2,614
Views
65
CrossRef citations to date
0
Altmetric
Review

Potential Applications of Nanomaterials and Technology for Diabetic Wound Healing

, , , , , & show all
Pages 9717-9743 | Published online: 03 Dec 2020

References

  • Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010;87:4–14. doi:10.1016/j.diabres.2009.10.00719896746
  • Wang X, Sng MK, Foo S, et al. Early controlled release of peroxisome proliferator-activated receptor beta/delta agonist GW501516 improves diabetic wound healing through redox modulation of wound microenvironment. J Control Release. 2015;197:138–147. doi:10.1016/j.jconrel.2014.11.00125449811
  • Ahmed N. Advanced glycation endproducts—role in pathology of diabetic complications. Diabetes Res Clin Pract. 2005;67:3–21. doi:10.1016/j.diabres.2004.09.00415620429
  • McCance DR. Pregnancy and diabetes. Best Pract Res Clin Endocrinol Metab. 2011;25:945–958. doi:10.1016/j.beem.2011.07.00922115168
  • Mohammedi K, Maimaitiming S, Emery N, et al. Allelic variations in superoxide dismutase-1 (SOD1) gene are associated with increased risk of diabetic nephropathy in type 1 diabetic subjects. Mol Genet Metab. 2011;104(4):654–660. doi:10.1016/j.ymgme.2011.08.03321963083
  • Zhang S, Zhang Y, Wei X, et al. Expression and regulation of a novel identified TNFAIP8 family is associated with diabetic nephropathy. BBA Mol Basis Dis. 2010;1802:1078–1086. doi:10.1016/j.bbadis.2010.08.003
  • Kim BY, Kim CH, Jung CH, et al. Association between subclinical hypothyroidism and severe diabetic retinopathy in Korean patients with type 2 diabetes. Endocr J. 2011;58:1065–1070. doi:10.1507/endocrj.EJ11-028121931224
  • Silva L, Carvalho E, Cruz MT. Role of neuropeptides in skin inflammation and its involvement in diabetic wound healing. Expert Opin Biol Ther. 2010;10:1427–1439. doi:10.1517/14712598.2010.51520720738210
  • Kim SK, Lee KJ, Hahm JR, et al. Clinical significance of the presence of autonomic and vestibular dysfunction in diabetic patients with peripheral neuropathy. Diab Metab J. 2012;36:64–69. doi:10.4093/dmj.2012.36.1.64
  • Sunkari VG, Lind F, Botusan IR, et al. Hyperbaric oxygen therapy activates hypoxia-inducible factor 1 (HIF-1), which contributes to improved wound healing in diabetic mice. Wound Repair Regen. 2015;23:98–103. doi:10.1111/wrr.1225325532619
  • Zamboni F, Collins MN. Cell based therapeutics in type 1 diabetes mellitus. Int J Pharm. 2017;521(1–2):346–356. doi:10.1016/j.ijpharm.2017.02.06328242376
  • Cahill D, Zamboni F, Collins MN. Radiological advances in pancreatic islet transplantation. Acad Radiol. 2019;26:1536–1543. doi:10.1016/j.acra.2019.01.00630709732
  • Sun YX, Shi H, Yin SQ, et al. Human medenchymal stem cell derived exosomes alleviate type 2 diabetes mellitus by reversing peripheral insulin resistance and relieving β-cell destruction. ACS Nano. 2018;12:7613–7628. doi:10.1021/acsnano.7b0764330052036
  • Patel P, Macerollo A. Diabetes mellitus: diagnosis and screening. Diabetes. 2010;107:213–240. doi:10.3238/arztebl.2010.0231
  • Vijayakumar V, Samal SK, Mohanty S, et al. Recent advancements in biopolymer and metal nanoparticle-based materials in diabetic wound healing management. Int J Biol Macromol. 2019;122:137–148. doi:10.1016/j.ijbiomac.2018.10.12030342131
  • Gurtner GC, Werner S, Barrandon Y, et al. Wound repair and regeneration. Nature. 2008;453:314–321. doi:10.1038/nature0703918480812
  • Schreml S, Szeimies RM, Prantl L, et al. Oxygen in acute and chronic wound healing. Br J Dermatol. 2010:1–12. doi:10.1111/j.1365-2133.2010.09804.x
  • Broughton GII, Janis JE, Attinger CE. Wound healing: an overview. Plast Reconstr Surg. 2006;117:1e-S-32e-S. doi:10.1097/01.prs.0000222562.60260.f9
  • Robson MC, Steed DL, Franz MG. Wound healing: biologic features and approaches to maximize healing trajectories. Curr Probl Surg. 2016;38(2):72–140. doi:10.1067/msg.2001.111167
  • Chellappan DK, Yenese Y, Wei CC, et al. Nanotechnology and diabetic wound healing: a review. Endocr Metab Immune Disord Drug Targets. 2017;17:87–95. doi:10.2174/187153031766617042112120228427246
  • Falanga V. Wound healing and its impairment in the diabetic foot. Lancet. 2005;366:1736–1743. doi:10.1007/978-1-62703-505-7_616291068
  • Delavary BM, Veer WMVD, Egmond MV, et al. Macrophages in skin injury and repair. Immunobiology. 2011;216(7):753–762. doi:10.1016/j.imbio.2011.01.00121281986
  • Martin P, Leibovich SJ. Inflammatory cells during wound repair: the good, the bad and the ugly. Trends Cell Biol. 2005;15(11):599–607. doi:10.1016/j.tcb.2005.09.00216202600
  • Guo SA, DiPietro LA. Factors affecting wound healing. J Dent Res. 2010;89(3):219–229. doi:10.1177/002203450935912520139336
  • O’Toole EA. Extracellular matrix and keratinocyte migration. Clin Exp Dermatol. 2001;26(6):525–530. doi:10.1046/j.1365-2230.2001.00891.x11678882
  • Hinz B. Formation and function of the myofibroblast during tissue repair. J Investig Dermatol. 2007;127(3):526–537. doi:10.1038/sj.jid.570061317299435
  • Reinke JM, Sorg H. Wound repair and regeneration. Eur Surg Res. 2012;49:35–43. doi:10.1159/00033961322797712
  • Gonzalez AC, Costa TF, Andrade ZA, et al. Wound healing – a literature review. An Bras Dermatol. 2016;91:614–620. doi:10.1590/abd1806-4841.2016474127828635
  • Lazarus GS, Cooper DM, Knighton DR, et al. Definitions and guidelines for assessment of wounds and evaluation of healing. Wound Repair Regen. 1994;2:165–170. doi:10.1046/j.1524-475X.1994.20305.x17156107
  • Desmeta CM, Préat V, Gallez B. Nanomedicines and gene therapy for the delivery of growth factors to improve perfusion and oxygenation in wound healing. Adv Drug Deliv Rev. 2018;129:262–284. doi:10.1016/j.addr.2018.02.00129448035
  • Choudhury H, Pandey M, Lim YQ, et al. Silver nanoparticles: advanced and promising technology in diabetic wound therapy. Mater Sci Eng C. 2020;112:11092. doi:10.1016/j.msec.2020.110925
  • Woo K, Ayello EA, Sibbald RG. The edge effect: current therapeutic options to advance the wound edge. Adv Skin Wound Care. 2007;20:99–117. doi:10.1097/00129334-200702000-0000917287621
  • Eming SA, Krieg T, Davidson JM. Inflammation in wound repair: molecular and cellular mechanisms. J Invest Dermatol. 2007;127:514–525. doi:10.1038/sj.jid.570070117299434
  • Margadant C, Sonnenberg A. Integrin–TGF-β crosstalk in fibrosis, cancer and wound healing. EMBO Reports. 2010;11(2):97–105. doi:10.1038/embor.2009.27620075988
  • Yang L, Zheng Z, Zhou Q, et al. miR-155 promotes cutaneous wound healing through enhanced keratinocytes migration by MMP-2. J Mol Histol. 2017;48:147–155. doi:10.1007/s10735-017-9713-828247149
  • Prabhakar PK, Singh K, Kabra D, et al. Natural SIRT1 modifiers as promising therapeutic agents for improving diabetic wound healing. Phytomedicine. 2020;76:153252. doi:10.1016/j.phymed.2020.15325232505916
  • Thangarajah H, Yao D, Chang EI, et al. The molecular basis for impaired hypoxia-induced VEGF expression in diabetic tissues. PNAS. 2009;106:13505–13510. doi:10.1073/pnas.090667010619666581
  • Schaper NC, Van Netten JJ, Apelqvist J, et al. Prevention and management of foot problems in diabetes: a summary guidance for daily practice 2015, based on the IWGDF guidance documents. Diabetes/Metab Res Rev. 2016;32:7–15. doi:10.1016/j.diabres.2016.12.007
  • Ezhilarasu H, Vishalli D, Dheen ST, et al. Nanoparticle-based therapeutic approach for diabetic wound healing. Nanomaterials. 2020;10:1234. doi:10.3390/nano10061234
  • Chen L, Zheng Q, Liu YP, et al. Adipose-derived stem cells promote diabetic wound healing via the recruitment and differentiation of endothelial progenitor cells into endothelial cells mediated by the VEGF-PLC gamma-ERK pathway. Arch Biochem Biophys. 2020;692:108531. doi:10.1016/j.abb.2020.10853132745464
  • Armstrong DG, Boulton AJ, Bus SA. Diabetic foot ulcers and their recurrence. N Engl J Med. 2017;376:2367–2375. doi:10.1056/NEJMra161543928614678
  • Dinh T, Tecilazich F, Kafanas A, et al. Mechanisms involved in the development and healing of diabetic foot ulceration. Diabetes. 2012;61:2937–2947. doi:10.2337/db12-022722688339
  • Charo IF, Ransohoff RM. The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med. 2006;354:610–621. doi:10.1056/NEJMra05272316467548
  • Rosenkilde MM, Schwartz TW. The chemokine system – a major regulator of angiogenesis in health and disease. APMIS. 2004;112:481–495. doi:10.1111/j.1600-0463.2004.apm11207-0808.x15563311
  • Jiang BC, Liu T, Gao YJ. Chemokines in chronic pain: cellular and molecular mechanisms and therapeutic potential. Pharmacol Ther. 2020;212:107581. doi:10.1016/j.pharmthera.2020.10758132450191
  • Peppas NA, Hilt JZ, Khademhosseini A, et al. Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater. 2006;18(11):1345–1360. doi:10.1002/adma.200501612
  • Chai QY, Jiao Y, Yu XJ. Hydrogels for biomedical applications: their characteristics and the mechanisms behind them. Gels. 2017;3(1):6. doi:10.3390/gels3010006
  • Lee Y, Bae JW, Lee JW, et al. Enzyme-catalyzed in situ forming gelatin hydrogels as bioactive wound dressings: effects of fibroblast delivery on wound healing efficacy. J Mater Chem B. 2014;2:7712–7718. doi:10.1039/c4tb01111b32261906
  • Lee SH, Lee Y, Chun YW, et al. In situ crosslinkable gelatin hydrogels for vasculogenic induction and delivery of mesenchymal stem cells. Adv Funct Mater. 2014;24:6771–6781. doi:10.1002/adfm.20140111026327818
  • Dong SY, Lee YK, Ryu HA, et al. Cell recruiting chemokine-loaded sprayable gelatin hydrogel dressings for diabetic wound healing. Acta Biomater. 2016;38:59–68. doi:10.1016/j.actbio.2016.04.03027109762
  • Greenhalgh DG. The role of growth factors in wound healing. J Trauma. 1996;41:159–167. doi:10.1097/00005373-199607000-000298676414
  • Badillo AT, Chung S, Zhang L, et al. Lentiviral gene transfer of SDF-1alpha to wounds improves diabetic wound healing. J Surg Res. 2007;143:35–42. doi:10.1016/j.jss.2007.03.05117950070
  • Gainza G, Villullas S, Pedraz JL, et al. Advances in drug delivery systems (DDSs) to release growth factors for wound healing and skin regeneration. Nanomedicine. 2015;11:1551–1573. doi:10.1016/j.nano.2015.03.00225804415
  • Rui L, Yiyang L, Yanqing W, et al. Heparin-poloxamer thermosensitive hydrogel loaded with bFGF and NGF enhances peripheral nerve regeneration in diabetic rats. Biomaterials. 2018;168:24–37. doi:10.1016/j.biomaterials.2018.03.04429609091
  • Zhu Y, Hoshi R, Chen S, et al. Sustained release of stromal cell derived factor-1 from an antioxidant thermoresponsive hydrogel enhances dermal wound healing in diabetes. J Control Release. 2016;238:114–122. doi:10.1016/j.jconrel.2016.07.04327473766
  • Chereddy KK, Lopes A, Koussoroplis S, et al. Combined effects of PLGA and vascular endothelial growth factor promote the healing of non-diabetic and diabetic wounds. Nanomedicine: NBM. 2015;11:1975–1984. doi:10.1016/j.nano.2015.07.006
  • Hui Q, Zhang L, Yang XX, et al. Higher biostability of rh-aFGF-carbomer 940 hydrogel and its effect on wound healing in a diabetic rat model. ACS Biomater Sci Eng. 2018;4:1661–1668. doi:10.1021/acsbiomaterials.8b00011
  • Losi P, Briganti E, Errico C, et al. Fibrin-based scaffold incorporating VEGF- and bFGF-loaded nanoparticles stimulates wound healing in diabetic mice. Acta Biomater. 2013;9:7814–7821. doi:10.1016/j.actbio.2013.04.01923603001
  • Lai HJ, Kuan CH, Wu HC, et al. Tailor design electrospun composite nanofibers with staged release of multiple angiogenic growth factors for chronic wound healing. Acta Biomater. 2014;10:4156–4166. doi:10.1016/j.actbio.2014.05.00124814882
  • Lee CH, Liu KS, Cheng CW, et al. Co-delivery of sustainable anti-microbial agents and platelet-derived growth factor via biodegradable nanofibers for repair of diabetic infectious wounds. ACS Infect Dis. 2020. doi:10.1021/acsinfecdis.0c00321
  • Zhu JY, Jiang GH, Hong WJ, et al. Rapid gelation of oxidized hyaluronic acid and succinyl chitosan for integration with insulin-loaded micelles and epidermal growth factor on diabetic wound healing. Mater Sci Eng C. 2020;117:111273. doi:10.1016/j.msec.2020.111273
  • Nissen NN, Polverini PJ, Koch AE, et al. Vascular endothelial growth factor mediates angiogenic activity during the proliferative phase of wound healing. Am J Pathol. 1998;152:1445–1452. doi:10.1097/00000433-199806000-000229626049
  • Brown LF, Yeo KT, Berse B, et al. Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing. J Exp Med. 1992;176:1375–1379. doi:10.1084/jem.176.5.13751402682
  • Peters KG, De Vries C, Williams LT. Vascular endothelial growth factor receptor expression during embryogenesis and tissue repair suggests a role in endothelial differentiation and blood vessel growth. Proc Natl Acad Sci. 1993;90:8915–8919. doi:10.1073/pnas.90.19.89157692439
  • Galiano RD, Tepper OM, Pelo CR, et al. Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells. Am J Pathol. 2004;164:1935–1947. doi:10.1016/S0002-9440(10)63754-615161630
  • Guo R, Xu S, Ma L, et al. Enhanced angiogenesis of gene-activated dermal equivalent for treatment of full thickness incisional wounds in a porcine model. Biomaterials. 2010;31:7308–7320. doi:10.1016/j.biomaterials.2010.06.01320598366
  • Guo R, Xu S, Ma L, et al. The healing of full-thickness burns treated by using plasmid DNA encoding VEGF-165 activated collagen-chitosan dermal equivalents. Biomaterials. 2011;32:1019–1031. doi:10.1016/j.biomaterials.2010.08.08721071076
  • Tokatlian T, Cam C, Segura T. Non-viral DNA delivery from porous hyaluronic acid hydrogels in mice. Biomaterials. 2014;35:825–835. doi:10.1016/j.biomaterials.2013.10.01424210142
  • Prestwich GD. Clinical biomaterials for scar-free healing and localized delivery of cells and growth factors. Adv Wound Care. 2010;1:394–399. doi:10.1089/awc.2009.0124
  • Tokatlian T, Cam C, Segura T. Porous hyaluronic acid hydrogels for localized nonviral DNA delivery in a diabetic wound healing model. Adv Healthcare Mater. 2015;4:1084–1091. doi:10.1002/adhm.201400783
  • Devalliere J, Dooley K, Hu Y, et al. Co-delivery of a growth factor and a tissue-protective molecule using elastin biopolymers accelerates wound healing in diabetic mice. Biomaterials. 2017;141:149–160. doi:10.1016/j.biomaterials.2017.06.04328688286
  • Kempen DHR, Lu L, Heijink A, et al. Effect of local sequential VEGF and BMP-2 delivery on ectopic and orthotopic bone regeneration. Biomaterials. 2009;30:2816–2825. doi:10.1016/j.biomaterials.2009.01.03119232714
  • Roberts JJ, Farrugia BL, Green RA, et al. In situ formation of poly(vinyl alcohol)-heparin hydrogels for mild encapsulation and prolonged release of basic fibroblast growth factor and vascular endothelial growth factor. J Tissue Eng. 2016;7:1–10. doi:10.1177/2041731416677132
  • Kano MR, Morishita Y, Iwata C, et al. VEGF-A and FGF-2 synergistically promote neoangiogenesis through enhancement of endogenous PDGF-B-PDGFRbeta signaling. J Cell Sci. 2005;118:3759–3768. doi:10.1242/jcs.0248316105884
  • Jiang X, Lin H, Jiang D, et al. Co-delivery of VEGF and bFGF via a PLGA nanoparticle-modified BAM for effective contracture inhibition of regenerated bladder tissue in rabbits. Sci Rep. 2016;6:20784. doi:10.1038/srep2078426854200
  • Icli B, Nabzdyk CS, Lujan-Hernandez J, et al. Regulation of impaired angiogenesis in diabetic dermal wound healing by microRNA-26a. J Mol Cell Cardiol. 2016;91:151–159. doi:10.1016/j.yjmcc.2016.01.00726776318
  • Wu H, Li F, Shao W, et al. Promoting angiogenesis in oxidative diabetic wound microenvironment using a nanozyme-reinforced self-protecting hydrogel. ACS Cent Sci. 2019;5:477–485. doi:10.1021/acscentsci.8b0085030937375
  • Li N, Luo HC, Ren M, et al. Efficiency and safety of β‑CD-(D3)7 as siRNA carrier for decreasing matrix metalloproteinase-9 expression and improving wound healing in diabetic rats. ACS Appl Mater Interfaces. 2017;9:17417–17426. doi:10.1021/acsami.7b0280928447455
  • Castleberry SA, Almquist BD, Li W, et al. Self-assembled wound dressings silence MMP-9 and improve diabetic wound healing in vivo. Adv Mater. 2016;28:1809–1817. doi:10.1002/adma.20150356526695434
  • Lou D, Luo Y, Pang Q, et al. Gene-activated dermal equivalents to accelerate healing of diabetic chronic wounds by regulating inflammation and promoting angiogenesis. Bioact Mater. 2020;5:667–679. doi:10.1016/j.bioactmat.2020.04.01832420517
  • Rabbani PS, Zhou A, Borab ZM, et al. Novel lipoproteoplex delivers Keap1 siRNA based gene therapy to accelerate diabetic wound healing. Biomaterials. 2017;132:1–15. doi:10.1016/j.biomaterials.2017.04.00128391065
  • Turner N, Grose R. Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer. 2010;10:116–129. doi:10.1038/nrc278020094046
  • Chen J, Wu C, Oupicky D. Bioreducible hyperbranched poly(amido amine)s for gene delivery. Biomacromolecules. 2009;10:2921–2927. doi:10.1021/bm900724c19743843
  • Senturk B, Mercan S, Delibasi T, et al. Angiogenic peptide nanofibers improve wound healing in STZ-induced diabetic rats. ACS Biomater Sci Eng. 2016;2:1180–1189. doi:10.1021/acsbiomaterials.6b00238
  • Wang JH, Chen XY, Zhao Y, et al. pH-switchable antimicrobial nanofiber networks of hydrogel eradicate biofilm and rescue stalled healing in chronic wounds. ACS NANO. 2019;10:11686–11697. doi:10.1021/acsnano.9b05608
  • Zhang QK, Oh JH, Park CH, et al. Effects of dimethyloxalylglycine-embedded poly(ε-caprolactone) fiber meshes on wound healing in diabetic rats. ACS Appl Mater Interfaces. 2017;9:7950–7963. doi:10.1021/acsami.6b1581528211272
  • Cifuentes A, Gomez-Gil V, Ortega MA, et al. Chitosan hydrogels functionalized with either unfractionated heparin or bemiparin improve diabetic wound healing. Biomed Pharmacother. 2020;129:110498. doi:10.1016/j.biopha.2020.11049832768973
  • Lin SY, Zhang Q, Li SH, et al. Antioxidative and angiogenesis-promoting effects of tetrahedral framework nucleic acids in diabetic wound healing with activation of the Akt/Nrf2/HO-1 pathway. ACS Appl Mater Interfaces. 2020;12:11397–11408. doi:10.1021/acsami.0c0087432083455
  • Chen SX, Zhang M, Shao XB, et al. Laminin mimetic peptide SIKVAV-chitosan hydrogel promoting wound healing by enhancing angiogenesis, re-epithelialization and collagen deposition. J Mater Chem B. 2015;3:6798–6804. doi:10.1039/c5tb00842e32262473
  • Peng ZH, Nguyen TT, Song W, et al. Selective MMP‑9 inhibitor (R)‑ND-336 alone or in combination with linezolid accelerates wound healing in infected diabetic mice. ACS Pharmacol Transl Sci. 2020. doi:10.1021/acsptsci.0c00104
  • Carrejo NC, Moore AN, Silva TLL, et al. Hartgerink, multidomain peptide hydrogel accelerates healing of full-thickness wounds in diabetic mice. ACS Biomater Sci Eng. 2018;4:1386–1396. doi:10.1021/acsbiomaterials.8b0003129687080
  • Yang HS, Lai C, Xuan CK, et al. Integrin-binding pro-survival peptide engineered silk fibroin nanosheets for diabetic wound healing and skin regeneration. Chem Eng J. 2020;398:125617. doi:10.1016/j.cej.2020.125617
  • Chouhan D, Das P, Thatikonda N, et al. Silkworm silk matrices coated with functionalized spider silk accelerate healing of diabetic wounds. ACS Biomater Sci Eng. 2019;5:3537–3548. doi:10.1021/acsbiomaterials.9b00514
  • Mizuno H, Tobita M, Uysal AC. Concise review: adipose-derived stem cells as a novel tool for future regenerative medicine. Stem Cells. 2012;30:804–810. doi:10.1002/stem.107622415904
  • Dong YX, Rodrigues M, Kwon SH, et al. Acceleration of diabetic wound regeneration using an in situ–formed stem-cell-based skin substitute. Adv Healthcare Mater. 2018;7:1800432. doi:10.1002/adhm.201800432
  • Fu JP, Zhang Y, Chu J, et al. Reduced graphene oxide incorporated acellular dermal composite scaffold enables efficient local delivery of mesenchymal stem cells for accelerating diabetic wound healing. ACS Biomater Sci Eng. 2019;5:4054–4066. doi:10.1021/acsbiomaterials.9b00485
  • Liu S, Yu J, Zhang QF, et al. Dual cross-linked HHA hydrogel supplies and regulates MΦ2 for synergistic improvement of immunocompromise and impaired angiogenesis to enhance diabetic chronic wound healing. Biomacromolecules. 2020;21:3795–3806. doi:10.1021/acs.biomac.0c0089132786521
  • Tyeb S, Shiekh PA, Verma V, et al. Adipose-derived stem cells (ADSCs) loaded gelatin-sericin-laminin cryogels for tissue regeneration in diabetic wounds. Biomacromolecules. 2020;21:294–304. doi:10.1021/acs.biomac.9b0135531771325
  • Gao WD, Jin WW, Li YN, et al. A highly bioactive bone extracellular matrix-biomimetic nanofibrous system with rapid angiogenesis promotes diabetic wound healing. J Mater Chem B. 2017;5:7285–7296. doi:10.1039/c7tb01484h32264178
  • Morris AH, Lee H, Xing H, et al. Tunable hydrogels derived from genetically engineered extracellular matrix accelerate diabetic wound healing. ACS Appl Mater Interfaces. 2018;10:41892–41901. doi:10.1021/acsami.8b0892030424595
  • Morris AH, Stamer DK, Kunkemoeller B, et al. Decellularized materials derived from TSP2-KO mice promote enhanced neovascularization and integration in diabetic wounds. Biomaterials. 2018;169:61–71. doi:10.1016/j.biomaterials.2018.03.04929631168
  • Wang H, Agarwal P, Xiao Y, et al. A nano-in-micro system for enhanced stem cell therapy of ischemic diseases. ACS Cent Sci. 2017;3:875–885. doi:10.1021/acscentsci.7b0021328852702
  • Shen YI, Cho H, Papa AE, et al. Engineered human vascularized constructs accelerate diabetic wound healing. Biomaterials. 2016;102:107–119. doi:10.1016/j.biomaterials.2016.06.00927328431
  • Shi Q, Qian Z, Liu D, et al. GMSC-derived exosomes combined with a chitosan/silk hydrogel sponge accelerates wound healing in a diabetic rat skin defect model. Front Physiol. 2017;8:904. doi:10.3389/fphys.2017.0090429163228
  • Johnstone RM, Adam M, Hammond JR, et al. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem. 1987;262:9412–9420. doi:10.1557/PROC-0928-GG08-043597417
  • de Gassart A, Geminard C, Fevrier B, et al. Lipid raft-associated protein sorting in exosomes. Blood. 2003;102:4336–4344. doi:10.1182/blood-2003-03-087112881314
  • Wubbolts R, Leckie RS, Veenhuizen PT, et al. Proteomic and biochemical analyses of human B cell-derived exosomes, potential implications for their function and multivesicular body formation. J Biol Chem. 2003;278:10963–10972. doi:10.1074/jbc.M20755020012519789
  • Lai RC, Yeo RW, Lim SK. Mesenchymal stem cell exosomes. Semin Cell Dev Biol. 2015;40:82–88. doi:10.1016/j.semcdb.2015.03.00125765629
  • Haney MJ, Klyachko NL, Zhao Y, et al. Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J Control Release. 2015;207:18–30. doi:10.1016/j.jconrel.2015.03.03325836593
  • Batrakova EV, Kim MS. Using exosomes, naturally-equipped nanocarriers, for drug delivery. J Control Release. 2015;219:396–405. doi:10.1016/j.jconrel.2015.07.03026241750
  • Shtam TA, Kovalev RA, Varfolomeeva EY, et al. Exosomes are natural carriers of exogenous siRNA to human cells in vitro. Cell Commun Signal. 2013;11:88. doi:10.1186/1478-811X-11-8824245560
  • Li X, Chen C, Wei L, et al. Exosomes derived from endothelial progenitor cells attenuate vascular repair and accelerate reendothelialization by enhancing endothelial function. Cytotherapy. 2016;18:253–262. doi:10.1016/j.jcyt.2015.11.00926794715
  • Rani S, Ritter T. The exosome – a naturally secreted nanoparticle and its application to wound healing. Adv Mater. 2016;28:5542–5552. doi:10.1002/adma.20150400926678528
  • Yu MY, Liu W, Li JX, et al. Exosomes derived from atorvastatin-pretreated MSC accelerate diabetic wound repair by enhancing angiogenesis via AKT/eNOS pathway. Stem Cell Res Ther. 2020;1:350. doi:10.1186/s13287-020-01824-2
  • Lv QJ, Deng JF, Chen Y, et al. Engineered human adipose stem-cell-derived exosomes loaded with miR-21-5p to promote diabetic cutaneous wound healing. Mol Pharm. 2020;17:1723–1733. doi:10.1021/acs.molpharmaceut.0c0017732233440
  • Wang CG, Wang M, Xu TZ, et al. Engineering bioactive self-healing antibacterial exosomes hydrogel for promoting chronic diabetic wound healing and complete skin regeneration. Theranostics. 2019;9(1):65–76. doi:10.7150/thno.2976630662554
  • Wang M, Wang CG, Chen M, et al. Efficient angiogenesis-based diabetic wound healing/skin reconstruction through bioactive antibacterial adhesive ultraviolet shielding nanodressing with exosome release. ACS Nano. 2019;13:10279–10293. doi:10.1021/acsnano.9b0365631483606
  • Tao SC, Guo SC, Min L, et al. Chitosan wound dressings incorporating exosomes derived from microRNA-126-overexpressing synovium mesenchymal stem cells provide sustained release of exosomes and heal full-thickness skin defects in a diabetic rat model. Stem Cells Transl Med. 2017;6:736–747. doi:10.5966/sctm.2016-027528297576
  • Li M, Ke QF, Tao SC, et al. Fabrication of hydroxyapatite/chitosan composite hydrogels loaded with exosomes derived from miR-126-3p overexpressed synovium mesenchymal stem cells for diabetic chronic wound healing. J Name. 2013:1–11. doi:10.1039/C6TB01560C
  • Jyoti K, Malik G, Chaudhary M, et al. Chitosan and phospholipid assisted topical fusidic acid drug delivery in burn wound: strategies to conquer pharmaceutical and clinical challenges, opportunities and future panorama. Int J Biol Macromol. 2020;161:325–335. doi:10.1016/j.ijbiomac.2020.05.23032485249
  • Yang Y, Yin DK, Wang F, et al. In situ eNOS/NO up-regulation – a simple and effective therapeutic strategy for diabetic skin ulcer. Sci Rep. 2016;6:30326. doi:10.1038/srep3032627453476
  • Amiel AG, Durand CP, Maton M, et al. Designed sponges based on chitosan and cyclodextrin polymer for a local release of ciprofloxacin in diabetic foot infections. Int J Pharm. 2020;587:119677. doi:10.1016/j.ijpharm.2020.11967732717280
  • Wu YB, Zhou ZP, Luo L, et al. A non-anticoagulant heparin-like snail glycosaminoglycan promotes healing of diabetic wound. Carbohydr Polym. 2020;247:116682. doi:10.1016/j.carbpol.2020.11668232829810
  • Ren J, Yang MJ, Chen JW, et al. Anti-inflammatory and wound healing potential of kirenol in diabetic rats through the suppression of inflammatory markers and matrix metalloproteinase expressions. Biomed Pharmacother. 2020;129:110475. doi:10.1016/j.biopha.2020.11047532768960
  • Chu J, Shi PP, Yan WX, et al. PEGylated graphene oxide-mediated quercetin-modified collagen hybrid scaffold for enhancement of MSCs differentiation potential and diabetic wound healing. Nanoscale. 2018;10:9547–9560. doi:10.1039/c8nr02538j29745944
  • Mittal AK, Bhardwaj R, Arora R, et al. Acceleration of wound healing in diabetic rats through poly dimethylaminoethyl acrylate−hyaluronic acid polymeric hydrogel impregnated with a didymocarpus pedicellatus plant extract. ACS Omega. 2020. doi:10.1021/acsomega.0c02040
  • Liu YY, Sui YL, Liu C, et al. A physically crosslinked polydopamine/nanocellulose hydrogel as potential versatile vehicles for drug delivery and wound healing. Carbohydrate Polymersn. 2018;188:27–36. doi:10.1016/j.carbpol.2018.01.093
  • Martı´nez-Romero R, Martı´nez-Lara E, Aguilar-Quesada R, et al. PARP-1 modulates deferoxamine-induced HIF-1alpha accumulation through the regulation of nitric oxide and oxidative stress. J Cell Biochem. 2008;104:2248. doi:10.1002/jcb.2178118459142
  • Wu Y, Li X, Xie W, et al. Neuroprotection of deferoxamine on rotenone-induced injury via accumulation of HIF-1 alpha and induction of autophagy in SH-SY5Y cells. Neurochem Int. 2010;57:198–205. doi:10.1016/j.neuint.2010.05.00820546814
  • Hou ZJ, Nie CL, Si ZX, et al. Deferoxamine enhances neovascularization and accelerates wound healing in diabetic rats via the accumulation of hypoxia-inducible factor-1α. Diabetes Res Clin Pract. 2013;101:62–71. doi:10.1016/j.diabres.2013.04.01223726275
  • Xing D, Liu L, Marti GP, et al. Hypoxia and hypoxia-inducible factor in the burn wound. Wound Repair Regen. 2011;19:205. doi:10.1111/j.1524-475X.2010.00656.x21362088
  • Chen H, Jia P, Kang H, et al. Upregulating Hif-1α by hydrogel nanofi- brous scaffolds for rapidly recruiting angiogenesis relative cells in diabetic wound. Adv Healthcare Mater. 2016;5:907–918. doi:10.1002/adhm.201501018
  • Chen H, Guo L, Wicks J, et al. Quickly promoting angiogenesis by using a DFO-loaded photo-crosslinked gelatin hydrogel for diabetic skin regeneration. J Mater Chem B. 2016;4:3770–3781. doi:10.1039/c6tb00065g32263315
  • Duscher D, Neofytou E, Wong VW, et al. Transdermal deferoxamine prevents pressure-induced diabetic ulcers. PNAS. 2015;112:94–99. doi:10.1073/pnas.141344511225535360
  • Kong L, Zhi W, Zhao H, et al. Bioactive injectable hydrogels containing desferrioxamine and bioglass for diabetic wound healing. ACS Appl Mater Interfaces. 2018;10:30103–30114. doi:10.1021/acsami.8b0919130113159
  • Emanuelli T, Burgeiro A, Carvalho E. Effects of insulin on the skin: possible healing benefits for diabetic foot ulcers. Arch Dermatol Res. 2016;308:677–694. doi:10.1007/s00403-016-1686-z27655635
  • Zhao LL, Niu LJ, Liang HZ, et al. pH and glucose dual-responsive injectable hydrogels with insulin and fibroblasts as bioactive dressings for diabetic wound healing. ACS Appl Mater Interfaces. 2017;9:37563–37574. doi:10.1021/acsami.7b0939528994281
  • Ren XZ, Han YM, Wang J, et al. An aligned porous electrospun fibrous membrane with controlled drug delivery – an efficient strategy to accelerate diabetic wound healing with improved angiogenesis. Acta Biomater. 2018;70:140–153. doi:10.1016/j.actbio.2018.02.01029454159
  • Liu J, Chen ZQ, Wang J, et al. Encapsulation of curcumin nanoparticles with MMP9-responsive and thermos-sensitive hydrogel improves diabetic wound healing. ACS Appl Mater Interfaces. 2018;10:16315–16326. doi:10.1021/acsami.8b0386829687718
  • Ghufran H, Mehmood A, Azam M, et al. Curcumin preconditioned human adipose derived stem cells co-transplanted with platelet rich plasma improve wound healing in diabetic rats. Life Sci. 2020;257:118091. doi:10.1016/j.lfs.2020.11809132668325
  • Karri VVSR, Kuppusamy G, Talluri SV, et al. Curcumin loaded chitosan nanoparticles impregnated into collagen-alginate scaffolds for diabetic wound healing. Int J Biol Macromol. 2020;257:118091. doi:10.1016/j.ijbiomac.2016.05.038
  • Mendes C, Haupenthal DPD, Zaccaron RP, et al. Effects of the association between photobiomodulation and hyaluronic acid linked gold nanoparticles in wound healing. ACS Biomater Sci Eng. 2020;6:5132–5144. doi:10.1021/acsbiomaterials.0c00294
  • Edwards JV, Prevost NT, Santiago M, et al. Hydrogen peroxide generation of copper/ascorbate formulations on cotton: effect on antibacterial and fibroblast activity for wound healing application. Molecules. 2018;23:2399. doi:10.3390/molecules23092399
  • Maity GN, Maity P, Choudhuri I, et al. Green synthesis, characterization, antimicrobial and cytotoxic effect of silver nanoparticles using arabinoxylan isolated from Kalmegh. Int J Biol Macromol. 2002;162:1025–1034. doi:10.1016/j.ijbiomac.2020.06.215
  • Mao CY, Xiang YM, Liu XM, et al. Photo-inspired antibacterial activity and wound healing acceleration by hydrogel embedded with Ag/Ag@AgCl/ZnO nanostructures. ACS Nano. 2017;11:9010–9021. doi:10.1021/acsnano.7b0351328825807
  • Shi LY, Zhao YN, Xie QF, et al. Moldable hyaluronan hydrogel enabled by dynamic metal–bisphosphonate coordination chemistry for wound healing. Adv Healthcare Mater. 2018;7:1700973. doi:10.1002/adhm.201700973
  • Zhang PJ, Li Y, Tang YH, et al. Copper-based metal−organic framework as a controllable nitric oxide-releasing vehicle for enhanced diabetic wound healing. ACS Appl Mater Interfaces. 2020;12:18319–18331. doi:10.1021/acsami.0c0179232216291
  • Salomoni R, Léo P, Montemor AF, et al. Antibacterial effect of silver nanoparticles in Pseudomonas aeruginosa. Nanotechnol Sci Appl. 2017;10:115–121. doi:10.2147/NSA.S13341528721025
  • Qiao Y, Fei M, Liu C, et al. Near-infrared laser-excited nanoparticles to eradicate multidrug-resistant bacteria and promote wound healing. ACS Appl Mater Interfaces. 2018;10(1):193–206. doi:10.1021/acsami.7b1525129215863
  • Tong CY, Zhong XH, Yang YJ, et al. PB@PDA@Ag nanosystem for synergistically eradicating MRSA and accelerating diabetic wound healing assisted with laser irradiation. Biomaterials. 2020;243:119936. doi:10.1016/j.biomaterials.2020.11993632171103
  • Zhao Y, Li ZH, Song SL, et al. Skin-inspired antibacterial conductive hydrogels for epidermal sensors and diabetic foot wound dressings. Adv Funct Mater. 2019;29:1901474. doi:10.1002/adfm.201901474
  • Pankhurst QA, Connolly J, Jones SK, et al. Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys. 2003;36(13):167–181. doi:10.1088/0022-3727/36/13/201
  • Anker JN, Hall WP, Lyandres O, et al. Biosensing with plasmonic nanosensors. Nat Mater. 2008;7(6):442–453. doi:10.1038/nmat216218497851
  • Wrobel JS, Najafi B. Diabetic foot biomechanics and gait dysfunction. J Diabetes Sci Technol. 2010;4(4):833–845. doi:10.1177/19322968100040041120663446
  • Pissuwan D, Valenzuela SM, Cortie MB. Therapeutic possibilities of plasmonically heated gold nanoparticles. Trends Biotechnol. 2006;24(2):62–67. doi:10.1016/j.tibtech.2005.12.00416380179
  • Kim H, Kawazoe T, Han DW, et al. Enhanced wound healing by an epigallocatechin gallate-incorporated collagen sponge in diabetic mice. Wound Repair Regen. 2008;16(5):714–720. doi:10.1111/j.1524-475X.2008.00422.x19128267
  • Leu J-G, Chen S-A, Chen H-M, et al. The effects of gold nanoparticles in wound healing with antioxidant epigallocatechin gallate and α-lipoic acid. Nanomedicine. 2012;8(5):767–775. doi:10.1016/j.nano.2011.08.01321906577
  • Wang S, Yan C, Zhang XM, et al. Antimicrobial peptide modification enhances the gene delivery and bactericidal efficiency of gold nanoparticles for accelerating diabetic wound healing. Biomater Sci. 2018;6:2757–2772. doi:10.1039/c8bm00807h30187036
  • Xiao JS, Zhu YX, Huddleston S, et al. Copper metal−organic framework nanoparticles stabilized with folic acid improve wound healing in diabetes. ACS Nano. 2018;12:1023–1032. doi:10.1021/acsnano.7b0185029406741
  • Xiao JS, Chen S, Yi J, et al. A cooperative copper metal–organic framework-hydrogel system improves wound healing in diabetes. Adv Funct Mater. 2017;27:1604872. doi:10.1002/adfm.20160487228729818
  • Bhadauriya P, Mamtani H, Ashfaq M, et al. Synthesis of yeast-immobilized and copper nanoparticle-dispersed carbon nanofiber-based diabetic wound dressing material: simultaneous control of glucose and bacterial infections. ACS Appl Bio Mater. 2018;1:246–258. doi:10.1021/acsabm.8b00018
  • Lv F, Wang J, Xu P, et al. A conducive bioceramic/polymer composite biomaterial for diabetic wound healing. Acta Biomater. 2017;60:128–143. doi:10.1016/j.actbio.2017.07.02028713016
  • Jiang YQ, Li Y, Li JK, et al. A mussel-inspired extracellular matrix-mimicking composite scaffold for diabetic wound healing. ACS Appl Bio Mater. 2020;3:4052–4061. doi:10.1021/acsabm.0c00143
  • Li JY, Lv F, Xu H, et al. A patterned nanocomposite membrane for high-efficiency healing of diabetic wound. J Mater Chem B. 2017;5:1926–1934. doi:10.1039/c7tb00124j32263946
  • Das M, Goswami U, Kandimalla R, et al. Iron−copper bimetallic nanocomposite reinforced dressing materials for infection control and healing of diabetic wound. ACS Appl Bio Mater. 2019;2:5434–5445. doi:10.1021/acsabm.9b00870
  • Raucci MG, Demitri C, Soriente A, et al. Gelatin/nano-hydroxyapatite hydrogel scaffold prepared by sol-gel technology as filler to repair bone defects. J Biomed Mater Res Part A. 2018;106:2007–2019. doi:10.1002/jbm.a.36395
  • Xie WH, Fu XL, Tang FL, et al. Dose-dependent modulation effects of bioactive glass particles on macrophages and diabetic wound healing. J Mater Chem B. 2019;7:940. doi:10.1039/c8tb02938e32255099
  • Zeng QY, Han Y, Li HY, et al. Design of thermosensitive bioglass/agarose-alginate composite hydrogel for chronic wound healing. J Mater Chem B. 2015;3:8856–8864. doi:10.1039/c5tb01758k32263479
  • Jiang YQ, Han YM, Wang J, et al. Space-oriented nanofibrous scaffold with silicon-doped amorphous calcium phosphate nanocoating for diabetic wound healing. ACS Appl Bio Mater. 2019;2:787–795. doi:10.1021/acsabm.8b00657
  • Nunan R, Harding KG, Martin P. Clinical challenges of chronic wounds: searching for an optimal animal model to recapitulate their complexity. Dis Model Mech. 2014;7:1205–1213. doi:10.1242/dmm.01678225359790
  • Sen CK. Wound healing essentials: let there be oxygen. Wound Repair Regen. 2009;17:1–18. doi:10.1111/j.1524-475X.2008.00436.x19152646
  • Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107:1058–1070. doi:10.1161/CIRCRESAHA.110.22354521030723
  • Lan CCE, Wu CS, Huang SM, et al. High-glucose environment enhanced oxidative stress and increased interleukin-8 secretion from keratinocytes: new insights into impaired diabetic wound healing. Diabetes. 2013;62:2530–2538. doi:10.2337/db12-171423423570
  • Zhu Y, Cankova Z, Iwanaszko M, et al. Potent laminin-inspired antioxidant regenerative dressing accelerates wound healing in diabetes. Proc Natl Acad Sci. 2018;115(26):6816–6821. doi:10.1073/pnas.180426211529891655
  • Ahmed R, Tariq M, Ali I, et al. Novel electrospun chitosan/polyvinylalcohol/zinc oxide nanofibrous mats with antibacterial and antioxidant properties for diabetic wound healing. Int J Biol Macromol. 2018;120:385–393. doi:10.1016/j.ijbiomac.2018.08.05730110603
  • Nureddin A, Ali DM, Seda KN, et al. Advances in controlled oxygen generating biomaterials for tissue engineering and regenerative therapy. Biomaterials. 2020;21(1):56–72. doi:10.1021/acs.biomac.9b00546
  • Eileen P, Coronel MM, Fraker CA, et al. Preventing hypoxia-induced cell death in beta cells and islets via hydrolytically activated, oxygen-generating biomaterials. Proc Natl Acad Sci. 2012;109(11):4245–4250. doi:10.1073/pnas.111356010922371586
  • Harrison BS, Eberli D, Lee SJ, et al. Oxygen producing biomaterials for tissue regeneration. Biomaterials. 2007;28:4628–4634. doi:10.1016/j.biomaterials.2007.07.00317681597
  • Abdi SIH, Ng SM, Lim JO. An enzyme-modulated oxygen-producing micro-system for regenerative therapeutics. Int J Pharm. 2011;409:203–205. doi:10.1016/j.ijpharm.2011.02.04121356297
  • White JC, Stoppel WL, Susan C, et al. Addition of perfluorocarbons to alginate hydrogels significantly impacts molecular transport and fracture stress. J Biomed Mater Res A. 2013;101(2):438–446. doi:10.1002/jbm.a.3434422865503
  • Shiekh PA, Singh A, Kumar A. Exosome laden oxygen releasing antioxidant and antibacterial cryogel wound dressing OxOBand alleviate diabetic and infectious wound healing. Biomaterials. 2020;249:120020. doi:10.1016/j.biomaterials.2020.12002032305816
  • Kim HJ, Matsuda H, Zhou H, et al. Ultrasound–triggered smart drug release from a poly (dimethylsiloxane)–mesoporous silica composite. Adv Mater. 2006;18(23):3083–3088. doi:10.1002/adma.200600387
  • Song X, Feng L, Liang C, et al. Ultrasound triggered tumor oxygenation with oxygen-shuttle nanoperfluorocarbon to overcome hypoxia-associated resistance in cancer therapies. Nano Lett. 2016;16(10):6145–6153. doi:10.1021/acs.nanolett.6b0236527622835
  • Song G, Liang C, Yi X, et al. Cancer therapy: perfluorocarbon-loaded hollow Bi2Se3 nanoparticles for timely supply of oxygen under near-infrared light to enhance the radiotherapy of cancer. Adv Mater. 2016;28(14):2654. doi:10.1002/adma.201504617
  • Castro CI, Briceno JC. Perfluorocarbon–based oxygen carriers: review of products and trials. Artif Organs. 2010;34(8):622–634. doi:10.1111/j.1525-1594.2009.00944.x20698841
  • Wang W, Cheng Y, Yu P, et al. Perfluorocarbon regulates the intratumoural environment to enhance hypoxia-based agent efficacy. Nat Commun. 2019;10(1):1580. doi:10.1038/s41467-019-09389-230952842
  • Marano F, Argenziano M, Frairia R, et al. Doxorubicin-loaded nanobubbles combined with extracorporeal shock waves: basis for a new drug delivery tool in anaplastic thyroid cancer. Thyroid. 2016;26(5):705–716. doi:10.1089/thy.2015.034226906083
  • Marano F, Frairia R, Rinella L, et al. Combining doxorubicin-nanobubbles and shockwaves for anaplastic thyroid cancer treatment: preclinical study in a xenograft mouse model. Endocr Relat Cancer. 2017;24(6):275–286. doi:10.1530/ERC-17-004528487350
  • Wang S, Yin C, Han X, et al. Improved healing of diabetic foot ulcer upon oxygenation therapeutics through oxygen-loading nanoperfluorocarbon triggered by radial extracorporeal shock wave. Oxid Med Cell Longev. 2019;2019:5738368. doi:10.1155/2019/573836831485296
  • Zehra M, Zubairi W, Hasan A, et al. Oxygen generating polymeric nano fibers that stimulate angiogenesis and show efficient wound healing in a diabetic wound model. Int J Nanomedicine. 2020;15:3511–3522. doi:10.2147/IJN.S24891132547010
  • Zhang XX, Chen GP, Liu YX, et al. Black phosphorus-loaded separable microneedles as responsive oxygen delivery carriers for wound healing. ACS Nano. 2020;14:5901–5908. doi:10.1021/acsnano.0c0105932315159
  • Abudula T, Gauthaman K, Hammad AH, et al. Oxygen-releasing antibacterial nanofibrous scaffolds for tissue engineering applications. Polymers. 2020;12:1233. doi:10.3390/polym12061233
  • Kang JI, Park KM, Park KD. Oxygen-generating alginate hydrogels as a bioactive acellular matrix for facilitating wound healing. J Ind Eng Chem. 2019;69:397–404. doi:10.1016/j.jiec.2018.09.048
  • Zhang T, Han ZY, Zhang W, et al. Cyanoacrylate-encapsulated calcium peroxide achieved oxygen-sustained release and promoted wound healing. Int J Polym Mater Poly Biomater. 2020;69:703–708. doi:10.1080/00914037.2019.1600518
  • Durante W. Hydrogen sulfide therapy in diabetes-accelerated atherosclerosis: awhiff of success. Diabetes. 2016;65:2832–2834. doi:10.2337/dbi16-004227659227
  • Coletta C, Papapetropoulos A, Erdelyi K, et al. Hydrogen sulfide and nitric oxide are mutually dependent in the regulation of angiogenesis and endothelium-dependent vasorelaxation. PNAS. 2012;109:9161–9166. doi:10.1073/pnas.120291610922570497
  • Lin WC, Huang CC, Lina SJ, et al. In situ depot comprising phase-change materials that can sustainably release a gasotransmitter H2S to treat diabetic wounds. Biomaterials. 2017;145:1–8. doi:10.1016/j.biomaterials.2017.08.02328843063
  • Hamdan S, Pastar I, Drakulich S, et al. Nanotechnology-driven therapeutic interventions in wound healing: potential uses and applications. ACS Central Science. 2017;3:163–175. doi:10.1021/acscentsci.6b0037128386594
  • Zhao YZ, Vanhoutte PM, Leung SWS. Vascular nitric oxide: beyond eNOS. J Pharmacol Sci. 2015;129:83–94. doi:10.1016/j.jphs.2015.09.00226499181
  • Balakumar P, Chakkarwar VA, Krishan P, et al. Vascular endothelial dysfunction: a tug of war in diabetic nephropathy? Biomed Pharmacother. 2009;63:171–179. doi:10.1016/j.biopha.2008.08.00818823739
  • Chen YJ, Wu SC, Wang HC, et al. Activation of angiogenesis and wound healing in diabetic mice using NO-delivery dinitrosyl iron complexes. Mol Pharmaceutics. 2019;16:4241–4251. doi:10.1021/acs.molpharmaceut.9b00586
  • Horikoshi S, Serpone N. Introduction to nanoparticles. Micro-Waves Nanoparticle Synth Fundam Appl. 2013;1–24. doi:10.1002/9783527648122.ch1
  • Pantarotto D, Partidos CD, Hoebeke J, et al. Immunization with peptide-functionalized carbon nanotubes enhances virus-specific neutralizing antibody responses. Chem Biol. 2016;10(10):961–966. doi:10.1016/j.chembiol.2003.09.09.011
  • Salata O. Applications of nanoparticles in biology and medicine. J Nanobiotechnology. 2004;2(1):3. doi:10.1186/1477-3155-2-315119954
  • Bruchez Jr. JM. Semiconductor nanocrystals as fluorescent biological labels. Science. 1998;281(5385):2013–2016. doi:10.1126/science.281.5385.20139748157
  • Wang S, Mamedova N, Kotov NA, et al. Antigen/antibody immunocomplex from CdTe nanoparticle bioconjugates. Nano Lett. 2002;2(8):817–822. doi:10.1021/nl0255193
  • Tong Z, Dong L, Zhou L, et al. Nisin inhibits dental caries-associated microorganism in vitro. Peptides. 2010;31:2003–2008. doi:10.1021/acsbiomaterials.9b0054720688123
  • He X, Ding YF, Xie WJ, et al. Rubidium-containing calcium alginate hydrogel for antibacterial and diabetic skin wound healing applications. ACS Biomater Sci Eng. 2019;5:4726–4738. doi:10.1021/acsbiomaterials.9b00547
  • Kumar S, Lakshmanan VK, Raj M, et al. Evaluation of wound healing potential of β-chitin hydrogel/nano zinc oxide composite bandage. Pharm Res. 2013;30:523–537. doi:10.1007/s11095-012-0898-y23135816
  • Augustine R, Hasan A, Patan NK, et al. Cerium oxide nanoparticle incorporated electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate) membranes for diabetic wound healing applications. ACS Biomater Sci Eng. 2020;6:58–70. doi:10.1021/acsbiomaterials.8b01352
  • Soenen SJ, Paak WJ, Rejman J, et al. (Inter)Cellular stability of inorganic nanoparticles: effects on cytotoxicity, particle functionality, and biomedical applications. Chem Rev. 2015;115:2109–2135. doi:10.1021/cr400714j25757742
  • Gao Q, Zhang X, Yin WY, et al. Functionalized MoS2 nanovehicle with near-infrared laser-mediated nitric oxide release and photothermal activities for advanced bacteria-infected wound therapy. Small. 2018;14(45):1802290. doi:10.1002/smll.201802290
  • Zhao Y, Cai Q, Qi W, et al. BSA-CuS nanoparticles for photothermal therapy of diabetic wound infection in vivo. Biol Chem Chem Biol. 2018;3:9510–9516. doi:10.1002/slct.201802069
  • Thangavel P, Kannan R, Ramachandran B, et al. Development of reduced graphene oxide (rGO)-isabgol nanocomposite dressings for enhanced vascularization and accelerated wound healing in normal and diabetic rats. J Colloid Interface Sci. 2018;517:251–264. doi:10.1016/j.jcis.2018.01.11029428812
  • Sun L, Zhang Y, Wang Y, et al. Real-time subcellular imaging based on graphene biosensors. Nanoscale. 2018;10(4):1759–1765. doi:10.1039/c7nr07479d29308810
  • Jing X, Mi HY, Napiwocki BN, et al. Mussel-inspired electroactive chitosan/graphene oxide composite hydrogel with rapid self-healing and recovery behavior for tissue engineering. Carbon. 2017;125:557–570. doi:10.1016/j.carbon.2017.09.071
  • Tessmar JK, Göpferich AM. Matrices and scaffolds for protein delivery in tissue engineering. Adv Drug Delivery Rev. 2007;59:274. doi:10.1016/j.addr.2007.03.020
  • Andrew JS, Anglin EJ, Wu EC, et al. Sustained release of a monoclonal antibody from electrochemically prepared mesoporous silicon oxide. Adv Funct Mater. 2011;20:4168. doi:10.1002/adfm.201190106
  • Rytkönen J, Arukuusk P, Xu W, et al. Porous silicon–cell penetrating peptide hybrid nanocarrier for intracellular delivery of oligonucleotides. Mol Pharmaceutics. 2014;11:382–390. doi:10.1021/mp4002624
  • Christopher TT, Steven JPM, Elizabeth M, et al. Delivery of flightless I neutralizing antibody from porous silicon nanoparticles improves wound healing in diabetic mice. Adv Healthcare Mater. 2017;6:1600707. doi:10.1002/adhm.201600707
  • Xie Z, Paras CB, Weng H, et al. Dual growth factor releasing multi-functional nanofibers for wound healing. Acta Biomater. 2013;9(12):9351–9359. doi:10.1016/j.actbio.2013.07.03023917148
  • Majd SA, Khorasgani MR, Moshtaghian SJ, et al. Application of chitosan/PVA nano fiber as a potential wound dressing for streptozotocin-induced diabetic rats. Int J Biol Macromol. 2016;92:1162–1168. doi:10.1016/j.ijbiomac.2016.06.03527492559
  • Xia GX, Liu Y, Tian MP, et al. Nanoparticles/thermosensitive hydrogel reinforced with chitin whiskers as wound dressing for treating chronic wounds. J Mater Chem B. 2017;5:3172–3185. doi:10.1039/c7tb00479f32263715
  • Correa VLR, Martins JA, Souza TR, et al. Melatonin loaded lecithin-chitosan nanoparticles improved the wound healing in diabetic rats. Int J Biol Macromol. 2020;162:1465–1475. doi:10.1016/j.ijbiomac.2020.08.02732781118
  • Patrulea V, Ostafe V, Borchard G, et al. Chitosan as a starting material for wound healing applications. Eur J Pharm Biopharm. 2015;97:417–426. doi:10.1016/j.ejpb.2015.08.00426614560
  • Ali L, Ahmad M, Aamir MN, et al. Venlafaxine-loaded sustained-release poly (hydroxyethyl methacrylate-co-itaconic acid) hydrogel composites: their synthesis and in vitro/in vivo attributes. Iran Polym J. 2019:1–8. doi:10.1007/s13726-019-00697-4
  • Paterson SM, Shadforth AMA, Brown DH, et al. The synthesis and degradation of collagenase-degradable poly(2-hydroxyethyl methacrylate)-based hydrogels and sponges for potential applications as scaffolds in tissue engineering. Mater Sci Eng C Mater Biol Appl. 2012;32(8):2536–2544. doi:10.1016/j.msec.2012.07.037
  • Lin YS, Ming LJ, Peng JS, et al. Radical annihilation of γ-ray-irradiated contact lens blanks made of a 2-hydroxyethyl methacrylate copolymer at elevated temperatures. J Appl Polym Sci. 2010;117(6):3114–3120. doi:10.1002/app.31947
  • Shah SA, Sohail M, Minhas MU, et al. pH-responsive CAP-co-poly (methacrylic acid)-based hydrogel as an efficient platform for controlled gastrointestinal delivery: fabrication, characterization, in vitro and in vivo toxicity evaluation. Drug Deliv Transl Res. 2019;9(2):555–577. doi:10.1007/s13346-018-0486-829450805
  • Yu L, Ding J. Injectable hydrogels as unique biomedical materials. Chem Soc Rev. 2008;37:1473–1481. doi:10.1039/b713009k18648673
  • Zheng ZQ, Bian SQ, Li ZQ, et al. Catechol modified quaternized chitosan enhanced wet adhesive and antibacterial properties of injectable thermo-sensitive hydrogel for wound healing. Carbohydr Polym. 2020;249:116826. doi:10.1016/j.carbpol.2020.11682632933673
  • Cai L, Dewi RE, Heilshorn SC. Injectable hydrogels with in situ double network formation enhance retention of transplanted stem cells. Adv Funct Mater. 2015;25:1344–1351. doi:10.1002/adfm.20140363126273242
  • Truong VX, Ablett MP, Richardson SM, et al. Simultaneous orthogonal dual-click approach to tough, in-situ-forming hydrogels for cell encapsulation. J Am Chem Soc. 2015;137:1618–1622. doi:10.1021/ja511681s25590670
  • Yang JA, Yeom J, Hwang BW, et al. In situ-forming injectable hydrogels for regenerative medicine. Prog Polym Sci. 2014;39:1973–1986. doi:10.1016/j.progpolymsci.2014.07.006
  • Eggermont LJ, Rogers ZJ, Colombani T, et al. Injectable cryogels for biomedical applications. Trends Biotechnol. 2020;38:418–431. doi:10.1016/j.tibtech.2019.09.00831699534
  • Chen H, Cheng RY, Zhao X, et al. An injectable self-healing coordinative hydrogel with antibacterial and angiogenic properties for diabetic skin wound repair. NPG Asia Mater. 2019;11:3. doi:10.1038/s41427-018-0103-9
  • Wang SQ, Zheng H, Zhou L, et al. Nanoenzyme-reinforced injectable hydrogel for healing diabetic wounds infected with multidrug resistant bacteria. Nano Lett. 2020;20:5149–5158. doi:10.1021/acs.nanolett.0c0137132574064
  • Li J, Hu WQ, Zhang YJ, et al. pH and glucose dually responsive injectable hydrogel prepared by in situ crosslinking of phenylboronic modified chitosan and oxidized dextran. J Polym Sci Part A: Polym Chem. 2015;53:1235–1244. doi:10.1002/pola.27556
  • Zhu YN, Zhang JM, Song JY, et al. A multifunctional pro-healing zwitterionic hydrogel for simultaneous optical monitoring of pH and glucose in diabetic wound treatment. Adv Funct Mater. 2019:1905493. doi:10.1002/adfm.201905493
  • Liu Y, Pharr M, Salvatore GA. Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring. ACS Nano. 2017;11:9614–9635. doi:10.1021/acsnano.7b0489828901746
  • Liang S, Zhang Y, Wang H, et al. Paintable and rapidly bondable conductive hydrogels as therapeutic cardiac patches. Adv Mater. 2018;30:1704235. doi:10.1002/adma.201704235
  • Liao M, Wan P, Wen J, et al. Wearable, healable, and adhesive epidermal sensors assembled from mussel-inspired conductive hybrid hydrogel framework. Adv Funct Mater. 2017;27:1703852. doi:10.1002/adfm.201703852
  • Zhou Y, Wan CJ, Yang YS, et al. Highly stretchable, elastic, and ionic conductive hydrogel for artificial soft electronics. Adv Funct Mater. 2019;29:1806220. doi:10.1002/adfm.201806220
  • Hua DW, Gao ST, Zhang MJ, et al. A novel xanthan gum-based conductive hydrogel with excellent mechanical, biocompatible, and self-healing performances. Carbohydr Polym. 2020;247:116743. doi:10.1016/j.carbpol.2020.11674332829862
  • Zhang JJ, Wu C, Xu YY, et al. A highly stretchable and conductive self-healing hydrogel for temperature and strain sensing and chronic wound treatment. ACS Appl Mater Interfaces. 2020;12:40990–40999. doi:10.1021/acsami.0c0829132808753
  • Zhao H, Huang J, Li Y, et al. ROS-scavenging hydrogel to promote healing of bacteria infected diabetic wounds. Biomaterials. 2020;258:120286. doi:10.1016/j.biomaterials.2020.12028632798744
  • Ma HS, Zhou Q, Chang J, et al. Grape seed-inspired smart hydrogel scaffolds for melanoma therapy and wound healing. ACS Nano. 2019;13:4302–4311. doi:10.1021/acsnano.8b0949630925040
  • Wan WB, Cai F, Huang JY, et al. A skin-inspired 3D bilayer scaffold enhances granulation tissue formation and anti-infection for diabetic wound healing. J Mater Chem B. 2019;7:2954–2961. doi:10.1039/c8tb03341b
  • Chen SX, Wang HJ, Su YJ, et al. Mesenchymal stem cell-laden, personalized 3D scaffolds with controlled structure and fiber alignment promote diabetic wound healing. Acta Biomater. 2020;108:153–167. doi:10.1016/j.actbio.2020.03.03532268240
  • Yu BR, He CH, Wang WB, et al. Asymmetric wettable composite wound dressing prepared by electrospinning with bioinspired micropatterning enhances diabetic wound healing. ACS Appl Bio Mater. 2020;3:5383–5394. doi:10.1021/acsabm.0c00695
  • Bao F, Pei G, Wu ZC, et al. Bioactive self-pumping composite wound dressings with micropore array modified janus membrane for enhanced diabetic wound healing. Adv Funct Mater. 2020:2005422. doi:10.1002/adfm.202005422
  • Huang JL, Zhou JF, Zhuang JY, et al. Strong near-infrared absorbing and biocompatible CuS nanoparticles for rapid and efficient photothermal ablation of gram-positive and -negative bacteria. ACS Appl Mater Interfaces. 2017;9:36606–36614. doi:10.1021/acsami.7b1106228976189
  • Chen J, Cheng G, Liu R, et al. Enhanced physical and biological properties of silk fibroin nanofibers by layer-by-layer deposition of chitosan and rectorite. J Colloid Interface Sci. 2018;523:208–216. doi:10.1016/j.jcis.2018.03.09329625323
  • Tang ZY, Wang Y, Podsiadlo P, et al. Biomedical applications of layer-by-layer assembly: from biomimetics to tissue engineering. Adv Mater. 2006;18:3203. doi:10.1002/adma.200790025
  • Shi YH, Wan DJ, Huang JH, et al. Stable LBL self-assembly coating porous membrane with 3D heterostructure for enhanced water treatment under visible light irradiation. Chemosphere. 2020;252:126581. doi:10.1016/j.chemosphere.2020.12658132222517
  • Wu G, Ma X, Fan L, et al. Accelerating dermal wound healing and mitigating excessive scar formation using LBL modified nanofibrous mats. Mater Des. 2020;185:108265. doi:10.1016/j.matdes.2019.108265
  • Oroojalian F, Jahanafrooz Z, Chogan F, et al. Synthesis and evaluation of injectable thermosensitive penta-block copolymer hydrogel (PNIPAAm-PCL-PEG-PCL-PNIPAAm) and star-shaped poly(CLCOLA)-b-PEG for wound healing applications. J Cell Biochem. 2019;120(10):17194–17207. doi:10.1002/jcb.2898031104319
  • Andrade TAM, Iyer A, Das PK, et al. The inflammatory stimulus of a natural latex biomembrane improves healing in mice. Braz J Med Biol Res. 2011;44(10):1036–1047. doi:10.1590/S0100-879X201100750011621915475
  • de Barros NR, Miranda MCR, Borges FA, et al. Oxytocin sustained release using natural rubber latex membranes. Int J Pept Res Ther. 2016;22(4):435–444. doi:10.1007/s10989-016-9523-y
  • Davi CP, Lombello CB, Ferreira M. Higher cellular interaction and faster production of natural rubber latex LbL films by spraying method. Int J Adv Manuf Tech. 2019;100:999–1005. doi:10.1007/s00170-018-2778-z
  • Long J, Etxeberria AE, Nand AV, et al. A 3D printed chitosan-pectin hydrogel wound dressing for lidocaine hydrochloride delivery. Mater Sci Eng C. 2019;104:109873. doi:10.1016/j.msec.2019.109873
  • Ilhan E, Cesur S, Guler E, et al. Development of Satureja cuneifolia-loaded sodium alginate/polyethylene glycol scaffolds produced by 3D-printing technology as a diabetic wound dressing material. Int J Biol Macromol. 2020;161:1040–1054. doi:10.1016/j.ijbiomac.2020.06.08632544577
  • Wu MX, Zhang YJ, Huang H, et al. Assisted 3D printing of microneedle patches for minimally invasive glucose control in diabetes. Mater Sci Eng C. 2020;117:111299. doi:10.1016/j.msec.2020.111299