413
Views
10
CrossRef citations to date
0
Altmetric
Review

Recent Advances in the Use of Mesoporous Silica Nanoparticles for the Diagnosis of Bacterial Infections

ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 6575-6591 | Published online: 24 Sep 2021

References

  • Nigam A, Gupta D, Sharma A. Treatment of infectious disease: beyond antibiotics. Microbiol Res. 2014;169(9–10):643–651. doi:10.1016/j.micres.2014.02.009
  • Hand WL. Current challenges in antibiotic resistance. Adolesc Med. 2000;11(2):427–438.
  • Horizon 2020-Work Programme 2018–2020. Health, demographic change and wellbeing; 2017 [cited 2018 Feb 9]. Available from: http://ec.europa.eu/research/participants/data/ref/h2020/wp/2018-2020/main/h2020-wp1820-health_en.pdf.
  • Pandey AT, Pandey I, Hachenberger Y, et al. Emerging paradigm against global antimicrobial resistance via bioprospecting of mushroom into novel nanotherapeutics development. Trends Food Sci Technol. 2020;106:333–344. doi:10.1016/j.tifs.2020.10.025
  • Tiwari Pandey A, Pandey I, Zamboni P, et al. Traditional herbal remedies with a multifunctional therapeutic approach as an implication in COVID-19 associated co-infections. Coatings. 2020;10(8):761. doi:10.3390/coatings10080761
  • Banoo S, Bell D, Bossuyt P, et al. Evaluation of diagnostic tests for infectious diseases: general principles. Nat Rev Microbiol. 2006;4(S9):S21–S31. doi:10.1038/nrmicro1523
  • World Health Organization. Diagnostic Stewardship: a guide to implementation in antimicrobial resistance surveillance sites. World Health Organization; 2016. Available from: https://apps.who.int/iris/handle/10665/251553. Accessed March 28, 2021.
  • Tsalik EL, Bonomo RA, Fowler VG. New molecular diagnostic approaches to bacterial infections and antibacterial resistance. Annu Rev Med. 2018;69(1):379–394. doi:10.1146/annurev-med-052716-030320
  • Jakobsen TH, Xu Y, Bay L, et al. Sampling challenges in diagnosis of chronic bacterial infections. J Med Microbiol. 2021;70(3). doi:10.1099/jmm.0.001302
  • OECD. Safety assessment of transgenic organisms in the environment, Volume 5: OECD consensus documents. OECD; 2016. doi:10.1787/9789264253018-en.
  • Khan ZA, Siddiqui MF, Park S. Current and emerging methods of antibiotic susceptibility testing. Diagnostics. 2019;9(2):49. doi:10.3390/diagnostics9020049
  • Tang J, Chu B, Wang J, et al. Multifunctional nanoagents for ultrasensitive imaging and photoactive killing of gram-negative and gram-positive bacteria. Nat Commun. 2019;10(1):4057. doi:10.1038/s41467-019-12088-7
  • Wang Z, Cai R, Gao Z, Yuan Y, Yue T. Immunomagnetic separation: an effective pretreatment technology for isolation and enrichment in food microorganisms detection. Compr Rev Food Sci Food Saf. 2020;19(6):3802–3824. doi:10.1111/1541-4337.12656
  • Northrup JD, Mach RH, Sellmyer MA. Radiochemical approaches to imaging bacterial infections: intracellular versus extracellular targets. Int J Mol Sci. 2019;20(22):5808. doi:10.3390/ijms20225808
  • Zazo H, Colino CI, Lanao JM. Current applications of nanoparticles in infectious diseases. J Control Release. 2016;224:86–102. doi:10.1016/j.jconrel.2016.01.008
  • Younes M, Aggett P, Aguilar F, et al.; EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS). Re‐evaluation of silicon dioxide (E 551) as a food additive. EFSA J. 2018;16(1):e05088. doi:10.2903/j.efsa.2018.5088
  • Garcia-Bennett AE. Synthesis, toxicology and potential of ordered mesoporous materials in nanomedicine. Nanomedicine. 2011;6(5):867–877. doi:10.2217/nnm.11.82
  • Karaman DŞ, Sarparanta MP, Rosenholm JM, Airaksinen AJ. Multimodality imaging of silica and silicon materials in vivo. Adv Mater. 2018;30(24):1703651. doi:10.1002/adma.201703651
  • Karaman DS. Nano-chemistry: the toolbox for nanoparticle based diagnosis and theraphy. Ann Chem Sci Res. 2018;1(1). doi:10.31031/ACSR.2018.01.000502
  • Pardhi DM, Şen Karaman D, Timonen J, et al. Anti-bacterial activity of inorganic nanomaterials and their antimicrobial peptide conjugates against resistant and non-resistant pathogens. Int J Pharm. 2020;586:119531. doi:10.1016/j.ijpharm.2020.119531
  • Wang Y, Salazar JK. Culture‐independent rapid detection methods for bacterial pathogens and toxins in food matrices. Compr Rev Food Sci Food Saf. 2016;15:183–205. doi:10.1111/1541-4337.12175
  • Chen CT, Yu JW, Ho YP. Identification of bacteria in juice/lettuce using magnetic nanoparticles and selected reaction monitoring mass spectrometry. J Food Drug Anal. 2019;27(2):575–584. doi:10.1016/j.jfda.2018.09.006
  • Pajerski W, Ochonska D, Brzychczy-Wloch M, et al. Attachment efficiency of gold nanoparticles by Gram-positive and Gram-negative bacterial strains governed by surface charges. J Nanopart Res. 2019;21(8):186. doi:10.1007/s11051-019-4617-z
  • Zhu M, Liu W, Liu H, et al. Construction of Fe 3 O 4 /vancomycin/PEG magnetic nanocarrier for highly efficient pathogen enrichment and gene sensing. ACS Appl Mater Interfaces. 2015;7(23):12873–12881. doi:10.1021/acsami.5b02374
  • Lu HD, Yang SS, Wilson BK, et al. Nanoparticle targeting of Gram-positive and Gram-negative bacteria for magnetic-based separations of bacterial pathogens. Appl Nanosci. 2017;7(3–4):83–93. doi:10.1007/s13204-017-0548-0
  • Hassan MM, Ranzoni A, Phetsang W, Blaskovich MAT, Cooper MA. Surface ligand density of antibiotic-nanoparticle conjugates enhances target avidity and membrane permeabilization of vancomycin-resistant bacteria. Bioconjugate Chem. 2017;28(2):353–361. doi:10.1021/acs.bioconjchem.6b00494
  • Hassan MM, Ranzoni A, Cooper MA. A nanoparticle-based method for culture-free bacterial DNA enrichment from whole blood. Biosens Bioelectron. 2018;99:150–155. doi:10.1016/j.bios.2017.07.057
  • Lee SY, Lee J, Lee HS, Chang JH. Rapid pathogen detection with bacterial-assembled magnetic mesoporous silica. Biosens Bioelectron. 2014;53:123–128. doi:10.1016/j.bios.2013.09.052
  • Mou XZ, Chen XY, Wang J, et al. Bacteria-instructed click chemistry between functionalized gold nanoparticles for point-of-care microbial detection. ACS Appl Mater Interfaces. 2019;11(26):23093–23101. doi:10.1021/acsami.9b09279
  • Shen H, Wang J, Liu H, et al. Rapid and selective detection of pathogenic bacteria in bloodstream infections with aptamer-based recognition. ACS Appl Mater Interfaces. 2016;8(30):19371–19378. doi:10.1021/acsami.6b06671
  • van de Beek D, de Gans J, Tunkel AR, Wijdicks EFM. Community-acquired bacterial meningitis in adults. N Eng J Med. 2006;354(1):44–53. doi:10.1056/NEJMra052116
  • Xu S. Electromechanical biosensors for pathogen detection. Microchim Acta. 2012;178(3–4):245–260. doi:10.1007/s00604-012-0831-4
  • Pant A, Mackraj I, Govender T. Advances in sepsis diagnosis and management: a paradigm shift towards nanotechnology. J Biomed Sci. 2021;28(1):6. doi:10.1186/s12929-020-00702-6
  • Shukla SK, Govender PP, Tiwari A. Polymeric micellar structures for biosensor technology. In: Advances in Biomembranes and Lipid Self-Assembly. Vol. 24. Elsevier; 2016:143–161. doi:10.1016/bs.abl.2016.04.005
  • Ahmed A, Rushworth JV, Hirst NA, Millner PA. Biosensors for whole-cell bacterial detection. Clin Microbiol Rev. 2014;27(3):631–646. doi:10.1128/CMR.00120-13
  • Singh R, Mukherjee MD, Sumana G, Gupta RK, Sood S, Malhotra BD. Biosensors for pathogen detection: a smart approach towards clinical diagnosis. Sens Actuators B Chem. 2014;197:385–404. doi:10.1016/j.snb.2014.03.005
  • Paniel N, Baudart J. Colorimetric and electrochemical genosensors for the detection of Escherichia coli DNA without amplification in seawater. Talanta. 2013;115:133–142. doi:10.1016/j.talanta.2013.04.050
  • Farrow B, Hong SA, Romero EC, et al. A chemically synthesized capture agent enables the selective, sensitive, and robust electrochemical detection of anthrax protective antigen. ACS Nano. 2013;7(10):9452–9460. doi:10.1021/nn404296k
  • Templier V, Roux A, Roupioz Y, Livache T. Ligands for label-free detection of whole bacteria on biosensors: a review. Trends Analyt Chem. 2016;79:71–79. doi:10.1016/j.trac.2015.10.015
  • Li Y, Xie G, Qiu J, et al. A new biosensor based on the recognition of phages and the signal amplification of organic-inorganic hybrid nanoflowers for discriminating and quantitating live pathogenic bacteria in urine. Sens Actuators B Chem. 2018;258:803–812. doi:10.1016/j.snb.2017.11.155
  • Zaraee N, Kanik FE, Bhuiya AM, et al. Highly sensitive and label-free digital detection of whole cell E. coli with interferometric reflectance imaging. Biosens Bioelectron. 2020;162:112258. doi:10.1016/j.bios.2020.112258
  • Crapnell RD, Dempsey-Hibbert NC, Peeters M, Tridente A, Banks CE. Molecularly imprinted polymer based electrochemical biosensors: overcoming the challenges of detecting vital biomarkers and speeding up diagnosis. Talanta Open. 2020;2:100018. doi:10.1016/j.talo.2020.100018
  • Verheyen E, Schillemans JP, van Wijk M, Demeniex M-A, Hennink WE, van Nostrum CF. Challenges for the effective molecular imprinting of proteins. Biomaterials. 2011;32(11):3008–3020. doi:10.1016/j.biomaterials.2011.01.007
  • Liu X, Marrakchi M, Xu D, Dong H, Andreescu S. Biosensors based on modularly designed synthetic peptides for recognition, detection and live/dead differentiation of pathogenic bacteria. Biosens Bioelectron. 2016;80:9–16. doi:10.1016/j.bios.2016.01.041
  • Ahari H, Hedayati M, Akbari-adergani B, Kakoolaki S, Hosseini H, Anvar A. Staphylococcus aureus exotoxin detection using potentiometric nanobiosensor for microbial electrode approach with the effects of pH and temperature. Int J Food Prop. 2017;20:1578–1587. doi:10.1080/10942912.2017.1347944
  • Azharuddin M, Zhu GH, Das D, et al. A repertoire of biomedical applications of noble metal nanoparticles. Chem Comm. 2019;55(49):6964–6996. doi:10.1039/C9CC01741K
  • Du H, Li Z, Wang Y, Yang Q, Wu W. Nanomaterial-based optical biosensors for the detection of foodborne bacteria. Food Rev Int. 2020:1–30. doi:10.1080/87559129.2020.1740733
  • Malekzad H, Sahandi Zangabad P, Mirshekari H, Karimi M, Hamblin MR. Noble metal nanoparticles in biosensors: recent studies and applications. Nanotechnol Rev. 2017;6(3):301–329. doi:10.1515/ntrev-2016-0014
  • Chen Z, Tan Y, Xu K, et al. Stimulus-response mesoporous silica nanoparticle-based chemiluminescence biosensor for cocaine determination. Biosens Bioelectron. 2016;75:8–14. doi:10.1016/j.bios.2015.08.006
  • Hasanzadeh M, Shadjou N, de la Guardia M, Eskandani M, Sheikhzadeh P. Mesoporous silica-based materials for use in biosensors. Trends Analyt Chem. 2012;33:117–129. doi:10.1016/j.trac.2011.10.011
  • Yang X, Qiu P, Yang J, et al. Mesoporous materials–based electrochemical biosensors from enzymatic to nonenzymatic. Small. 2021;17(9):1904022. doi:10.1002/smll.201904022
  • Ohlsen K, Hertlein T. Towards clinical application of non-invasive imaging to detect bacterial infections. Virulence. 2018;9(1):943–945. doi:10.1080/21505594.2018.1425072
  • Mills B, Bradley M, Dhaliwal K. Optical imaging of bacterial infections. Clin Transl Imaging. 2016;4(3):163–174. doi:10.1007/s40336-016-0180-0
  • van Oosten M, Hahn M, Crane LMA, et al. Targeted imaging of bacterial infections: advances, hurdles and hopes. FEMS Microbiol Rev. 2015;39(6):892–916. doi:10.1093/femsre/fuv029
  • Pysz MA, Gambhir SS, Willmann JK. Molecular imaging: current status and emerging strategies. Clin Radiol. 2010;65(7):500–516. doi:10.1016/j.crad.2010.03.011
  • Joshi BP, Wang TD. Targeted optical imaging agents in cancer: focus on clinical applications. Contrast Media Mol Imaging. 2018;2018:1–19. doi:10.1155/2018/2015237
  • Jiang L, Lee HW, Loo SCJ. Therapeutic lipid-coated hybrid nanoparticles against bacterial infections. RSC Adv. 2020;10(14):8497–8517. doi:10.1039/C9RA10921H
  • Vukomanovic M, Torrents E. High time resolution and high signal-to-noise monitoring of the bacterial growth kinetics in the presence of plasmonic nanoparticles. J Nanobiotechnol. 2019;17(1):21. doi:10.1186/s12951-019-0459-1
  • Lee NY, Ko WC, Hsueh PR. Nanoparticles in the treatment of infections caused by multidrug-resistant organisms. Front Pharmacol. 2019;10:1153. doi:10.3389/fphar.2019.01153
  • Burnham CAD, Leeds J, Nordmann P, O’Grady J, Patel J. Diagnosing antimicrobial resistance. Nat Rev Microbiol. 2017;15(11):697–703. doi:10.1038/nrmicro.2017.103
  • Valéria Dos Santos K, Diniz CG, de Castro Veloso L, et al. Proteomic analysis of Escherichia coli with experimentally induced resistance to piperacillin/tazobactam. Res Microbiol. 2010;161(4):268–275. doi:10.1016/j.resmic.2010.03.006
  • Hrabák J, Chudáčková E, Walková R. Matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry for detection of antibiotic resistance mechanisms: from research to routine diagnosis. Clin Microbiol Rev. 2013;26(1):103–114. doi:10.1128/CMR.00058-12
  • Pinto L, Poeta P, Vieira S, et al. Genomic and proteomic evaluation of antibiotic resistance in Salmonella strains. J Proteomics. 2010;73(8):1535–1541. doi:10.1016/j.jprot.2010.03.009
  • Florio W, Tavanti A, Barnini S, Ghelardi E, Lupetti A. Recent advances and ongoing challenges in the diagnosis of microbial infections by MALDI-TOF mass spectrometry. Front Microbiol. 2018;9:1097. doi:10.3389/fmicb.2018.01097
  • Sauget M, Bertrand X, Hocquet D. Rapid antibiotic susceptibility testing on blood cultures using. PLoS One. 2018;13(10):e0205603. doi:10.1371/journal.pone.0205603
  • Zhu Y, Gasilova N, Jović M, et al. Detection of antimicrobial resistance-associated proteins by titanium dioxide-facilitated intact bacteria mass spectrometry. Chem Sci. 2018;9(8):2212–2221. doi:10.1039/C7SC04089J
  • Qi G, Li L, Yu F, Wang H. Vancomycin-modified mesoporous silica nanoparticles for selective recognition and killing of pathogenic gram-positive bacteria over macrophage-like cells. ACS Appl Mater Interfaces. 2013;5(21):10874–10881. doi:10.1021/am403940d
  • Bhaisare ML, Abdelhamid HN, Wu BS, Wu HF. Rapid and direct MALDI-MS identification of pathogenic bacteria from blood using ionic liquid-modified magnetic nanoparticles (Fe3O4 @SiO2). J Mater Chem B. 2014;2(29):4671–4683. doi:10.1039/C4TB00528G
  • Slowing II, Trewyn BG, Giri S, Lin VSY. Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv Funct Mater. 2007;17(8):1225–1236. doi:10.1002/adfm.200601191
  • Vallet-Regi M, Rámila A, Del Real RP, Pérez-Pariente J. A new property of MCM-41: drug delivery system. Chem Mater. 2001;13(2):308–311. doi:10.1021/cm0011559
  • Lin YS, Hurley KR, Haynes CL. Critical considerations in the biomedical use of mesoporous silica nanoparticles. J Phys Chem Lett. 2012;3(3):364–374. doi:10.1021/jz2013837
  • Stein A, Melde BJ, Schroden RC. Hybrid inorganic-organic mesoporous silicates—nanoscopic reactors coming of age. Adv Mater. 2000;12(19):1403–1419. doi:10.1002/1521-4095(200010)12:19<1403::AID-ADMA1403>3.0.CO;2-X
  • Rahikkala A, Rosenholm JM, Santos HA. Biofunctionalized mesoporous silica nanomaterials for targeted drug delivery. In: Biomedical Applications of Functionalized Nanomaterials. Elsevier; 2018:489–520. doi:10.1016/B978-0-323-50878-0.00016-1
  • Zhang J, Rosenholm JM. Molecular and nanoscale engineering of porous silica particles for drug delivery. In: Nanoengineered Biomaterials for Advanced Drug Delivery. Elsevier; 2020:395–419. doi:10.1016/B978-0-08-102985-5.00017-6
  • Colilla M, Vallet-Regí M. Targeted stimuli-responsive mesoporous silica nanoparticles for bacterial infection treatment. Int J Mol Sci. 2020;21(22):8605. doi:10.3390/ijms21228605
  • Zheng H, Gong H, Cao L, Lin H, Ye L. Photoconjugation of temperature- and pH-responsive polymer with silica nanoparticles for separation and enrichment of bacteria. Colloids Surf B Biointerfaces. 2021;197:111433. doi:10.1016/j.colsurfb.2020.111433
  • Gulin-Sarfraz T, Zhang J, Desai D, et al. Combination of magnetic field and surface functionalization for reaching synergistic effects in cellular labeling by magnetic core–shell nanospheres. Biomater Sci. 2014;2(12):1750–1760. doi:10.1039/C4BM00221K
  • Wen CY, Jiang YZ, Li XY, et al. Efficient enrichment and analyses of bacteria at ultralow concentration with quick-response magnetic nanospheres. ACS Appl Mater Interfaces. 2017;9(11):9416–9425. doi:10.1021/acsami.6b16831
  • Li Z, Ma J, Ruan J, Zhuang X. Using positively charged magnetic nanoparticles to capture bacteria at ultralow concentration. Nanoscale Res Lett. 2019;14(1):195. doi:10.1186/s11671-019-3005-z
  • Kadam R, Maas M, Rezwan K. Selective, agglomerate-free separation of bacteria using biofunctionalized, magnetic janus nanoparticles. ACS Appl Bio Mater. 2019;2(8):3520–3531. doi:10.1021/acsabm.9b00415
  • Gao M, Zeng J, Liang K, Zhao D, Kong B. Interfacial assembly of mesoporous silica‐based optical heterostructures for sensing applications. Adv Funct Mater. 2020;30(9):1906950. doi:10.1002/adfm.201906950
  • RoyChaudhuri C. A review on porous silicon based electrochemical biosensors: beyond surface area enhancement factor. Sens Actuators B Chem. 2015;210:310–323. doi:10.1016/j.snb.2014.12.089
  • Gu Z, Fu A, Ye L, Kuerban K, Wang Y, Cao Z. Ultrasensitive chemiluminescence biosensor for nuclease and bacterial determination based on hemin-encapsulated mesoporous silica nanoparticles. ACS Sensors. 2019;4(11):2922–2929. doi:10.1021/acssensors.9b01303
  • Ciampi S, Böcking T, Kilian KA, Harper JB, Gooding JJ. Click chemistry in mesoporous materials: functionalization of porous silicon rugate filters. Langmuir. 2008;24(11):5888–5892. doi:10.1021/la800435d
  • Mathelié-Guinlet M, Gammoudi I, Beven L, et al. Silica nanoparticles assisted electrochemical biosensor for the detection and degradation of Escherichia coli bacteria. Procedia Eng. 2016;168:1048–1051. doi:10.1016/j.proeng.2016.11.337
  • Mathelié-Guinlet M, Cohen-Bouhacina T, Gammoudi I, et al. Silica nanoparticles-assisted electrochemical biosensor for the rapid, sensitive and specific detection of Escherichia coli. Sens Actuators B Chem. 2019;292:314–320. doi:10.1016/j.snb.2019.03.144
  • Coulthard MG. Defining urinary tract infection by bacterial colony counts: a case for 100,000 colonies/mL as the best threshold. Pediatr Nephrol. 2019;34(10):1639–1649. doi:10.1007/s00467-019-04283-x
  • Zhao X, Zhong J, Wei C, Lin CW, Ding T. Current perspectives on viable but non-culturable state in foodborne pathogens. Front Microbiol. 2017;8:580. doi:10.3389/fmicb.2017.00580
  • Schmitt CK, Meysick KC, O’Brien AD. Bacterial toxins: friends or foes? Emerg Infect Dis. 1999;5(2):224–234. doi:10.3201/eid0502.990206
  • Li L, Mendis N, Trigui H, Oliver JD, Faucher SP. The importance of the viable but non-culturable state in human bacterial pathogens. Front Microbiol. 2014;5:258. doi:10.3389/fmicb.2014.00258
  • Reta N, Saint CP, Michelmore A, Prieto-Simon B, Voelcker NH. Nanostructured electrochemical biosensors for label-free detection of water- and food-borne pathogens. ACS Appl Mater Interfaces. 2018;10(7):6055–6072. doi:10.1021/acsami.7b13943
  • Yin M, Gu B, An QF, Yang C, Guan YL, Yong KT. Recent development of fiber-optic chemical sensors and biosensors: mechanisms, materials, micro/nano-fabrications and applications. Coord Chem Rev. 2018;376:348–392. doi:10.1016/j.ccr.2018.08.001
  • Huang F, Guo R, Xue L, et al. An acid-responsive microfluidic salmonella biosensor using curcumin as signal reporter and ZnO-capped mesoporous silica nanoparticles for signal amplification. Sens Actuators B Chem. 2020;312:127958. doi:10.1016/j.snb.2020.127958
  • Jenie SNA, Kusumastuti Y, Krismastuti FSH, et al. Rapid fluorescence quenching detection of Escherichia coli using natural silica-based nanoparticles. Sensors. 2021;21(3):881. doi:10.3390/s21030881
  • Montalti M, Prodi L, Rampazzo E, Zaccheroni N. Dye-doped silica nanoparticles as luminescent organized systems for nanomedicine. Chem Soc Rev. 2014;43(12):4243–4268. doi:10.1039/C3CS60433K
  • Park JH, Baek SD, Cho JI, et al. Characteristics of transparent encapsulation materials for OLEDs prepared from mesoporous silica nanoparticle-polyurethane acrylate resin composites. Compos B Eng. 2019;175:107188. doi:10.1016/j.compositesb.2019.107188
  • Andreiuk B, Reisch A, Bernhardt E, Klymchenko AS. Fighting aggregation‐caused quenching and leakage of dyes in fluorescent polymer nanoparticles: universal role of counterion. Chem Asian J. 2019;14(6):836–846. doi:10.1002/asia.201801592
  • Walcarius A, Mandler D, Cox JA, Collinson M, Lev O. Exciting new directions in the intersection of functionalized sol–gel materials with electrochemistry. J Mater Chem. 2005;15(35–36):3663. doi:10.1039/b504839g
  • Walcarius A. Silica-based electrochemical sensors and biosensors: recent trends. Curr Opin Electrochem. 2018;10:88–97. doi:10.1016/j.coelec.2018.03.017
  • Wang J. Sol–gel materials for electrochemical biosensors. Anal Chim Acta. 1999;399(1–2):21–27. doi:10.1016/S0003-2670(99)00572-3
  • Borsa BA, Tuna BG, Hernandez FJ, et al. Staphylococcus aureus detection in blood samples by silica nanoparticle-oligonucleotides conjugates. Biosens Bioelectron. 2016;86:27–32. doi:10.1016/j.bios.2016.06.023
  • Jadhav KS, Dumbare PS, Pande VV. Mesoporous silica nanoparticles (MSN): a nanonetwork and hierarchical structure in drug delivery. JNMR. 2015;2(5):1–8. doi:10.15406/jnmr.2015.02.00043
  • Yuan D, Ellis CM, Davis JJ. Mesoporous silica nanoparticles in bioimaging. Materials. 2020;13(17):3795. doi:10.3390/ma13173795
  • Carniato F, Tei L, Arrais A, Marchese L, Botta M. Selective anchoring of Gd III chelates on the external surface of organo-modified mesoporous silica nanoparticles: a new chemical strategy to enhance relaxivity. Chem Eur J. 2013;19(4):1421–1428. doi:10.1002/chem.201202670
  • von Baeckmann C, Guillet-Nicolas R, Renfer D, Kählig H, Kleitz F. A toolbox for the synthesis of multifunctionalized mesoporous silica nanoparticles for biomedical applications. ACS Omega. 2018;3(12):17496–17510. doi:10.1021/acsomega.8b02784
  • Kettiger H, Sen Karaman D, Schiesser L, Rosenholm JM, Huwyler J. Comparative safety evaluation of silica-based particles. Toxicol in Vitro. 2015;30(1):355–363. doi:10.1016/j.tiv.2015.09.030
  • Desai D, Karaman DS, Prabhakar N, et al. Design considerations for mesoporous silica nanoparticulate systems in facilitating biomedical applications. Mesoporous Biomater. 2014;1(1):16–43. doi:10.2478/mesbi-2014-0001
  • Zhang J, Rosenholm JM, Gu H. Molecular confinement in fluorescent magnetic mesoporous silica nanoparticles: effect of pore size on multifunctionality. ChemPhysChem. 2012;13(8):2016–2019. doi:10.1002/cphc.201100943
  • Rosenholm JM, Gulin-Sarfraz T, Mamaeva V, et al. Prolonged dye release from mesoporous silica-based imaging probes facilitates long-term optical tracking of cell populations in vivo. Small. 2016;12(12):1578–1592. doi:10.1002/smll.201503392
  • Girija AR, Balasubramanian S. Theragnostic potentials of core/shell mesoporous silica nanostructures. Nanotheranostics. 2019;3(1):1–40. doi:10.7150/ntno.27877
  • Parra-Robert M, Zeng M, Shu Y, et al. Mesoporous silica coated CeO2 nanozymes with combined lipid-lowering and antioxidant activity induce long-term improvement of the metabolic profile in obese Zucker rats. Nanoscale. 2021;13(18):8452–8466. doi:10.1039/D1NR00790D
  • Hidalgo G, Burns A, Herz E, et al. Functional tomographic fluorescence Imaging of pH microenvironments in microbial biofilms by use of silica nanoparticle sensors. Appl Environ Microbiol. 2009;75(23):7426–7435. doi:10.1128/AEM.01220-09
  • Kirla H, Hughes L, Henry DJ. Carbohydrate coated fluorescent mesoporous silica particles for bacterial imaging. Colloids Surf B Biointerfaces. 2020;188:110751. doi:10.1016/j.colsurfb.2019.110751
  • Xu C, Li Z, Akakuru OU, et al. Maltodextrin-conjugated Gd-Based MRI contrast agents for specific diagnosis of bacterial infections. ACS Appl Bio Mater. 2020;4(5):3762–3772. doi:10.1021/acsabm.0c01246
  • Singh AV, Ansari MHD, Rosenkranz D, et al. Artificial intelligence and machine learning in computational nanotoxicology: unlocking and empowering nanomedicine. Adv Healthcare Mater. 2020;9(17):1901862. doi:10.1002/adhm.201901862
  • Singh AV, Maharjan RS, Kanase A, et al. Machine-learning-based approach to decode the influence of nanomaterial properties on their interaction with cells. ACS Appl Mater Interfaces. 2021;13(1):1943–1955. doi:10.1021/acsami.0c18470
  • Singh AV, Rosenkranz D, Ansari MHD, et al. Artificial intelligence and machine learning empower advanced biomedical material design to toxicity prediction. Adv Intell Syst. 2020;2(12):2000084. doi:10.1002/aisy.202000084
  • Singh AV, Jahnke T, Wang S, et al. Anisotropic gold nanostructures: optimization via in silico modeling for hyperthermia. ACS Appl Nano Mater. 2018;1(11):6205–6216. doi:10.1021/acsanm.8b01406
  • Singh AV, Ansari MHD, Laux P, Luch A. Micro-nanorobots: important considerations when developing novel drug delivery platforms. Expert Opin Drug Deliv. 2019;16(11):1259–1275. doi:10.1080/17425247.2019.1676228
  • Patel GM, Patel GC, Patel RB, Patel JK, Patel M. Nanorobot: a versatile tool in nanomedicine. J Drug Target. 2006;14(2):63–67. doi:10.1080/10611860600612862
  • Tezel G, Timur SS, Kuralay F, et al. Current status of micro/nanomotors in drug delivery. J Drug Target. 2021;29(1):29–45. doi:10.1080/1061186X.2020.1797052
  • Singh AV, Laux P, Luch A, Balkrishnan S, Prasad Dakua S. Bottom-UP assembly of nanorobots: extending synthetic biology to complex material design. Front Nanosci Nanotech. 2019;5:1–2. doi:10.15761/FNN.1000S2005