417
Views
36
CrossRef citations to date
0
Altmetric
Review

Applications of Graphene and Its Derivatives in Bone Repair: Advantages for Promoting Bone Formation and Providing Real-Time Detection, Challenges and Future Prospects

ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 7523-7551 | Published online: 06 Oct 2020

References

  • Smith BD, Grande DA. The current state of scaffolds for musculoskeletal regenerative applications. Nat Rev Rheumatol. 2015;11(4):213–222. doi:10.1038/nrrheum.2015.2725776947
  • Liu M, Zeng X, Ma C, et al. Injectable hydrogels for cartilage and bone tissue engineering. Bone Res. 2017;5:17014. doi:10.1038/boneres.2017.1428584674
  • Lienemann PS, Lutolf MP, Ehrbar M. Biomimetic hydrogels for controlled biomolecule delivery to augment bone regeneration. Adv Drug Deliv Rev. 2012;64(12):1078–1089. doi:10.1016/j.addr.2012.03.01022465487
  • Zhang YB, Yu JK, Ren KX, Zuo JL, Ding JX, Chen XS. Thermosensitive hydrogels as scaffolds for cartilage tissue engineering. Biomacromolecules. 2019;20(4):1478–1492. doi:10.1021/acs.biomac.9b0004330843390
  • Benlidayi ME, Tatli U, Salimov F, Tukel HC, Yuksel O. Comparison of autogenous and allograft bone rings in surgically created vertical bone defects around implants in a sheep model. Clin Oral Implant Res. 2018;29(11):1155–1162. doi:10.1111/clr.13379
  • Oladeji LO, Stannard JP, Cook CR, et al. Effects of autogenous bone marrow aspirate concentrate on radiographic integration of femoral condylar osteochondral allografts. Am J Sports Med. 2017;45(12):2797–2803. doi:10.1177/036354651771572528737949
  • Wang QF, Yan JH, Yang JL, Li BY. Nanomaterials promise better bone repair. Mater Today. 2016;19(8):451–463. doi:10.1016/j.mattod.2015.12.003
  • Du ZP, Feng XX, Cao GX, et al. The effect of carbon nanotubes on osteogenic functions of adipose-derived mesenchymal stem cells in vitro and bone formation in vivo compared with that of nano-hydroxyapatite and the possible mechanism. Bioact. Mater. 2021;6(2):333-345. doi:10.1016/j.bioactmat.2020.08.015
  • Li G, Zhou T, Lin S, Shi S, Lin Y. Nanomaterials for craniofacial and dental tissue engineering. J Dent Res. 2017;96(7):725–732. doi:10.1177/002203451770667828463533
  • Eivazzadeh-Keihan R, Maleki A, de la Guardia M, et al. Carbon based nanomaterials for tissue engineering of bone: building new bone on small black scaffolds: a review. J Adv Res. 2019;18:185–201. doi:10.1016/j.jare.2019.03.01131032119
  • Kim S, Ku SH, Lim SY, Kim JH, Park CB. Graphene-biomineral hybrid materials. Adv Mater. 2011;23(17):2009–2014. doi:10.1002/adma.20110001021413084
  • Shin SR, Li YC, Jang HL, et al. Graphene-based materials for tissue engineering. Adv Drug Deliv Rev. 2016;105B:255–274. doi:10.1016/j.addr.2016.03.007
  • Nasiri F, Ajeli S, Semnani D, Jahanshahi M, Emadi R. Design, fabrication and structural optimization of tubular carbon/Kevlar((R))/PMMA/graphene nanoplate composite for bone fixation prosthesis. Biomed Mater. 2018;13(4):045010. doi:10.1088/1748-605X/aab8d629565261
  • Turk M, Deliormanli AM. Electrically conductive borate-based bioactive glass scaffolds for bone tissue engineering applications. J Biomater Appl. 2017;32(1):28–39. doi:10.1177/088532821770960828541125
  • Dalgic AD, Alshemary AZ, Tezcaner A, Keskin D, Evis Z. Silicate-doped nano-hydroxyapatite/graphene oxide composite reinforced fibrous scaffolds for bone tissue engineering. J Biomater Appl. 2018;32(10):1392–1405. doi:10.1177/088532821876366529544381
  • Sharma SS, Sharma BB, Parashar A. Mechanical and fracture behavior of water submerged graphene. J Appl Phys. 2019;125(21):215107. doi:10.1063/1.5088884
  • Raslan A, Del Burgo LS, Ciriza J, Pedraz JL. Graphene oxide and reduced graphene oxide-based scaffolds in regenerative medicine. Int J Pharm. 2020;580:119226. doi:10.1016/j.ijpharm.2020.11922632179151
  • Li XY, Liu YM, Li WG, et al. Effects of graphene oxide agglomerates on workability, hydration, microstructure and compressive strength of cement paste. Constr Build Mater. 2017;145:402–410. doi:10.1016/j.conbuildmat.2017.04.058
  • Bai RG, Ninan N, Muthoosamy K, Manickam S. Graphene: a versatile platform for nanotheranostics and tissue engineering. Prog Mater Sci. 2018;91:24–69. doi:10.1016/j.pmatsci.2017.08.004
  • Pattnaik S, Swain K, Lin ZQ. Graphene and graphene-based nanocomposites: biomedical applications and biosafety. J Mat Chem B. 2016;4(48):7813–7831. doi:10.1039/c6tb02086k
  • Paz E, Forriol F, Del Real JC, Dunne N. Graphene oxide versus graphene for optimisation of PMMA bone cement for orthopaedic applications. Mater Sci Eng C-Mater Biol Appl. 2017;77:1003–1011. doi:10.1016/j.msec.2017.03.26928531971
  • Deepachitra R, Chamundeeswari M, Kumar BS, et al. Osteo mineralization of fibrin-decorated graphene oxide. Carbon. 2013;56:64–76. doi:10.1016/j.carbon.2012.12.070
  • Mahmood M, Villagarcia H, Dervishi E, et al. Role of carbonaceous nanomaterials in stimulating osteogenesis in mammalian bone cells. J Mat Chem B. 2013;1(25):3220–3230. doi:10.1039/c3tb20248h
  • Sharma R, Kapusetti G, Bhong SY, et al. Osteoconductive amine functionalized graphene-poly(methylmethacrylate) bone cement composite with controlled exothermic polymerization. Bioconjugate Chem. 2017;28(9):2254–2265. doi:10.1021/acs.bioconjchem.7b00241
  • Sun J, Deng Y, Li JP, et al. A new graphene derivative: hydroxylated graphene with excellent biocompatibility. ACS Appl Mater Interfaces. 2016;8(16):10226–10233. doi:10.1021/acsami.6b0203227052945
  • Eckhart KE, Holt BD, Laurencin MG, Sydlik SA. Covalent conjugation of bioactive peptides to graphene oxide for biomedical applications. Biomater Sci. 2019;7(9):3876–3885. doi:10.1039/c9bm00867e31309944
  • La WG, Park S, Yoon HH, et al. Delivery of a therapeutic protein for bone regeneration from a substrate coated with graphene oxide. Small. 2013;9(23):4051–4060. doi:10.1002/smll.20130057123839958
  • Zhou HJ, Jiang M, Xin YC, et al. Surface deposition of graphene layer for bioactivity improvement of biomedical 316 stainless steel. Mater Lett. 2017;192:123–127. doi:10.1016/j.matlet.2016.12.043
  • Yu P, Bao RY, Shi XJ, Yang W, Yang MB. Self-assembled high-strength hydroxyapatite/graphene oxide/chitosan composite hydrogel for bone tissue engineering. Carbohydr Polym. 2017;155:507–515. doi:10.1016/j.carbpol.2016.09.00127702542
  • Dinescu S, Ionita M, Ignat SR, Costache M, Hermenean A. Graphene oxide enhances chitosan-based 3D scaffold properties for bone tissue engineering. Int J Mol Sci. 2019;20(20):5077. doi:10.3390/ijms20205077
  • Zhang YC, Hu JL. Isocyanate modified GO shape-memory polyurethane composite. Polymers. 2020;12(1):118. doi:10.3390/polym12010118
  • Qi YY, Tai ZX, Sun DF, et al. Fabrication and characterization of poly(vinyl alcohol)/graphene oxide nanofibrous biocomposite scaffolds. J Appl Polym Sci. 2013;127(3):1885–1894. doi:10.1002/app.37924
  • Li DJ, Nie W, Chen L, et al. Self-assembled hydroxyapatite-graphene scaffold for photothermal cancer therapy and bone regeneration. J Biomed Nanotechnol. 2018;14(12):2003–2017. doi:10.1166/jbn.2018.264630305209
  • Li KW, Wang CH, Yan JH, et al. Evaluation of the osteogenesis and osseointegration of titanium alloys coated with graphene: an in vivo study. Sci Rep. 2018;8:1843. doi:10.1038/s41598-018-19742-y29382859
  • Park KO, Lee JH, Park JH, et al. Graphene oxide-coated guided bone regeneration membranes with enhanced osteogenesis: spectroscopic analysis and animal study. Appl Spectrosc Rev. 2016;51(7–9):540–551. doi:10.1080/05704928.2016.1165687
  • Saravanan S, Vimalraj S, Anuradha D. Chitosan based thermoresponsive hydrogel containing graphene oxide for bone tissue repair. Biomed Pharmacother. 2018;107:908–917. doi:10.1016/j.biopha.2018.08.07230257403
  • Zhai LS, Li L, Zhang Q. Fabrication of capsaicin functionalized reduced graphene oxide and its effect on proliferation and differentiation of osteoblasts. Environ Toxicol Pharmacol. 2018;57:41–45. doi:10.1016/j.etap.2017.11.01229175712
  • Cicuendez M, Silva VS, Hortiguela MJ, Matesanz MC, Vila M, Portoles MT. MC3T3-E1 pre-osteoblast response and differentiation after graphene oxide nanosheet uptake. Colloid Surf B-Bio Interfaces. 2017;158:33–40. doi:10.1016/j.colsurfb.2017.06.019
  • Nayak TR, Andersen H, Makam VS, et al. Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano. 2011;5(6):4670–4678. doi:10.1021/nn200500h21528849
  • Arnold AM, Holt BD, Daneshmandi L, Laurencin CT, Sydlik SA. Phosphate graphene as an intrinsically osteoinductive scaffold for stem cell-driven bone regeneration. Proc Natl Acad Sci U S A. 2019;116(11):4855–4860. doi:10.1073/pnas.181543411630796184
  • Wu CT, Xia LG, Han PP, et al. Graphene-oxide-modified beta-tricalcium phosphate bioceramics stimulate in vitro and in vivo osteogenesis. Carbon. 2015;93:116–129. doi:10.1016/j.carbon.2015.04.048
  • Wu XW, Zheng S, Ye YZ, Wu YC, Lin KL, Su JS. Enhanced osteogenic differentiation and bone regeneration of poly(lactic-co-glycolic acid) by graphene via activation of PI3K/Akt/GSK-3 beta-beta-catenin signal circuit. Biomater Sci. 2018;6(5):1147–1158. doi:10.1039/c8bm00127h29561031
  • Chen YH, Zheng ZW, Zhou RP, et al. Developing a strontium-releasing graphene oxide-/collagen-based organic-inorganic nanobiocomposite for large bone defect regeneration via MAPK signaling pathway. ACS Appl Mater Interfaces. 2019;11(17):15986–15997. doi:10.1021/acsami.8b2260630945836
  • Bordoni V, Reina G, Orecchioni M, et al. Stimulation of bone formation by monocyte-activator functionalized graphene oxide in vivo. Nanoscale. 2019;11(41):19408–19421. doi:10.1039/c9nr03975a31386739
  • Chang TK, Lu YC, Yeh ST, Lin TC, Huang CH, Huang CH. In vitro and in vivo biological responses to graphene and graphene oxide: a murine calvarial animal study. Int J Nanomed. 2020;15:647–659. doi:10.2147/IJN.S231885
  • Yao QQ, Liu HX, Lin X, et al. 3D interpenetrated graphene foam/58S bioactive glass scaffolds for electrical-stimulation-assisted differentiation of rabbit mesenchymal stem cells to enhance bone regeneration. J Biomed Nanotechnol. 2019;15(3):602–611. doi:10.1166/jbn.2019.270331165704
  • Zhang SY, Yang QM, Zhao WK, et al. In vitro and in vivo biocompatibility and osteogenesis of graphene-reinforced nanohydroxyapatite polyamide66 ternary biocomposite as orthopedic implant material. Int J Nanomed. 2016;11:3179–3189. doi:10.2147/IJN.S105794
  • Kundu N, Mukherjee D, Maiti TK, Sarkar N. Protein-guided formation of silver nanoclusters and their assembly with graphene oxide as an improved bioimaging agent with reduced toxicity. J Phys Chem Lett. 2017;8(10):2291–2297. doi:10.1021/acs.jpclett.7b0060028468496
  • Toumia Y, Cerroni B, Trochet P, et al. Performances of a pristine graphene-microbubble hybrid construct as dual imaging contrast agent and assessment of its biodistribution by photoacoustic imaging. Part Part Syst Char. 2018;35(7):1800066. doi:10.1002/ppsc.201800066
  • Goncalves G, Cruz SMA, Ramalho A, Gracio J, Marques PAAP. Graphene oxide versus functionalized carbon nanotubes as a reinforcing agent in a PMMA/HA bone cement. Nanoscale. 2012;4(9):2937–2945. doi:10.1039/c2nr30303e22499394
  • Jeon J, Lodge MS, Dawson BD, Ishigami M, Shewmaker F, Chen B. Superb resolution and contrast of transmission electron microscopy images of unstained biological samples on graphene-coated grids. Biochim Biophys Acta-Gen Subj. 2013;1830(6):3807–3815. doi:10.1016/j.bbagen.2013.03.002
  • Zhang H, Wu HX, Wang J, et al. Graphene oxide-BaGdF5 nanocomposites for multi-modal imaging and photothermal therapy. Biomaterials. 2015;42:66–77. doi:10.1016/j.biomaterials.2014.11.05525542794
  • Chen J, Hu HL, Feng LB, et al. Preparation and characterization of 3D porous conductive scaffolds with magnetic resonance enhancement in tissue engineering. Biomed Mater. 2019;14(4):045013. doi:10.1088/1748-605X/ab1d9c31035263
  • Talukdar Y, Rashkow JT, Patel S, et al. Nanofilm generated non-pharmacological anabolic bone stimulus. J Biomed Mater Res Part A. 2020;108(1):178–186. doi:10.1002/jbm.a.36807
  • Zapata MEV, Hernandez JHM, Grande Tovar CD, et al. Novel bioactive and antibacterial acrylic bone cement nanocomposites modified with graphene oxide and chitosan. Int J Mol Sci. 2019;20(12):2938. doi:10.3390/ijms20122938
  • Hu YH. The first magnetic-nanoparticle-free carbon-based contrast agent of magnetic-resonance imaging-fluorinated graphene oxide. Small. 2014;10(8):1451–1452. doi:10.1002/smll.20130364424376224
  • Chowdhury SM, Dasgupta S, Mcelroy AE, Sitharaman B. Structural disruption increases toxicity of graphene nanoribbons. J Appl Toxicol. 2014;34(11):1235–1246. doi:10.1002/jat.306625224919
  • He Y, Li YM, Chen GH, et al. Concentration-dependent cellular behavior and osteogenic differentiation effect induced in bone marrow mesenchymal stem cells treated with magnetic graphene oxide. J Biomed Mater Res Part A. 2020;108(1):50–60. doi:10.1002/jbm.a.36791
  • Das S, Singh S, Singh V, et al. Oxygenated functional group density on graphene oxide: its effect on cell toxicity. Part Part Syst Char. 2013;30(2):148–157. doi:10.1002/ppsc.201200066
  • Diez-Pascual AM. Tissue engineering bionanocomposites based on poly(propylene fumarate). Polymers. 2017;9(7):260. doi:10.3390/polym9070260
  • Díez-Pascual AM, Diez-Vicente AL. Poly(propylene fumarate)/polyethylene glycol-modified graphene oxide nanocomposites for tissue engineering. ACS Appl Mater Interfaces. 2016;8(28):17902–17914. doi:10.1021/acsami.6b0563527383639
  • Kurapati R, Russier J, Squillaci MA, et al. Dispersibility-dependent biodegradation of graphene oxide by myeloperoxidase. Small. 2015;11(32):3985–3994. doi:10.1002/smll.20150003825959808
  • Kurapati R, Mukherjee SP, Martin C, et al. Degradation of single‐layer and few‐layer graphene by neutrophil myeloperoxidase. Angew Chem-Int Edit. 2018;57(36):11722–11727. doi:10.1002/anie.201806906
  • Arnold AM, Holt BD, Tang CX, Sydlik SA. Phosphate modified graphene oxide: long-term biodegradation and cytocompatibility. Carbon. 2019;154:342–349. doi:10.1016/j.carbon.2019.08.005
  • Mohammadi S, Shafiei SS, Asadi-Eydivand M, Ardeshir M, Solati-Hashjin M. Graphene oxide-enriched poly (ε-caprolactone) electrospun nanocomposite scaffold for bone tissue engineering applications. J Bioact Compat Polym. 2017;32(3):325–342. doi:10.1177/0883911516668666
  • Wang L, Wang CY, Wu S, Fan YB, Li XM. Influence of mechanical properties of biomaterials on degradability, cell behaviors and signaling pathways: current progress and challenges. Biomater Sci. 2020;8(10):2714–2733. doi:10.1039/d0bm00269k32307482
  • Wang L, Wu S, Cao GX, Fan YB, Dunne N, Li XM. Biomechanical studies on biomaterial degradation and co-cultured cells: mechanisms, potential applications, challenges and prospects. J Mat Chem B. 2019;7:7439–7459. doi:10.1039/c9tb01539f
  • Agarwal R, Garcia AJ. Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair. Adv Drug Deliv Rev. 2015;94:53–62. doi:10.1016/j.addr.2015.03.01325861724
  • Yi H, Rehman FU, Zhao CQ, Liu B, He NY. Recent advances in nano scaffolds for bone repair. Bone Res. 2016;4:16050. doi:10.1038/boneres.2016.5028018707
  • Zhu YW, Murali S, Cai WW, et al. Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater. 2010;22(35):3906–3924. doi:10.1002/adma.20100106820706983
  • Papageorgiou DG, Kinloch IA, Young RJ. Mechanical properties of graphene and graphene-based nanocomposites. Prog Mater Sci. 2017;90:75–127. doi:10.1016/j.pmatsci.2017.07.004
  • Lee C, Wei XD, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008;321(5887):385–388. doi:10.1126/science.115799618635798
  • Young RJ, Kinloch IA, Gong L, Novoselov KS. The mechanics of graphene nanocomposites: a review. Compos Sci Technol. 2012;72(12):1459–1476. doi:10.1016/j.compscitech.2012.05.005
  • Guo SJ, Dong SJ. Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem Soc Rev. 2011;40(5):2644–2672. doi:10.1039/c0cs00079e21283849
  • Eqra R, Janghorban K, Manesh HD. Effect of number of graphene layers on mechanical and dielectric properties of graphene-epoxy nanocomposites. Plast Rubber Compos. 2015;44(10):405–412. doi:10.1179/1743289815Y.0000000037
  • Zhang YY, Gu YT. Mechanical properties of graphene: effects of layer number, temperature and isotope. Comput Mater Sci. 2013;71:197–200. doi:10.1016/j.commatsci.2013.01.032
  • Kim HJ, Seo KJ, Kim DE. Investigation of mechanical behavior of single- and multi-layer graphene by using molecular dynamics simulation. Int J Precis Eng Man. 2016;17(12):1693–1701. doi:10.1007/s12541-016-0196-4
  • Tang YF, Chen L, Duan ZH, Zhao K, Wu ZX. Graphene/barium titanate/polymethyl methacrylate bio-piezoelectric composites for biomedical application. Ceram Int. 2020;46(5):6567–6574. doi:10.1016/j.ceramint.2019.11.142
  • Gao DZ, Jing J, Yu JC, et al. Graphene platelets enhanced pressureless-sintered B4C ceramics. R Soc Open Sci. 2018;5(4):171837. doi:10.1098/rsos.17183729765648
  • Yang Y, Ding XL, Zou TQ, Peng G, Liu HF, Fan YB. Preparation and characterization of electrospun graphene/silk fibroin conductive fibrous scaffolds. RSC Adv. 2017;7(13):7954–7963. doi:10.1039/C6RA26807B
  • Ionita M, Crica LE, Tiainen H, et al. Gelatin-poly(vinyl alcohol) porous biocomposites reinforced with graphene oxide as biomaterials. J Mat Chem B. 2015;4(2):282–291. doi:10.1039/C5TB02132D
  • Zhang HP, Yang B, Wang ZM, et al. Porous graphene oxide/chitosan nanocomposites based on interfacial chemical interactions. Eur Polym J. 2019;119:114–119. doi:10.1016/j.eurpolymj.2019.07.032
  • Zhang SW, Zhang DD, Li Z, et al. Polydopamine functional reduced graphene oxide for enhanced mechanical and electrical properties of waterborne polyurethane nanocomposites. J Coat Technol Res. 2018;15(6):1333–1341. doi:10.1007/s11998-018-0082-3
  • Liu XF, Miller AL, Waletzki BE, Lu LC. Cross-linkable graphene oxide embedded nanocomposite hydrogel with enhanced mechanics and cytocompatibility for tissue engineering. J Biomed Mater Res Part A. 2018;106(5):1247–1257. doi:10.1002/jbm.a.36322
  • Huang Y, Deng HK, Fan YB, et al. Conductive nanostructured Si biomaterials enhance osteogeneration through electrical stimulation. Mater Sci Eng C-Mater Biol Appl. 2019;103:109748. doi:10.1016/j.msec.2019.10974831349398
  • Pelto J, Bjorninen M, Palli A, et al. Novel polypyrrole-coated polylactide scaffolds enhance adipose stem cell proliferation and early osteogenic differentiation. Tissue Eng Part A. 2013;19(7–8):882–892. doi:10.1089/ten.tea.2012.011123126228
  • Thrivikraman G, Lee PS, Hess R, Haenchen V, Basu B, Schamweber D. Interplay of substrate conductivity, cellular microenvironment, and pulsatile electrical stimulation toward osteogenesis of human mesenchymal stem cells in vitro. ACS Appl Mater Interfaces. 2015;7(41):23015–23028. doi:10.1021/acsami.5b0639026418613
  • Bonaccorso F, Colombo L, Yu GH, et al. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science. 2015;347(6217):1246501. doi:10.1126/science.124650125554791
  • Zhao GK, Li XM, Huang MR, et al. The physics and chemistry of graphene-on-surfaces. Chem Soc Rev. 2017;46(15):4417–4449. doi:10.1039/C7CS00256D28678225
  • Thompson BC, Murray E, Wallace GG. Graphite oxide to graphene. Biomaterials to bionics. Adv Mater. 2015;27(46):7563–7582. doi:10.1002/adma.20150041125914294
  • Gong SS, Ni H, Jiang L, Cheng QF. Learning from nature: constructing high performance graphene-based nanocomposites. Mater Today. 2016;20(4):210–219. doi:10.1016/j.mattod.2016.11.002
  • Li JF, Liu X, Crook JM, Wallace GG. Electrical stimulation-induced osteogenesis of human adipose derived stem cells using a conductive graphene-cellulose scaffold. Mater Sci Eng C-Mater Biol Appl. 2020;107:110312. doi:10.1016/j.msec.2019.11031231761174
  • Goodman PA, Li H, Gao Y, Lu YF, Stenger-Smith JD, Redepenning J. Preparation and characterization of high surface area, high porosity carbon monoliths from pyrolyzed bovine bone and their performance as supercapacitor electrodes. Carbon. 2013;55:291–298. doi:10.1016/j.carbon.2012.12.066
  • Jin L, Wu DC, Kuddannaya S, Zhang YL, Wang ZL. Fabrication, characterization, and biocompatibility of polymer cored reduced graphene oxide nanofibers. ACS Appl Mater Interfaces. 2016;8(8):5170–5177. doi:10.1021/acsami.6b0024326836319
  • Silva M, Caridade SG, Vale AC, et al. Biomedical films of graphene nanoribbons and nanoflakes with natural polymers. RSC Adv. 2017;7(44):27578–27594. doi:10.1039/C7RA04173J
  • Shuai CJ, Zeng ZC, Yang YW, et al. Graphene oxide assists polyvinylidene fluoride scaffold to reconstruct electrical microenvironment of bone tissue. Mater Des. 2020;190:108564. doi:10.1016/j.matdes.2020.108564
  • Azadian E, Arjmand B, Ardeshirylajimi A, Hosseinzadeh S, Omidi M, Khojasteh A. Polyvinyl alcohol modified polyvinylidene fluoride-graphene oxide scaffold promotes osteogenic differentiation potential of human induced pluripotent stem cells. J Cell Biochem. 2019;121(5–6):3185–3196. doi:10.1002/jcb.2958531886565
  • Tahriri M, Monico MD, Moghanian A, et al. Graphene and its derivatives: opportunities and challenges in dentistry. Mater Sci Eng C-Mater Biol Appl. 2019;102:171–185. doi:10.1016/j.msec.2019.04.05131146988
  • Mohammadrezaei D, Golzar H, Rad M, et al. In vitro effect of graphene structures as an osteoinductive factor in bone tissue engineering: a systematic review. J Biomed Mater Res Part A. 2018;106(8):2284–2343. doi:10.1002/jbm.a.36422
  • Holt BD, Arnold AM, Sydlik SA. Peptide-functionalized reduced graphene oxide as a bioactive mechanically robust tissue regeneration scaffold. Polym Int. 2017;66(8):1190–1198. doi:10.1002/pi.5375
  • Lee WC, Lim CH, Shi H, et al. Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide. ACS Nano. 2011;5(9):7334–7341. doi:10.1021/nn202190c21793541
  • Xie CM, Sun HL, Wang KF, Zheng W, Lu X, Ren FZ. Graphene oxide nanolayers as nanoparticle anchors on biomaterial surfaces with nanostructures and charge balance for bone regeneration. J Biomed Mater Res Part A. 2017;105(5):1311–1323. doi:10.1002/jbm.a.36010
  • Chen JY, Zhang X, Cai H, et al. Osteogenic activity and antibacterial effect of zinc oxide/carboxylated graphene oxide nanocomposites: preparation and in vitro evaluation. Colloid Surf B-Bio Interfaces. 2016;147:397–407. doi:10.1016/j.colsurfb.2016.08.023
  • Kaur T, Thirugnanam A, Pramanik K. Effect of carboxylated graphene nanoplatelets on mechanical and in-vitro biological properties of polyvinyl alcohol nanocomposite scaffolds for bone tissue engineering. Mater Today Commun. 2017;12:34–42. doi:10.1016/j.mtcomm.2017.06.004
  • Tavafoghi M, Brodusch N, Gauvin R, Cerruti M. Hydroxyapatite formation on graphene oxide modified with amino acids: arginine versus glutamic acid. J R Soc Interface. 2016;13(114):20150986. doi:10.1016/j.mtcomm.2017.06.00426791001
  • Paz E, Ballesteros Y, Forriol F, Dunne NJ, Del Real JC. Graphene and graphene oxide functionalisation with silanes for advanced dispersion and reinforcement of PMMA-based bone cements. Mater Sci Eng C-Mater Biol Appl. 2019;104:109946. doi:10.1016/j.msec.2019.10994631499982
  • Vuppaladadium SSR, Agarwal T, Kulanthaivel S, et al. Silanization improves biocompatibility of graphene oxide. Mater Sci Eng C-Mater Biol Appl. 2020;110:110647. doi:10.1016/j.msec.2020.11064732204077
  • Jia ZJ, Shi YY, Xiong P, et al. From solution to biointerface: graphene self-assemblies of varying lateral sizes and surface properties for biofilm control and osteodifferentiation. ACS Appl Mater Interfaces. 2016;8(27):17151–17165. doi:10.1021/acsami.6b0519827327408
  • Cheng J, Liu HY, Zhao BJ, et al. MC3T3-E1 preosteoblast cell-mediated mineralization of hydroxyapatite by poly-dopamine-functionalized graphene oxide. J Bioact Compat Polym. 2015;30(3):289–301. doi:10.1177/0883911515569918
  • Padmavathy N, Jaidev LR, Bose S, Chatterjee K. Oligomer-grafted graphene in a soft nanocomposite augments mechanical properties and biological activity. Mater Des. 2017;126:238–249. doi:10.1016/j.matdes.2017.03.087
  • Liu XH, Ma DM, Tang H, et al. Polyamidoamine dendrimer and oleic acid-functionalized graphene as biocompatible and efficient gene delivery vectors. ACS Appl Mater Interfaces. 2014;6(11):8173–8183. doi:10.1021/am500812h24836601
  • Dou C, Ding N, Luo F, et al. Graphene-based microRNA transfection blocks preosteoclast fusion to increase bone formation and vascularization. Adv Sci. 2018;5(2):1700578. doi:10.1002/advs.201700578
  • Li KH, Zhang ZF, Li DP, et al. Biomimetic ultralight, highly porous, shape-adjustable, and biocompatible 3D graphene minerals via incorporation of self-assembled peptide nanosheets. Adv Funct Mater. 2018;28(29):1801056. doi:10.1002/adfm.201801056
  • Kang ES, Kim DS, Han Y, et al. Three-dimensional graphene-RGD peptide nanoisland composites that enhance the osteogenesis of human adipose-derived mesenchymal stem cells. Int J Mol Sci. 2018;19(3):669. doi:10.3390/ijms19030669
  • Zhang WJ, Yang GZ, Wang XS, et al. Magnetically controlled growth-factor-immobilized multilayer cell sheets for complex tissue regeneration. Adv Mater. 2017;29(43):1703795. doi:10.1002/adma.201703795
  • Yao QQ, Liu YX, Sun HL. Heparin-dopamine functionalized graphene foam for sustained release of bone morphogenetic protein-2. J Tissue Eng Regen Med. 2018;12(6):1519–1529. doi:10.1002/term.268129702734
  • Unnithan AR, Sasikala ARK, Park CH, Kim CS. A unique scaffold for bone tissue engineering: an osteogenic combination of graphene oxide-hyaluronic acid.chitosan with simvastatin. J Ind Eng Chem. 2017;46:182–191. doi:10.1016/j.jiec.2016.10.029
  • Sun HH, Zhang LF, Xia W, Chen LX, Xu ZZ, Zhang WQ. Fabrication of graphene oxide-modified chitosan for controlled release of dexamethasone phosphate. Appl Phys A-Mater Sci Process. 2016;122(7):632. doi:10.1007/s00339-016-0029-4
  • Weng WZ, Nie W, Zhou QR, et al. Controlled release of vancomycin from 3D porous graphene-based composites for dual-purpose treatment of infected bone defects. RSC Adv. 2017;7(5):2753–2765. doi:10.1039/C6RA26062D
  • Liang CY, Luo YC, Yang GD, et al. Graphene oxide hybridized nHAC/PLGA scaffolds facilitate the proliferation of MC3T3-E1 cells. Nanoscale Res Lett. 2018;13:15. doi:10.1186/s11671-018-2432-629327198
  • Li XJ, Lin KL, Wang ZL. Enhanced growth and osteogenic differentiation of MC3T3-E1 cells on Ti6Al4V alloys modified with reduced graphene oxide. RSC Adv. 2017;7(24):14430–14437. doi:10.1039/c6ra25832h
  • Fu C, Bai HT, Hu Q, Gao TL, Bai YS. Enhanced proliferation and osteogenic differentiation of MC3T3-E1 pre-osteoblasts on graphene oxide-impregnated PLGA-gelatin nanocomposite fibrous membranes. RSC Adv. 2017;7(15):8886–8897. doi:10.1039/c6ra26020a
  • Newby SD, Masi T, Griffin CD, et al. Functionalized graphene nanoparticles induce human mesenchymal stem cells to express distinct extracellular matrix proteins mediating osteogenesis. Int J Nanomed. 2020;15:2501–2513. doi:10.2147/IJN.S245801
  • Krukiewicz K, Putzer D, Stuendl N, Lohberger B, Awaja F. Enhanced osteogenic differentiation of human primary mesenchymal stem and progenitor cultures on graphene oxide/poly(methyl methacrylate) composite scaffolds. Materials. 2020;13(13):2991. doi:10.3390/ma13132991
  • Rostami F, Tamjid E, Behmanesh M. Drug-eluting PCL/graphene oxide nanocomposite scaffolds for enhanced osteogenic differentiation of mesenchymal stem cells. Mater Sci Eng C-Mater Biol Appl. 2020;115:111102. doi:10.1016/j.msec.2020.11110232600706
  • Zou YL, Qazvini NT, Zane KL, et al. Gelatin-derived graphene-silicate hybrid materials are biocompatible and synergistically promote BMP9-induced osteogenic differentiation of mesenchymal stem cells. ACS Appl Mater Interfaces. 2017;9(19):15922–15932. doi:10.1021/acsami.7b0027228406027
  • Nie W, Peng C, Zhou X, et al. Three-dimensional porous scaffold by self-assembly of reduced graphene oxide and nano-hydroxyapatite composites for bone tissue engineering. Carbon. 2017;116:325–337. doi:10.1016/j.carbon.2017.02.013
  • Yan JH, Wang CH, Li KW, et al. Enhancement of surface bioactivity on carbon fiber-reinforced polyether ether ketone via graphene modification. Int J Nanomed. 2018;13:3425–3440. doi:10.2147/IJN.S160030
  • Hermenean A, Codreanu A, Herman H, et al. Chitosan-graphene oxide 3D scaffolds as promising tools for bone regeneration in critical-size mouse calvarial defects. Sci Rep. 2017;7:16641. doi:10.1038/s41598-017-16599-529192253
  • Qiu JJ, Guo JS, Geng H, Qian WH, Liu XY. Three-dimensional porous graphene nanosheets synthesized on the titanium surface for osteogenic differentiation of rat bone mesenchymal stem cells. Carbon. 2017;125:227–235. doi:10.1016/j.carbon.2017.09.064
  • Lyu H, He ZC, Chan YK, He XH, Yu Y, Deng Y. Hierarchical ZnO nanotube/graphene oxide nanostructures endow pure Zn implant with synergistic bactericidal activity and osteogenicity. Ind Eng Chem Res. 2019;58(42):19377–19385. doi:10.1021/acs.iecr.9b02986
  • Shahin M, Munir K, Wen CE, Li YC. Magnesium-based composites reinforced with graphene nanoplatelets as biodegradable implant materials. J Alloys Compd. 2020;828:154461. doi:10.1016/j.jallcom.2020.154461
  • Zhao Y, Chen JD, Zou L, Xu G, Geng YS. Facile one-step bioinspired mineralization by chitosan functionalized with graphene oxide to activate bone endogenous regeneration. Chem Eng J. 2019;378:122174. doi:10.1016/j.cej.2019.122174
  • Oguz OD, Ege D. Preparation of graphene oxide-reinforced calcium phosphate/calcium sulfate/methylcellulose-based injectable bone substitutes. MRS Commun. 2019;9(4):1174–1180. doi:10.1557/mrc.2019.125
  • Li J, Jiang H, Ouyang X, et al. CaCO3/tetraethylenepentamine-graphene hollow microspheres as biocompatible bone drug carriers for controlled release. ACS Appl Mater Interfaces. 2016;8(44):30027–30036. doi:10.1021/acsami.6b1069727753474
  • Tang J, Cao WJ, Zhang Y, et al. Properties of vaterite-containing tricalcium silicate composited graphene oxide for biomaterials. Biomed Mater. 2019;14(4):045004. doi:10.1088/1748-605x/ab0de330844782
  • Dai CB, Li Y, Pan WZ, et al. Three-dimensional high-porosity chitosan/honeycomb porous carbon/hydroxyapatite scaffold with enhanced osteoinductivity for bone regeneration. ACS Biomater Sci Eng. 2020;6(1):575–586. doi:10.1021/acsbiomaterials.9b01381
  • Li JF, Liu X, Tomaskovic-Crook E, Crook JM, Wallace GG. Smart graphene-cellulose paper for 2D or 3D “origami-inspired” human stem cell support and differentiation. Colloid Surf B-Bio Interfaces. 2019;176:87–95. doi:10.1016/j.colsurfb.2018.12.040
  • Liu SK, Zhou CC, Mou S, et al. Biocompatible graphene oxide-collagen composite aerogel for enhanced stiffness and in situ bone regeneration. Mater Sci Eng C-Mater Biol Appl. 2019;105:110137. doi:10.1016/j.msec.2019.11013731546424
  • Unagolla JM, Jayasuriya AC. Enhanced cell functions on graphene oxide incorporated 3D printed polycaprolactone scaffolds. Mater Sci Eng C-Mater Biol Appl. 2019;102:1–11. doi:10.1016/j.msec.2019.04.02631146979
  • Bhusari SA, Sharma V, Bose S, Basu B. HDPE/UHMWPE hybrid nanocomposites with surface functionalized graphene oxide towards improved strength and cytocompatibility. J R Soc Interface. 2019;16(150):20180273. doi:10.1098/rsif.2018.027330958172
  • Feng ZY, Li Y, Hao L, et al. Graphene-reinforced biodegradable resin composites for stereolithographic 3D printing of bone structure scaffolds. J Nanomater. 2019;2019:9710264. doi:10.1155/2019/9710264
  • Liu C, Wong HM, Yeung KW, Tjong SC. Novel electrospun polylactic acid nanocomposite fiber mats with hybrid graphene oxide and nanohydroxyapatite reinforcements having enhanced biocompatibility. Polymers. 2016;8(8):287. doi:10.3390/polym8080287
  • Qi C, Deng Y, Xu LM, et al. A sericin/graphene oxide composite scaffold as a biomimetic extracellular matrix for structural and functional repair of calvarial bone. Theranostics. 2020;10(2):741–756. doi:10.7150/thno.3950231903148
  • Zhang WJ, Chang Q, Xu L, et al. Graphene oxide-copper nanocomposite-coated porous CaP scaffold for vascularized bone regeneration via activation of Hif-1α. Adv Healthc Mater. 2016;5(11):1299–1309. doi:10.1002/adhm.20150082426945787
  • Halim A, Liu L, Ariyanti AD, Ju Y, Luo Q, Song GB. Low-dose suspended graphene oxide nanosheets induce antioxidant response and osteogenic differentiation of bone marrow-derived mesenchymal stem cells via JNK-dependent FoxO1 activation. J Mat Chem B. 2019;7(39):5998–6009. doi:10.1039/c9tb01413f
  • Zhao M, Dai YK, Li XB, et al. Evaluation of long-term biocompatibility and osteogenic differentiation of graphene nanosheet doped calcium phosphate-chitosan AZ91D composites. Mater Sci Eng C-Mater Biol Appl. 2018;90:365–378. doi:10.1016/j.msec.2018.04.08229853102
  • Yu Z, Xiao CW, Huang YZ, et al. Enhanced bioactivity and osteoinductivity of carboxymethyl chitosan/nanohydroxyapatite/graphene oxide nanocomposites. RSC Adv. 2018;8(32):17860–17877. doi:10.1039/C8RA00383A
  • Yang X, Zhao Q, Chen YJ, et al. Effects of graphene oxide and graphene oxide quantum dots on the osteogenic differentiation of stem cells from human exfoliated deciduous teeth. Artif Cell Nanomed Biotechnol. 2019;47(1):822–832. doi:10.1080/21691401.2019.1576706
  • Yan XX, Yang W, Shao ZW, Yang SH, Liu XZ. Graphene/single-walled carbon nanotube hybrids promoting osteogenic differentiation of mesenchymal stem cells by activating p38 signaling pathway. Int J Nanomed. 2016;11:5473–5484. doi:10.2147/IJN.S115468
  • Kim HD, Kim J, Koh RH, et al. Enhanced osteogenic commitment of human mesenchymal stem cells on polyethylene glycol-based cryogel with graphene oxide substrate. ACS Biomater Sci Eng. 2017;3(10):2470–2479. doi:10.1021/acsbiomaterials.7b00299
  • Noh M, Kim SH, Kim J, et al. Graphene oxide reinforced hydrogels for osteogenic differentiation of human adipose-derived stem cells. RSC Adv. 2017;7(34):20779–20788. doi:10.1039/C7RA02410J
  • Valles G, Bensiamar F, Maestro-Paramio L, Garcia-Rey E, Vilaboa N, Saldana L. Influence of inflammatory conditions provided by macrophages on osteogenic ability of mesenchymal stem cells. Stem Cell Res Ther. 2020;11(1):57. doi:10.1186/s13287-020-1578-132054534
  • Li C, Li GQ, Liu M, Zhou TT, Zhou HB. Paracrine effect of inflammatory cytokine-activated bone marrow mesenchymal stem cells and its role in osteoblast function. J Biosci Bioeng. 2016;121(2):213–219. doi:10.1016/j.jbiosc.2015.05.01726315505
  • Ma J, Liu R, Wang X, et al. Crucial role of lateral size for graphene oxide in activating macrophages and stimulating pro-inflammatory responses in cells and animals. ACS Nano. 2015;9(10):10498–10515. doi:10.1021/acsnano.5b0475126389709
  • Zheng YS, Pescatore N, Gogotsi Y, et al. Rapid adsorption of proinflammatory cytokines by graphene nanoplatelets and their composites for extracorporeal detoxification. J Nanomater. 2018;2018:6274072. doi:10.1155/2018/6274072
  • Xue DT, Chen EM, Zhong HM, et al. Immunomodulatory properties of graphene oxide for osteogenesis and angiogenesis. Int J Nanomed. 2018;13:5799–5810. doi:10.2147/IJN.S170305
  • Mathkar A, Narayanan TN, Alemany LB, et al. Synthesis of fluorinated graphene oxide and its amphiphobic properties. Part Part Syst Char. 2013;30(3):266–272. doi:10.1002/ppsc.201200091
  • Enayati M, Nemati A, Zarrabi A, Shokrgozar MA. The role of oxygen defects in magnetic properties of gamma-irradiated reduced graphene oxide. J Alloys Compd. 2019;784:134–148. doi:10.1016/j.jallcom.2018.12.363
  • Yang YQ, Chen SZ, Li HD, et al. Engineered paramagnetic graphene quantum dots with enhanced relaxivity for tumor imaging. Nano Lett. 2019;19(1):441–448. doi:10.1021/acs.nanolett.8b0425230560672
  • Gizzatov A, Keshishian V, Guven A, et al. Enhanced MRI relaxivity of aquated Gd3+ ions by carboxyphenylated water-dispersed graphene nanoribbons. Nanoscale. 2014;6(6):3059–3063. doi:10.1039/c3nr06026h24504060
  • Pramanik N, De J, Basu RK, Rath T, Kundu PP. Fabrication of magnetite nanoparticle doped reduced graphene oxide grafted polyhydroxyalkanoate nanocomposites for tissue engineering application. RSC Adv. 2016;6(52):46116–46133. doi:10.1039/C6RA03233H
  • Pang L, Dai CQ, Bi L, Guo ZS, Fan JJ. Biosafety and antibacterial ability of graphene and graphene oxide in vitro and in vivo. Nanoscale Res Lett. 2017;12:564. doi:10.1186/s11671-017-2317-029027140
  • Roșu MC, Pall E, Socaci C, et al. Cytotoxicity of methylcellulose-based films containing graphenes and curcumin on human lung fibroblasts. Process Biochem. 2017;52:243–249. doi:10.1016/j.procbio.2016.10.002
  • Wychowaniec JK, Litowczenko J, Tadyszak K. Fabricating versatile cell supports from nano- and micro-sized graphene oxide flakes. J Mech Behav Biomed Mater. 2020;103:103594. doi:10.1016/j.jmbbm.2019.10359432090924
  • Gurunathan S, Kang M, Jeyaraj M, Kim JH. Differential cytotoxicity of different sizes of graphene oxide nanoparticles in Leydig (TM3) and Sertoli (TM4) cells. Nanomaterials. 2019;9(2):139. doi:10.3390/nano9020139
  • Akhavan O, Ghaderi E, Akhavan A. Size-dependent genotoxicity of graphene nanoplatelets in human stem cells. Biomaterials. 2012;33(32):8017–8025. doi:10.1016/j.biomaterials.2012.07.04022863381
  • Wu YK, Wang FF, Wang SH, et al. Reduction of graphene oxide alters its cyto-compatibility towards primary and immortalized macrophages. Nanoscale. 2018;10(30):14637–14650. doi:10.1039/c8nr02798f30028471
  • Dervin S, Murphy J, Aviles R, Pillai SC, Garvey M. An in vitro cytotoxicity assessment of graphene nanosheets on alveolar cells. Appl Surf Sci. 2018;434:1274–1284. doi:10.1016/j.apsusc.2017.11.217
  • Syama S, Mohanan PV. Safety and biocompatibility of graphene: a new generation nanomaterial for biomedical application. Int J Biol Macromol. 2016;86:546–555. doi:10.1016/j.ijbiomac.2016.01.11626851208
  • Zhou K, Yu P, Shi XJ, et al. Hierarchically porous hydroxyapatite hybrid scaffold incorporated with reduced graphene oxide for rapid bone ingrowth and repair. ACS Nano. 2019;13(8):9595–9606. doi:10.1021/acsnano.9b0472331381856
  • Li YJ, Feng LZ, Shi XZ, et al. Surface coating-dependent cytotoxicity and degradation of graphene derivatives: towards the design of non-toxic, degradable nano-graphene. Small. 2014;10(8):1544–1554. doi:10.1002/smll.20130323424376215
  • Huang Y, Lu XY, Lu XQ. Cytotoxic mechanism for silver nanoparticles based high-content cellomics and transcriptome sequencing. J Biomed Nanotechnol. 2019;15(7):1401–1414. doi:10.1166/jbn.2019.278531196346
  • Lee ES, Kim SH. Fabrication of size-controlled linoleic acid particles and evaluation of their in-vitro lipotoxicity. Food Chem Toxicol. 2017;100:50–61. doi:10.1016/j.fct.2016.12.00527939595