159
Views
3
CrossRef citations to date
0
Altmetric
Original Research

Multifunctional Coating with Both Thermal Insulation and Antibacterial Properties Applied to Nickel-Titanium Alloy

, , , , &
Pages 7215-7234 | Published online: 29 Sep 2020

References

  • Leitner T, Sabirov I, Pippan R, Hohenwarter A. The effect of severe grain refinement on the damage tolerance of a superelastic NiTi shape memory alloy. J Mech Behav Biomed Mater. 2017;71:337–348. doi:10.1016/j.jmbbm.2017.03.02028399494
  • Sun F, Sask KN, Brash JL, Zhitomirsky I. Surface modifications of nitinol for biomedical applications. Colloids Surf B Biointerfaces. 2008;67(1):132–139. doi:10.1016/j.colsurfb.2008.08.00818815014
  • Xu JL, Zhong ZC, Yu DZ, Liu F, Luo JM. Effect of micro-arc oxidation surface modification on the properties of the NiTi shape memory alloy. J Mater Sci Mater Med. 2012;23(12):2839–2846. doi:10.1007/s10856-012-4755-722941441
  • Nematollahi M, Baghbaderani KS, Amerinatanzi A, Zamanian H, Elahinia M. Application of NiTi in assistive and rehabilitation devices: a review. Bioengineering. 2019;6(2).
  • Saegusa N, Sarukawa S, Ohta K, et al. Sutureless microvascular anastomosis assisted by an expandable shape-memory alloy stent. PLoS One. 2017;12(7):e0181520.28742116
  • Yuan G, Bai Y, Jia Z, Hui D, Lau K. Enhancement of interfacial bonding strength of SMA smart composites by using mechanical indented method. Compos B Eng. 2016;106:99–106.
  • Hoang MC, Le VH, Kim J, et al. A wireless tattooing capsule endoscope using external electromagnetic actuation and chemical reaction pressure. PLoS One. 2019;14(7):e0219740.31310612
  • Arab Hassani F, Mogan RP, Gammad GGL, et al. Toward self-control systems for neurogenic underactive bladder: a triboelectric nanogenerator sensor integrated with a bistable micro-actuator. ACS Nano. 2018;12(4):3487–3501.29630352
  • Le BV, McVary KT, McKenna K, Colombo A. Use of magnetic induction to activate a “touchless” shape memory alloy implantable penile prosthesis. J Sex Med. 2019;16(4):596–601.30935471
  • Lukina E, Kollerov M, Meswania J, et al. Analysis of retrieved growth guidance sliding LSZ-4D devices for early onset scoliosis and investigation of the use of nitinol rods for this system. Spine. 2015;40(1):17–24. doi:10.1097/BRS.000000000000066025341983
  • Elming PB, Sørensen BS, Oei AL, et al. Hyperthermia: the optimal treatment to overcome radiation resistant hypoxia. Cancers. 2019;11(1):60. doi:10.3390/cancers11010060
  • Ferraris S, Spriano S. Antibacterial titanium surfaces for medical implants. Mater Sci Eng C. 2016;61:965–978. doi:10.1016/j.msec.2015.12.062
  • Saud SN, Hosseinian SR, Bakhsheshi-Rad HR, et al. Corrosion and bioactivity performance of graphene oxide coating on TiNb shape memory alloys in simulated body fluid. Mater Sci Eng C Mater Biol Appl. 2016;68:687–694. doi:10.1016/j.msec.2016.06.04827524069
  • Yun’an Qing LC, Li R, Liu G, et al. Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int J Nanomedicine. 2018;13:3311. doi:10.2147/IJN.S16512529892194
  • Hassani FA, Peh WYX, Gammad GGL, et al. A 3D printed implantable device for voiding the bladder using shape memory alloy (SMA) actuators. Adv Sci (Weinh). 2017;4(11):1700143.29201606
  • Granato R, Marin C, Gil JN, et al. Thin bioactive ceramic-coated alumina-blasted/acid-etched implant surface enhances biomechanical fixation of implants: an experimental study in dogs. Clin Implant Dent Relat Res. 2011;13(2):87–94. doi:10.1111/j.1708-8208.2009.00186.x19681928
  • Jeon CJ, Lee JK, Kim ES. Effect of Al2O3 on thermal properties of 0.5CaAl2Si2O8–0.5CaMgSi2O6 glass–ceramics. Ceram Int. 2012;38:S557–S61. doi:10.1016/j.ceramint.2011.05.097
  • Abad B, Maiz J, Martin-Gonzalez M. Rules to determine thermal conductivity and density of anodic aluminum oxide (AAO) membranes. J Phys Chem C. 2016;120(10):5361–5370. doi:10.1021/acs.jpcc.6b00643
  • Yerokhin AL, Nie X, Leyland A, Matthews A, Dowey SJ. Plasma electrolysis for surface engineering. Surf Coat Technol. 1999;122(2–3):73–93. doi:10.1016/S0257-8972(99)00441-7
  • Bai L, Du Z, Du J, et al. A multifaceted coating on titanium dictates osteoimmunomodulation and osteo/angio-genesis towards ameliorative osseointegration. Biomaterials. 2018;162:154–169. doi:10.1016/j.biomaterials.2018.02.01029454274
  • Shameli K, Ahmad MB, Yunus WMZW, et al. Silver/poly (lactic acid) nanocomposites: preparation, characterization, and antibacterial activity. Int J Nanomedicine. 2010;5:573–579. doi:10.2147/IJN.S1200720856832
  • Spinelli G, Lamberti P, Tucci V, et al. Nanocarbon/poly(lactic) acid for 3D printing: effect of fillers content on electromagnetic and thermal properties. Materials. 2019;12(15):2369. doi:10.3390/ma12152369
  • Dai WJ, Gan YX, Hanaor D. Effective thermal conductivity of submicron powders: a numerical study. Appl Mech Mater. 2016;846:500–505. doi:10.4028/www.scientific.net/AMM.846.500
  • Zhao S, Qiu LY, Liu S. Preparation and performance study of reflection heat preservation insulation coating. Adv Mat Res. 2010;150–151:620–625. doi:10.4028/www.scientific.net/AMR.150-151.620
  • Tang J, Thakore V, Ala-Nissila T. Plasmonically enhanced reflectance of heat radiation from low-bandgap semiconductor microinclusions. Sci Rep. 2017;7(1):5696. doi:10.1038/s41598-017-05630-428720771
  • Xie T, He Y-L, Hu Z-J. Theoretical study on thermal conductivities of silica aerogel composite insulating material. Int J Heat Mass Transf. 2013;58(1):540–552.
  • Wijewardane S, Goswami DY. A review on surface control of thermal radiation by paints and coatings for new energy applications. Renew Sust Energ Rev. 2012;16(4):1863–1873. doi:10.1016/j.rser.2012.01.046
  • Slovick BA, Baker JM, Flom Z, Krishnamurthy S. Tailoring diffuse reflectance of inhomogeneous films containing microplatelets. Appl Phys Lett. 2015;107(14):141903. doi:10.1063/1.4932576
  • Smith GB. Green nanotechnology: solutions for sustainability and energy in the built environment. J Nanophotonics. 2011;5(1):050201. doi:10.1117/1.3562980
  • Gao G, Shi J-W, Fan Z, Gao C, Niu C. MnM2O4 microspheres (M=Co, Cu, Ni) for selective catalytic reduction of NO with NH3: comparative study on catalytic activity and reaction mechanism via in-situ diffuse reflectance infrared Fourier transform spectroscopy. Chem Eng J. 2017;325:91–100. doi:10.1016/j.cej.2017.05.059
  • Palmieri V, Bugli F, Lauriola MC, et al. Bacteria meet graphene: modulation of graphene oxide nanosheet interaction with human pathogens for effective antimicrobial therapy. ACS Biomater Sci Eng. 2017;3(4):619–627. doi:10.1021/acsbiomaterials.6b00812
  • Qing Y, Cheng L, Li R, et al. Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int J Nanomedicine. 2018;13:3311–3327.29892194
  • Alavi M, Rai M. Recent advances in antibacterial applications of metal nanoparticles (MNPs) and metal nanocomposites (MNCs) against multidrug-resistant (MDR) bacteria. Expert Rev Anti Infect Ther. 2019;17(6):419–428. doi:10.1080/14787210.2019.161491431046483
  • Kędziora A, Speruda M, Krzyżewska E, Rybka J, Łukowiak A, Bugla-Płoskońska G. Similarities and differences between silver ions and silver in nanoforms as antibacterial agents. Int J Mol Sci. 2018;19(2):444. doi:10.3390/ijms19020444
  • Alavi M, Karimi N. Antiplanktonic, antibiofilm, antiswarming motility and antiquorum sensing activities of green synthesized Ag–TiO2, TiO2–Ag, Ag–Cu and Cu–Ag nanocomposites against multi-drug-resistant bacteria. Artif Cells Nanomed Biotechnol. 2018;46(sup3):S399–S413. doi:10.1080/21691401.2018.149692330095025
  • Alavi M, Karimi N, Valadbeigi T. Antibacterial, antibiofilm, antiquorum sensing, antimotility, and antioxidant activities of green fabricated Ag, Cu, TiO2, ZnO, and Fe3O4 NPs via protoparmeliopsis muralis lichen aqueous extract against multi-drug-resistant bacteria. ACS Biomater Sci Eng. 2019;5(9):4228–4243. doi:10.1021/acsbiomaterials.9b00274
  • Ferdous Z, Nemmar A. Health impact of silver nanoparticles: a review of the biodistribution and toxicity following various routes of exposure. Int J Mol Sci. 2020;21(7):2375. doi:10.3390/ijms21072375
  • Sl S, Atya K, Neha H, Rakesh K. In vivo interactions of nanosized titania anatase and rutile particles following oral administration. Nano Prog. 2020;2(3):11–20.
  • Riau AK, Aung TT, Setiawan M, et al. Surface immobilization of nano-silver on polymeric medical devices to prevent bacterial biofilm formation. Pathogens. 2019;8(3):93. doi:10.3390/pathogens8030093
  • Rhim JW, Mohanty AK, Singh SP, Ng PKW. Effect of the processing methods on the performance of polylactide films: thermocompression versus solvent casting. J Appl Polym Sci. 2010;101(6):3736–3742.
  • Sarwar MS, Niazi MBK, Jahan Z, Ahmad T, Hussain A. Preparation and characterization of PVA/nanocellulose/Ag nanocomposite films for antimicrobial food packaging. Carbohydr Polym. 2018;184:453–464.29352941
  • Yue X, Zhang T, Yang D, et al. Ag nanoparticles coated cellulose membrane with high infrared reflection, breathability and antibacterial property for human thermal insulation. J Colloid Interface Sci. 2019;535:363–370.30316123
  • Sun Y, Xia Y. Shape-controlled synthesis of gold and silver nanoparticles. Science. 2002;298(5601):2176–2179.12481134
  • Yang C, Tang Y. Preparation of silver nanowires via a rapid, scalable and green pathway. J Mater Sci Technol. 2015;31(1):16–22.
  • Da Silva EC, Da Silva MGA, Meneghetti SMP, et al. Synthesis of colloids based on gold nanoparticles dispersed in castor oil. J Nanopart Res. 2008;10(1):201–208.
  • Xu X, Yang Q, Wang Y, Yu H, Chen X, Jing X. Biodegradable electrospun poly (L-lactide) fibers containing antibacterial silver nanoparticles. Eur Polym J. 2006;42(9):2081–2087.
  • Gu YW, Tay BY, Lim CS, Yong MS. Biomimetic deposition of apatite coating on surface-modified NiTi alloy. Biomaterials. 2005;26(34):6916–6923.15941583
  • Gu YW, Tay BY, Lim CS, Yong MS. Characterization of bioactive surface oxidation layer on NiTi alloy. Appl Surf Sci. 2005;252(5):2038–2049.
  • Kalaivani R, Maruthupandy M, Muneeswaran T, et al. Synthesis of chitosan mediated silver nanoparticles (Ag NPs) for potential antimicrobial applications. Front Lab Med. 2018;2(1):30–35.
  • Scavone M, Armentano I, Fortunati E, et al. Antimicrobial properties and cytocompatibility of PLGA/Ag nanocomposites. Materials. 2016;9(1):37.
  • Kostic D, Vukasinovic-Sekulic M, Armentano I, Torre L, Obradovic B. Multifunctional ternary composite films based on PLA and Ag/alginate microbeads: physical characterization and silver release kinetics. Mater Sci Eng C. 2019;98:1159–1168.
  • Khatami M, Varma RS, Zafarnia N, Yaghoobi H, Sarani M, Kumar VG. Applications of green synthesized Ag, ZnO and Ag/ZnO nanoparticles for making clinical antimicrobial wound-healing bandages. Sustain Chem Pharm. 2018;10:9–15.
  • Wijnhoven SWP, Peijnenburg WJGM, Herberts CA, et al. Nano-silver – a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology. 2009;3(2):109–138.
  • Taglietti A, Arciola CR, D’Agostino A, et al. Antibiofilm activity of a monolayer of silver nanoparticles anchored to an amino-silanized glass surface. Biomaterials. 2014;35(6):1779–1788.24315574
  • Pijls BG, Sanders I, Kuijper EJ, Nelissen R. Segmental induction heating of orthopaedic metal implants. Bone Joint Res. 2018;7(11):609–619.30581559
  • Weiss K-P, Bagrets N, Lange C, Goldacker W, Wohlgemuth J, editors. Thermal and Mechanical Properties of Selected 3D Printed Thermoplastics in the Cryogenic Temperature Regime. IOP Publishing; 2015.
  • Hsu P-C, Liu X, Liu C, et al. Personal thermal management by metallic nanowire-coated textile. Nano Lett. 2015;15(1):365–371.25434959
  • Wang G, Wang C, Zhao J, Wang G, Park CB, Zhao G. Modelling of thermal transport through a nanocellular polymer foam: toward the generation of a new superinsulating material. Nanoscale. 2017;9(18):5996–6009.28440837
  • Wang G, Wang L, Mark LH, et al. Ultralow-threshold and lightweight biodegradable porous PLA/MWCNT with segregated conductive networks for high-performance thermal insulation and electromagnetic interference shielding applications. ACS Appl Mater Interfaces. 2018;10(1):1195–1203.29206437
  • Salvini VR, Luz AP, Pandolfelli VC. High temperature Al2O3-CA6 insulating foamed ceramics: processing and properties. Interceram. 2012;61(6):335–339.
  • Alippilakkotte S, Kumar S, Sreejith L. Fabrication of PLA/Ag nanofibers by green synthesis method using momordica charantia fruit extract for wound dressing applications. Colloids Surf a Physicochem Eng Asp. 2017;529:771–782.
  • Formentín P, Catalán Ú, Pol L, Fernández-Castillejo S, Solà R, Marsal LF. Collagen and fibronectin surface modification of nanoporous anodic alumina and macroporous silicon for endothelial cell cultures. J Biol Eng. 2018;12(1):1–9.29339972
  • Yang K, Jung K, Ko E, et al. Nanotopographical manipulation of focal adhesion formation for enhanced differentiation of human neural stem cells. ACS Appl Mater Interfaces. 2013;5(21):10529–10540.23899585
  • Liu W, Li Y, Wang T, et al. Elliptical polymer brush ring array mediated protein patterning and cell adhesion on patterned protein surfaces. ACS Appl Mater Interfaces. 2013;5(23):12587–12593.24256492
  • Formentín P, Catalán Ú, Fernández-Castillejo S, et al. Human aortic endothelial cell morphology influenced by topography of porous silicon substrates. J Biomater Appl. 2015;30(4):398–408.26017716
  • Vertrees RA, Das GC, Coscio AM, Xie J, Zwischenberger JB, Boor PJ. A mechanism of hyperthermia‐induced apoptosis in ras-transformed lung cells. Mol Carcinog. 2005;44(2):111–121.16114053
  • Eriksson AR, Albrektsson T. Temperature threshold levels for heat-induced bone tissue injury: a vital-microscopic study in the rabbit. J Prosthet Dent. 1983;50(1):101–107.6576145