & ORCID Icon
Pages 7889-7900 | Published online: 13 Oct 2020

References

  • Zhang XF, Liu ZG, Shen W, Gurunathan S. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci. 2016;17(9):1534. doi:10.3390/ijms17091534
  • Qin H, Cao H, Zhao Y, et al. In vitro and in vivo anti-biofilm effects of silver nanoparticles immobilized on titanium. Biomaterials. 2014;35(33):9114–9125. doi:10.1016/j.biomaterials.2014.07.04025112937
  • Gallo J, Holinka M, Moucha CS. Antibacterial surface treatment for orthopaedic implants. Int J Mol Sci. 2014;15(8):13849–13880. doi:10.3390/ijms15081384925116685
  • Liu X, Tian A, You J, et al. Antibacterial abilities and biocompatibilities of Ti-Ag alloys with nanotubular coatings. Int J Nanomedicine. 2016;11:5743–5755. doi:10.2147/IJN.S11367427843315
  • Brennan SA, Ni Fhoghlu C, Devitt BM, O’Mahony FJ, Brabazon D, Walsh A. Silver nanoparticles and their orthopaedic applications. Bone Joint J. 2015;97–B(5):582–589. doi:10.1302/0301-620X.97B5.33336
  • Zhang RZ, Lee PY, Lui VCH, et al. Silver nanoparticles promote osteogenesis of mesenchymal stem cells and improve bone fracture healing in osteogenesis mechanism mouse model. Nanomed-Nanotechnol. 2015;11(8):1949–1959. doi:10.1016/j.nano.2015.07.016
  • Lim PN, Chang L, Thian ES. Development of nanosized silver-substituted apatite for biomedical applications: a review. Nanomed-Nanotechnol. 2015;11(6):1331–1344. doi:10.1016/j.nano.2015.03.016
  • Li J, Liu X, Qiao Y, Zhu H, Ding C. Antimicrobial activity and cytocompatibility of Ag plasma-modified hierarchical TiO2 film on titanium surface. Colloids Surf B Biointerfaces. 2014;113:134–145. doi:10.1016/j.colsurfb.2013.08.03024077111
  • Devlin-Mullin A, Todd NM, Golrokhi Z, et al. Atomic layer deposition of a silver nanolayer on advanced titanium orthopedic implants inhibits bacterial colonization and supports vascularized de novo bone ingrowth. Adv Healthc Mater. 2017;6(11):1700033. doi:10.1002/adhm.201700033
  • AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano. 2009;3(2):279–290. doi:10.1021/nn800596w19236062
  • Hsieh JH, Chiu CH, Li C, Wu W, Chang SY. Development of anti-wear and anti-bacteria TaN-(Ag,Cu) thin films - a review. Surf Coat Tech. 2013;233:159–168. doi:10.1016/j.surfcoat.2013.05.013
  • Hsieh JH, Li C, Lin YC, Chiu CH, Hu CC, Chang YH. Antibacteria and anti-wear TaN-(Ag,Cu) nanocomposite thin films deposited on polyether ether ketone. Thin Solid Films. 2015;584:277–282. doi:10.1016/j.tsf.2015.02.063
  • Hsieh JH, Yeh TH, Li C, Chiu CH, Huang CT. Antibacterial properties of TaN-(Ag,Cu) nanocomposite thin films. Vacuum. 2013;87:160–163. doi:10.1016/j.vacuum.2012.02.016
  • Hsieh JH, Lai YH, Lin YC, et al. Structure analysis, mechanical property, and biocompatibility of TaOxNy thin films. Surf Coat Tech. 2016;303:54–60. doi:10.1016/j.surfcoat.2016.03.047
  • Chuang CK, Wong TH, Hwang SM, et al. Baculovirus transduction of mesenchymal stem cells: in vitro responses and in vivo immune responses after cell transplantation. Mol Ther. 2009;17(5):889–896. doi:10.1038/mt.2009.3019277010
  • Hung FC, Chang YH, Sue LC, Chao CCK. Gas7 mediates the differentiation of human bone marrow-derived mesenchymal stem cells into functional osteoblasts by enhancing Runx2-dependent gene expression. J Orthop Res. 2011;29(10):1528–1535. doi:10.1002/jor.2142521452305
  • Nyman JS, Munoz S, Jadhav S, et al. Quantitative measures of femoral fracture repair in rats derived by micro-computed tomography. J Biomech. 2009;42(7):891–897. doi:10.1016/j.jbiomech.2009.01.01619281987
  • O’Neill KR, Stutz CM, Mignemi NA, et al. Micro-computed tomography assessment of the progression of fracture healing in mice. Bone. 2012;50(6):1357–1367. doi:10.1016/j.bone.2012.03.00822453081
  • Bernthal NM, Stavrakis AI, Billi F, et al. A mouse model of post-arthroplasty staphylococcus aureus joint infection to evaluate in vivo the efficacy of antimicrobial implant coatings. PLoS One. 2010;5(9):e12580. doi:10.1371/journal.pone.001258020830204
  • Guan M, Chen YMF, Wei Y, et al. Long-lasting bactericidal activity through selective physical puncture and controlled ions release of polydopamine and silver nanoparticles-loaded TiO2 nanorods in vitro and in vivo. Int J Nanomed. 2019;14:2903–2914. doi:10.2147/IJN.S202625
  • Kose N, Otuzbir A, Peksen C, Kiremitci A, Dogan A. A silver ion-doped calcium phosphate-based ceramic nanopowder-coated prosthesis increased infection resistance. Clin Orthop Relat Res. 2013;471(8):2532–2539. doi:10.1007/s11999-013-2894-x23463287
  • Zhang BGX, Myers DE, Wallace GG, Brandt M, Choong PFM. Bioactive coatings for orthopaedic implants-recent trends in development of implant coatings. Int J Mol Sci. 2014;15(7):11878–11921. doi:10.3390/ijms15071187825000263
  • Qing YA, Cheng L, Li RY, et al. Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int J Nanomed. 2018;13:3311–3327. doi:10.2147/IJN.S165125
  • Morgan EF, Mason ZD, Chien KB, et al. Micro-computed tomography assessment of fracture healing: relationships among callus structure, composition, and mechanical function. Bone. 2009;44(2):335–344. doi:10.1016/j.bone.2008.10.03919013264
  • Zeng X, Xiong S, Zhuo S, et al. Nanosilver/poly (dl-lactic-co-glycolic acid) on titanium implant surfaces for the enhancement of antibacterial properties and osteoinductivity. Int J Nanomedicine. 2019;14:1849–1863.30880984
  • Subbiah R, Jeon SB, Park K, Ahn SJ, Yun K. Investigation of cellular responses upon interaction with silver nanoparticles. Int J Nanomedicine. 2015;10(Spec Iss):191–201.26346562
  • Yonekura Y, Miyamoto H, Shimazaki T, et al. Osteoconductivity of thermal-sprayed silver-containing hydroxyapatite coating in the rat tibia. J Bone Joint Surg Br. 2011;93b(5):644–649. doi:10.1302/0301-620X.93B5.25518
  • Shandiz SAS, Montazeri A, Abdolhosseini M, et al. Functionalization of Ag nanoparticles by glutamic acid and conjugation of Ag@Glu by thiosemicarbazide enhances the apoptosis of human breast cancer MCF-7 cells. J Clust Sci. 2018;29(6):1107–1114. doi:10.1007/s10876-018-1424-0
  • Shokoofeh N, Moradi-Shoeili Z, Naeemi AS, Jalali A, Hedayati M, Salehzadeh A. Biosynthesis of Fe3O4@Ag nanocomposite and evaluation of its performance on expression of norA and norB efflux pump genes in ciprofloxacin-resistant staphylococcus aureus. Biol Trace Elem Res. 2019;191(2):522–530. doi:10.1007/s12011-019-1632-y30788722
  • Huang HL, Chang YY, Chen HJ, Chou YK, Lai CH, Chen MYC. Antibacterial properties and cytocompatibility of tantalum oxide coatings with different silver content. J Vac Sci Technol A. 2014;32(2):02B117. doi:10.1116/1.4862543
  • Huang Y, Song GQ, Chang XT, et al. Nanostructured Ag+-substituted fluorhydroxyapatite-TiO2 coatings for enhanced bactericidal effects and osteoinductivity of Ti for biomedical applications. Int J Nanomed. 2018;13:2665–2684. doi:10.2147/IJN.S162558
  • Lomeli-Marroquin D, Cruz DM, Nieto-Arguello A, et al. Starch-mediated synthesis of mono- and bimetallic silver/gold nanoparticles as antimicrobial and anticancer agents. Int J Nanomed. 2019;14:2171. doi:10.2147/IJN.S192757