228
Views
16
CrossRef citations to date
0
Altmetric
Original Research

Enhanced Osseointegration of Titanium Implants by Surface Modification with Silicon-doped Titania Nanotubes

, , , , , , , , & ORCID Icon show all
Pages 8583-8594 | Published online: 03 Nov 2020

References

  • Long M, Rack HJ. Titanium alloys in total joint replacement–a materials science perspective. Biomaterials. 1998;19:1621–1639. doi:10.1016/S0142-9612(97)00146-49839998
  • Wang L, Yang X, Cao WW, et al. Mussel-inspired deposition of copper on titanium for bacterial inhibition and enhanced osseointegration in a periprosthetic infection model. RSC Adv. 2017;7:51593–51604. doi:10.1039/C7RA10203H
  • Gao CC, Wang Y, Han FX, et al. Antibacterial activity and osseointegration of silver-coated poly (ether ether ketone) prepared using the polydopamine-assisted deposition technique. J Mater Chem B. 2017;5:9326–9336. doi:10.1039/C7TB02436C32264535
  • Jia L, Han F, Wang H, et al. Polydopamine-assisted surface modification for orthopaedic implants. J Orthop Transl. 2019;17:82–95. doi:10.1016/j.jot.2019.04.001
  • Lausmaa J, Linder L. Surface spectroscopic characterization of titanium implants after separation from plastic-embedded tissue. Biomaterials. 1988;9:277–280. doi:10.1016/0142-9612(88)90098-13408802
  • Albrektsson T, Sennerby L. Direct bone anchorage of oral implants: clinical and experimental considerations of the concept of osseointegration. Int J Prosthodont. 1990;3:30–41.2372366
  • Chouirfa H, Bouloussa H, Migonney V, Falentin-Daudre C. Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomater. 2019;83:37–54. doi:10.1016/j.actbio.2018.10.03630541702
  • Oh S, Brammer KS, Li YS, et al. Stem cell fate dictated solely by altered nanotube dimension. P Natl Acad Sci USA. 2009;106:2130–2135. doi:10.1073/pnas.0813200106
  • Zemtsova EG, Yudintceva NM, Morozov PE, Valiev RZ, Smirnov VM, Shevtsov MA. Improved osseointegration properties of hierarchical microtopographic/nanotopographic coatings fabricated on titanium implants. Int J Nanomed. 2018;13:2175–2188. doi:10.2147/IJN.S161292
  • Sul YT, Johansson CB, Petronis S, et al. Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown: the oxide thickness, micropore configurations, surface roughness, crystal structure and chemical composition. Biomaterials. 2002;23:491–501. doi:10.1016/S0142-9612(01)00131-411761170
  • Variola F, Brunski JB, Orsini G. Nanoscale surface modifications of medically relevant metals: state-of-the art and perspectives. Nanoscale. 2011;3:335–353. doi:10.1039/c0nr00485e20976359
  • Oh S, Daraio C, Chen LH, Pisanic TR, Finones RR, Jin S. Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes. J Biomed Mater Res A. 2006;78:97–103. doi:10.1002/jbm.a.3072216602089
  • Das K, Bose S, Bandyopadhyay A. TiO2 nanotubes on Ti: influence of nanoscale morphology on bone cell-materials interaction. J Biomed Mater Res A. 2009;90:225–237. doi:10.1002/jbm.a.3208818496867
  • Ma Q, Jiang N, Liang S, et al. Functionalization of a clustered TiO2 nanotubular surface with platelet derived growth factor-BB covalent modification enhances osteogenic differentiation of bone marrow mesenchymal stem cells. Biomaterials. 2020;230:119650. doi:10.1016/j.biomaterials.2019.11965031806404
  • Hing KA, Revell PA, Smith N, Buckland T. Effect of silicon level on rate, quality and progression of bone healing within silicate-substituted porous hydroxyapatite scaffolds. Biomaterials. 2006;27:5014–5026. doi:10.1016/j.biomaterials.2006.05.03916790272
  • O’Neill E, Awale G, Daneshmandi L, Umerah O, Lo KW. The roles of ions on bone regeneration. Drug Discov Today. 2018;23:879–890. doi:10.1016/j.drudis.2018.01.04929407177
  • Xing M, Wang X, Wang E, Gao L, Chang J. Bone tissue engineering strategy based on the synergistic effects of silicon and strontium ions. Acta Biomater. 2018;72:381–395. doi:10.1016/j.actbio.2018.03.05129627679
  • Botelho CM, Brooks RA, Best SM, et al. Human osteoblast response to silicon-substituted hydroxyapatite. J Biomed Mater Res A. 2006;79:723–730. doi:10.1002/jbm.a.3080616871624
  • Qian S, Liu X. Cytocompatibility of Si-incorporated TiO2 nanopores films. Colloids Surf B Biointerfaces. 2015;133:214–220. doi:10.1016/j.colsurfb.2015.06.00726111898
  • Kermani F, Gharavian A, Mollazadeh S, Kargozar S, Youssefi A, Vahdati Khaki J. Silicon-doped calcium phosphates; the critical effect of synthesis routes on the biological performance. Mater Sci Eng C-Mater. 2020;111:110828. doi:10.1016/j.msec.2020.110828
  • Karimi M, Mesgar A, Mohammadi Z. Development of osteogenic chitosan/alginate scaffolds reinforced with silicocarnotite containing apatitic fibers. Biomed Mater. 2020;15:055020. doi:10.1088/1748-605x/ab954f.32438355
  • Wang Y, Cui W, Zhao X, et al. Bone remodeling-inspired dual delivery electrospun nanofibers for promoting bone regeneration. Nanoscale. 2018;11:60–71. doi:10.1039/C8NR07329E30350839
  • Obata A, Tokuda S, Kasuga T. Enhanced in vitro cell activity on silicon-doped vaterite/poly (lactic acid) composites. Acta Biomater. 2009;5:57–62. doi:10.1016/j.actbio.2008.08.00418786869
  • Wang T, Qian S, Zha GC, et al. Synergistic effects of titania nanotubes and silicon to enhance the osteogenic activity. Colloids Surf B Biointerfaces. 2018;171:419–426. doi:10.1016/j.colsurfb.2018.07.05230075417
  • Zhao X, Wang T, Qian S, Liu X, Sun J, Li B. Silicon-doped titanium dioxide nanotubes promoted bone formation on titanium implants. Int J Mol Sci. 2016;17:292. doi:10.3390/ijms1703029226927080
  • Zhang W, Jin Y, Qian S, et al. Vacuum extraction enhances rhPDGF-BB immobilization on nanotubes to improve implant osseointegration in ovariectomized rats. Nanomed.-Nanotechnol. 2014;10:1809–1818. doi:10.1016/j.nano.2014.07.002
  • Han Y, Chen D, Sun J, Zhang Y, Xu K. UV-enhanced bioactivity and cell response of micro-arc oxidized titania coatings. Acta Biomater. 2008;4:1518–1529. doi:10.1016/j.actbio.2008.03.00518430620
  • Yamamoto O, Alvarez K, Kashiwaya Y, Fukuda M. Surface characterization and biological response of carbon-coated oxygen-diffused titanium having different topographical surfaces. J Mater Sci -Mater M. 2011;22:977–987. doi:10.1007/s10856-011-4267-x21365295
  • Minagar S, Berndt CC, Wang J, Ivanova E, Wen C. A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces. Acta Biomater. 2012;8:2875–2888. doi:10.1016/j.actbio.2012.04.00522542885
  • Torres-Costa V, Martinez-Munoz G, Sanchez-Vaquero V, et al. Engineering of silicon surfaces at the micro- and nanoscales for cell adhesion and migration control. Int J Nanomed. 2012;7:623–630. doi:10.2147/IJN.S27745
  • Low SP, Williams KA, Canham LT, Voelcker NH. Evaluation of mammalian cell adhesion on surface-modified porous silicon. Biomaterials. 2006;27:43464538. doi:10.1016/j.biomaterials.2006.04.015
  • Qian S, Liu XY, Ding CX. Effect of Si-incorporation on hydrophilicity and bioactivity of titania film. Surf Coat Technol. 2013;229:156–161. doi:10.1016/j.surfcoat.2012.07.048
  • Anselme K, Ponche A, Bigerelle M. Relative influence of surface topography and surface chemistry on cell response to bone implant materials. Part 2: biological aspects. P I Mech Eng H. 2010;224:1487–1507. doi:10.1243/09544119JEIM901
  • Friguglietti J, Das S, Le P, et al. Novel silicon titanium diboride micropatterned substrates for cellular patterning. Biomaterials. 2020;244:119927. doi:10.1016/j.biomaterials.2020.11992732199283
  • Premnath P, Tan B, Venkatakrishnan K. Programming cell fate on bio-functionalized silicon. Colloids Surf B Biointerfaces. 2015;128:100–105. doi:10.1016/j.colsurfb.2015.02.01325731099
  • Abazari MF, Hosseini Z, Zare Karizi S, et al. Different osteogenic differentiation potential of mesenchymal stem cells on three different polymeric substrates. Gene. 2020;740:144534. doi:10.1016/j.gene.2020.14453432145328
  • Wang Z, Wang X, Tian Y, et al. Degradation and osteogenic induction of a SrHPO4-coated Mg-Nd-Zn-Zr alloy intramedullary nail in a rat femoral shaft fracture model. Biomaterials. 2020;247:119962. doi:10.1016/j.biomaterials.2020.11996232251929
  • Wang B, Sun JY, Qian S, et al. Adhesion of osteoblast-like cell on silicon-doped TiO2 film prepared by cathodic arc deposition. Biotechnol Lett. 2013;35:975–982. doi:10.1007/s10529-013-1155-023436126
  • Wang B, Sun J, Qian S, et al. Proliferation and differentiation of osteoblastic cells on silicon-doped TiO2 film deposited by cathodic arc. Biomed Pharmacoth. 2012;66:633–641. doi:10.1016/j.biopha.2012.08.008
  • Zhang Z, Sun J, Hu H, Wang Q, Liu X. Osteoblast-like cell adhesion on porous silicon-incorporated TiO2 coating prepared by micro-arc oxidation. J Biomed Mater Res B. 2011;97:224–234. doi:10.1002/jbm.b.31804
  • Murai K, Takeshita F, Ayukawa Y, Kiyoshima T, Suetsugu T, Tanaka T. Light and electron microscopic studies of bone-titanium interface in the tibiae of young and mature rats. J Biomed Mater Res. 1996;30:523–533. doi:10.1002/(SICI)1097-4636(199604)30:4<523::AID-JBM11>3.0.CO;2-I8847361
  • Rico H, Gallego-Lago JL, Hernandez ER, et al. Effect of silicon supplement on osteopenia induced by ovariectomy in rats. Calcified Tissue Int. 2000;66:53–55. doi:10.1007/s002230050010