411
Views
50
CrossRef citations to date
0
Altmetric
Review

Gambogic Acid as a Candidate for Cancer Therapy: A Review

, , &
Pages 10385-10399 | Published online: 22 Dec 2020

References

  • Zhang Y, Li M, Gao X, Chen Y, Liu T. Nanotechnology in cancer diagnosis: progress, challenges and opportunities. J Hematol Oncol. 2019;12(1):137. doi:10.1186/s13045-019-0833-331847897
  • Banik K, Harsha C, Bordoloi D, et al. Therapeutic potential of gambogic acid, a caged xanthone, to target cancer. Cancer Lett. 2018;416:75–86. doi:10.1016/j.canlet.2017.12.01429246645
  • Zhou BD, Weng ZM, Tong YG, et al. Syntheses of xanthone derivatives and their bioactivity investigation. J Asian Nat Prod Res. 2020;1–13.
  • Kashyap D, Mondal R, Tuli HS, Kumar G, Sharma AK. Molecular targets of gambogic acid in cancer: recent trends and advancements. Tumour Biol. 2016;37(10):12915–12925.27448303
  • Han QB, Cheung S, Tai J, Qiao CF, Song JZ, Xu HX. Stability and cytotoxicity of gambogic acid and its derivative, gambogoic acid. Biol Pharm Bull. 2005;28(12):2335–2337.16327177
  • Wen CY, Huang LL, Chen JX, et al. Gambogic acid inhibits growth, induces apoptosis, and overcomes drug resistance in human colorectal cancer cells. Int J Oncol. 2015;47(5):1663–1671.26397804
  • Wang YY, Zhang XJ, Yang YR, Sun HP, You QD. Progress in research of the structural optimization of natural product-like Garcinia caged xanthones. Yao Xue Xue Bao. 2014;49(3):293–302.24961098
  • Youns M, ElKhoely A, Kamel R. The growth inhibitory effect of gambogic acid on pancreatic cancer cells. N-S Arch Pharmacol. 2018;391(5):551–560.
  • Wang J, Shen W, Yuan ZL, et al. Michael acceptor in gambogic acid-its role and application for potent antitumor agents. Bioorg Med Chem Lett. 2015;25(14):2844–2848.26009165
  • Chen J, Gu H-Y, Lu N, et al. Microtubule depolymerization and phosphorylation of c-Jun N-terminal kinase-1 and p38 were involved in gambogic acid induced cell cycle arrest and apoptosis in human breast carcinoma MCF-7 cells. Life Sci. 2008;83(3–4):103–109. doi:10.1016/j.lfs.2008.05.00318586278
  • Li R, Chen Y, Zeng -L-L, et al. Gambogic acid induces G0/G1 arrest and apoptosis involving inhibition of SRC-3 and inactivation of Akt pathway in K562 leukemia cells. Toxicology. 2009;262(2):98–105. doi:10.1016/j.tox.2009.04.05919433130
  • Wang JX, Zhao L, Hu Y, et al. Studies on chemical structure modification and biology of a natural product, Gambogic acid (I): synthesis and biological evaluation of oxidized analogues of gambogic acid. Eur J Med Chem. 2009;44(6):2611–2620. doi:10.1016/j.ejmech.2008.09.03418996626
  • Zhang H-Z, Kasibhatla S, Wang Y, et al. Discovery, characterization and SAR of gambogic acid as a potent apoptosis inducer by a HTS assay. Bioorg Med Chem. 2004;12(2):309–317. doi:10.1016/j.bmc.2003.11.01314723951
  • Palempalli UD, Gandhi U, Kalantari P, et al. Gambogic acid covalently modifies IκB kinase-β subunit to mediate suppression of lipopolysaccharide-induced activation of NF-κB in macrophages. Biochem J. 2009;419(2):401–409. doi:10.1042/BJ2008148219140805
  • Yang J, Li C, Ding L, Guo Q, You Q, Jin S. Gambogic acid deactivates cytosolic and mitochondrial thioredoxins by covalent binding to the functional domain. J Nat Prod. 2012;75(6):1108–1116. doi:10.1021/np300118c22663155
  • Hong B, van den Heuvel AP, Prabhu VV, Zhang S, El-Deiry WS. Targeting tumor suppressor p53 for cancer therapy: strategies, challenges and opportunities. Curr Drug Targets. 2014;15(1):80–89. doi:10.2174/138945011466614010610141224387333
  • Goldar S, Khaniani MS, Derakhshan SM, Baradaran B. Molecular mechanisms of apoptosis and roles in cancer development and treatment. Asian Pac J Cancer Prev. 2015;16(6):2129–2144. doi:10.7314/APJCP.2015.16.6.212925824729
  • Zhai DY, Jin CF, Shiau C-W, Kitada S, Satterthwait AC, Reed JC. Gambogic acid is an antagonist of antiapoptotic Bcl-2 family proteins. Mol Cancer Ther. 2008;7(6):1639–1646. doi:10.1158/1535-7163.MCT-07-237318566235
  • Gu HY, Rao SY, Zhao J, et al. Gambogic acid reduced bcl-2 expression via p53 in human breast MCF-7 cancer cells. J Cancer Res Clin. 2009;135(12):1777–1782. doi:10.1007/s00432-009-0624-2
  • Gu HY, Wang XT, Rao SY, et al. Gambogic acid mediates apoptosis as a p53 inducer through down-regulation of mdm2 in wild-type p53-expressing cancer cells. Mol Cancer Ther. 2008;7(10):3298–3305. doi:10.1158/1535-7163.MCT-08-021218852133
  • Rong -J-J, Hu R, Qi Q, et al. Gambogic acid down-regulates MDM2 oncogene and induces p21Waf1/CIP1 expression independent of p53. Cancer Lett. 2009;284(1):102–112. doi:10.1016/j.canlet.2009.04.01119428175
  • Wang J, Zhao Q, Qi Q, et al. Gambogic acid-induced degradation of mutant p53 is mediated by proteasome and related to CHIP. J Cell Biochem. 2011;112(2):509–519. doi:10.1002/jcb.2294121268072
  • Davenport J, Manjarrez JR, Peterson L, Krumm B, Blagg BSJ, Matts RL. Gambogic acid, a natural product inhibitor of Hsp90. J Nat Prod. 2011;74(5):1085–1092. doi:10.1021/np200029q21486005
  • Zhang LR, Yi YT, Chen JJ, et al. Gambogic acid inhibits Hsp90 and deregulates TNF-α/NF-κB in HeLa cells. Biochem Bioph Res Co. 2010;403(3–4):282–287. doi:10.1016/j.bbrc.2010.11.018
  • Felth J, Lesiak-Mieczkowska K, D’Arcy P, et al. Gambogic acid is cytotoxic to cancer cells through inhibition of the ubiquitin-proteasome system. Invest New Drug. 2013;31(3):587–598. doi:10.1007/s10637-012-9902-y
  • Li XF, Liu ST, Huang HB, et al. Gambogic acid is a tissue-specific proteasome inhibitor in vitro and in vivo. Cell Rep. 2013;3(1):211–222. doi:10.1016/j.celrep.2012.11.02323260670
  • Shi XP, Lan XY, Chen X, et al. Gambogic acid induces apoptosis in diffuse large B-cell lymphoma cells via inducing proteasome inhibition. Sci Rep-Uk. 2015;5.
  • Ruiz-Ruiz C, Lopez-Rivas A. Mitochondria-dependent and -independent mechanisms in tumour necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis are both regulated by interferon-gamma in human breast tumour cells. Biochem J. 2002;365(3):825–832.11936954
  • Smith DJ, Ng H, Kluck RM, Nagley P. The mitochondrial gateway to cell death. IUBMB Life. 2008;60(6):383–389.18425780
  • Guizzunti G, Batova A, Chantarasriwong O, Dakanali M, Theodorakis EA. Subcellular localization and activity of gambogic acid. Chembiochem. 2012;13(8):1191–1198.22532297
  • Li CL, Qi Q, Lu N, et al. Gambogic acid promotes apoptosis and resistance to metastatic potential in MDA-MB-231 human breast carcinoma cells. Biochem Cell Biol. 2012;90(6):718–730.23194187
  • Yang J, Li CL, Ding L, Guo QL, You QD, Jin SH. Gambogic acid deactivates cytosolic and mitochondrial thioredoxins by covalent binding to the functional domain. J Nat Prod. 2012;75(6):1108–1116.22663155
  • Yang LJ, Chen Y, He J, et al. Effects of gambogic acid on the activation of caspase-3 and downregulation of SIRT1 in RPMI-8226 multiple myeloma cells via the accumulation of ROS. Oncol Lett. 2012;3(5):1159–1165.22783411
  • Rahman MA, Kim NH, Huh SO. Cytotoxic effect of gambogic acid on SH-SY5Y neuroblastoma cells is mediated by intrinsic caspase-dependent signaling pathway. Mol Cell Biochem. 2013;377(1–2):187–196.23404459
  • Lee PNH, Ho WS. Antiproliferative activity of gambogic acid isolated from Garcinia hanburyi in Hep3B and Huh7 cancer cells. Oncol Rep. 2013;29(5):1744–1750.23426995
  • Huang GM, Sun Y, Ge X, Wan X, Li CB. Gambogic acid induces apoptosis and inhibits colorectal tumor growth via mitochondrial pathways. World J Gastroentero. 2015;21(20):6194–6205.
  • Thida M, Kim DW, Tran TTT, et al. Gambogic acid induces apoptotic cell death in T98G glioma cells. Bioorg Med Chem Lett. 2016;26(3):1097–1101.26631318
  • Nie FF, Zhang XN, Qi Q, et al. Reactive oxygen species accumulation contributes to gambogic acid-induced apoptosis in human hepatoma SMMC-7721 cells. Toxicology. 2009;260(1–3):60–67.19464570
  • Duan DZ, Zhang BX, Yao J, et al. Gambogic acid induces apoptosis in hepatocellular carcinoma SMMC-7721 cells by targeting cytosolic thioredoxin reductase. Free Radical Bio Med. 2014;69:15–25.24407164
  • Zhu XL, Zhang HM, Lin Y, et al. Mechanisms of gambogic acid-induced apoptosis in non-small cell lung cancer cells in relation to transferrin receptors. J Chemother. 2009;21(6):666–672.20071291
  • Kasibhatla S, Jessen KA, Maliartchouk S, et al. A role for transferrin receptor in triggering apoptosis when targeted with gambogic acid. P Natl Acad Sci USA. 2005;102(34):12095–12100.
  • Pandey MK, Sung B, Ahn KS, Kunnumakkara AB, Chaturvedi MM, Aggarwal BB. Gambogic acid, a novel ligand for transferrin receptor, potentiates TNF-induced apoptosis through modulation of the nuclear factor-kappa B signaling pathway. Blood. 2007;110(10):3517–3525.17673602
  • Tang QS, Lu MD, Zhou H, Chen DZ, Liu L. Gambogic acid inhibits the growth of ovarian cancer tumors by regulating p65 activity. Oncol Lett. 2017;13(1):384–388.28123571
  • Chen JH, Zhou M, Zhang Q, Xu JY, Ouyang J. Anticancer effect and apoptosis induction of gambogic acid in human leukemia cell line K562 in vitro. Med Sci Mon. 2015;21:1604–1610.
  • Liu WY, Wu X, Liao CQ, Shen J, Li J. Apoptotic effect of gambogic acid in esophageal squamous cell carcinoma cells via suppression of the NF-kappa B pathway. Oncol Lett. 2016;11(6):3681–3685.27284372
  • Prasad S, Pandey MK, Yadav VR, Aggarwal BB. Gambogic acid inhibits STAT3 phosphorylation through activation of protein tyrosine phosphatase SHP-1: potential role in proliferation and apoptosis (Retracted article. See vol. 11, pg. 593, 2018). Cancer Prev Res. 2011;4(7):1084–1094.
  • Pan H, Lu LY, Wang XQ, Li BX, Kelly K, Lin HS. Gambogic acid induces cell apoptosis and inhibits MAPK pathway in PTEN-/-/p53(-/-) prostate cancer cells in vitro and ex vivo. Chin J Integr Med. 2018;24(2):109–116.28578487
  • Song HH, Li Y, Ma Y, Ling SK, Ge Z, Huang PL. Induced apoptosis in multiple myeloma cells expressing miR-21 through AKT/FOXO1/BIM signaling. Nanosci Nanotech Let. 2018;10(7):1006–1012.
  • Zhu MH, Wang MJ, Jiang YF, et al. Gambogic acid induces apoptosis of non-small cell lung cancer (NSCLC) cells by suppressing notch signaling. Med Sci Mon. 2018;24:7146–7151.
  • Zhang CH, Liu J, Tao FX, et al. The nuclear export of TR3 mediated gambogic acid-induced apoptosis in cervical cancer cells through mitochondrial dysfunction. RSC Adv. 2019;9(21):11855–11864.
  • Li R, Chen Y, Shu WX, Zhao F, Liu Y, Wen L. Effects of gambogic acid on regulation of steroid receptor coactivator-3 in lung adenocarcinoma A549 cells. Chinese J Cancer Res. 2009;21(1):68–73.
  • Cui GH, Shu WX, Wu Q, Chen Y. Effect of gambogic acid on the regulation of hERG channel in K562 cells in vitro. J Huazhong U Sci-Med. 2009;29(5):540–545.
  • Wang YH, Wang W, Sun HQ. Bromodomain-containing protein 4 is critical for the antiproliferative and pro-apoptotic effects of gambogic acid in anaplastic thyroid cancer. Int J Mol Med. 2018;42(1):161–170.29717765
  • He XY, Liu XJ, Chen X, et al. Gambogic acid induces EGFR degradation and Akt/mTORC1 inhibition through AMPK dependent-LRIG1 upregulation in cultured U87 glioma cells. Biochem Bioph Res Co. 2013;435(3):397–402.
  • Gu HG, You QD, Liu W, et al. Gambogic acid induced tumor cell apoptosis by T lymphocyte activation in H-22 transplanted mice. Int Immunopharmacol. 2008;8(11):1493–1502.18573352
  • Zhao W, Zhou SF, Zhang ZP, Xu GP, Li XB, Yan JL. Gambogic acid inhibits the growth of osteosarcoma cells in vitro by inducing apoptosis and cell cycle arrest. Oncol Rep. 2011;25(5):1289–1295.21331449
  • Ye LJ, Zhou JM, Zhao W, Jiao PF, Ren GF, Wang SJ. Gambogic acid-induced autophagy in nonsmall cell lung cancer NCI-H441 cells through a reactive oxygen species pathway. J Cancer Res Ther. 2018;14:S942–S947.30539827
  • Luo GX, Cai J, Lin JZ, et al. Autophagy inhibition promotes gambogic acid-induced suppression of growth and apoptosis in glioblastoma cells. Asian Pac J Cancer P. 2012;13(12):6211–6216.
  • Zhao T, Wang HJ, Zhao WW, Sun YL, Hu LK. Gambogic acid improves non-small cell lung cancer progression by inhibition of mTOR signaling pathway. Kaohsiung J Med Sci. 2017;33(11):543–549.29050671
  • Foggetti G, Ottaggio L, Russo D, et al. Gambogic acid counteracts mutant p53 stability by inducing autophagy. Bba-Mol Cell Res. 2017;1864(2):382–392.
  • Zhang HY, Lei YL, Yuan P, et al. ROS-mediated autophagy induced by dysregulation of lipid metabolism plays a protective role in colorectal cancer cells treated with gambogic acid. PLoS One. 2014;9(5).
  • Ishaq M, Khan MA, Sharma K, Sharma G, Dutta RK, Majumdar S. Gambogic acid induced oxidative stress dependent caspase activation regulates both apoptosis and autophagy by targeting various key molecules (NF-kappa B, Beclin-1, p62 and NBR1) in human bladder cancer cells. Bba-Gen Subjects. 2014;1840(12):3374–3384.
  • Gao GY, Bian YZ, Qian HQ, et al. Gambogic acid regulates the migration and invasion of colorectal cancer via microRNA-21-mediated activation of phosphatase and tensin homolog. Exp Ther Med. 2018;16(3):1758–1765.30186399
  • Zhao K, Zhang S, Song XM, et al. Gambogic acid suppresses cancer invasion and migration by inhibiting TGF beta 1-induced epithelial-to-mesenchymal transition. Oncotarget. 2017;8(16):27120–27136.28404892
  • Qi Q, Lu N, Li CL, et al. Involvement of RECK in gambogic acid induced anti-invasive effect in A549 human lung carcinoma cells. Mol Carcinogen. 2015;54:E13–E25.
  • Qi Q, Gu HY, Yang Y, et al. Involvement of matrix metalloproteinase 2 and 9 in gambogic acid induced suppression of MDA-MB-435 human breast carcinoma cell lung metastasis. J Mol Med. 2008;86(12):1367–1377.18777017
  • Qi Q, Lu N, Wang XT, et al. Anti-invasive effect of gambogic acid in MDA-MB-231 human breast carcinoma cells. Biochem Cell Biol. 2008;86(5):386–395.18923540
  • Park MS, Kim NH, Kang CW, Oh CW, Kim GD. Antimetastatic effects of gambogic acid are mediated via the actin cytoskeleton and NF-B pathways in SK-HEP1 cells. Drug Develop Res. 2015;76(3):132–142.
  • Lu L, Tang D, Wang L, et al. Gambogic acid inhibits TNF-alpha-induced invasion of human prostate cancer PC3 cells in vitro through PI3K/Akt and NF-kappa B signaling pathways. Acta Pharmacol Sin. 2012;33(4):531–541.22426696
  • Xin ZF, Shen CC, Tao LJ, Yan SG, Wu HB. Gambogic acid inhibits invasion of osteosarcoma via upregulation of TIMP-1. Int J Mol Med. 2013;31(1):105–112.23175213
  • Zhao J, Qi Q, Yang Y, et al. Inhibition of alpha(4) integrin mediated adhesion was involved in the reduction of B16-F10 melanoma cells lung colonization in C57BL/6 mice treated with Gambogic acid. Eur J Pharmacol. 2008;589(1–3):127–131.18539272
  • Zhang H, Wang Z, Peng Q, et al. Tumor refractoriness to endostatin anti-angiogenesis is associated with the recruitment of CD11b+Gr1+ myeloid cells and inflammatory cytokines. Tumori. 2013;99(6):723–733.24503797
  • Wang F, Zhang W, Guo LT, et al. Gambogic acid suppresses hypoxia-induced hypoxia-inducible factor-1/vascular endothelial growth factor expression via inhibiting phosphatidylinositol 3-kinase/Akt/mammalian target protein of rapamycin pathway in multiple myeloma cells. Cancer Sci. 2014;105(8):1063–1070.24890366
  • Lu N, Hui H, Yang H, et al. Gambogic acid inhibits angiogenesis through inhibiting PHD2-VHL-HIF-1 alpha pathway. Eur J Pharm Sci. 2013;49(2):220–226.23501055
  • Yi T, Yi Z, Cho SG, et al. Gambogic acid inhibits angiogenesis and prostate tumor growth by suppressing vascular endothelial growth factor receptor 2 signaling. Cancer Res. 2008;68(6):1843–1850.18339865
  • Assaraf YG, Brozovic A, Goncalves AC, et al. The multi-factorial nature of clinical multidrug resistance in cancer. Drug Resist Updat. 2019;46:100645.31585396
  • Wang Q, Wei JC, Wang CX, et al. Gambogic acid reverses oxaliplatin resistance in colorectal cancer by increasing intracellular platinum levels. Oncol Lett. 2018;16(2):2366–2372.30008940
  • Xia GG, Wang HC, Song ZL, Meng QC, Huang XY, Huang XY. Gambogic acid sensitizes gemcitabine efficacy in pancreatic cancer by reducing the expression of ribonucleotide reductase subunit-M2 (RRM2). J Exp Clin Canc Res. 2017;36.
  • Zhao W, Xia SQ, Zhuang JP, et al. Hypoxia-induced resistance to cisplatin-mediated apoptosis in osteosarcoma cells is reversed by gambogic acid independently of HIF-1 alpha. Mol Cell Biochem. 2016;420(1–2):1–8.27473145
  • Wang SP, Wang L, Chen MW, Wang YT. Gambogic acid sensitizes resistant breast cancer cells to doxorubicin through inhibiting P-glycoprotein and suppressing survivin expression. Chem-Biol Interact. 2015;235:76–84.25824409
  • Wang TT, Wei J, Qlan XP, Ding YT, Yu LX, Liu BR. Gambogic acid, a potent inhibitor of survivin, reverses docetaxel resistance in gastric cancer cells. Cancer Lett. 2008;262(2):214–222.18248784
  • Wang CD, Wang W, Wang CY, Tang YJ, Tian H. Combined therapy with EGFR TKI and gambogic acid for overcoming resistance in EGFR-T790M mutant lung cancer. Oncol Lett. 2015;10(4):2063–2066.26622796
  • Xia Y, Zhong J, Zhao M, et al. Galactose-modified selenium nanoparticles for targeted delivery of doxorubicin to hepatocellular carcinoma. Drug Deliv. 2019;26(1):1–11.31928356
  • Xia Y, Tang G, Wang C, et al. Functionalized selenium nanoparticles for targeted siRNA delivery silence Derlin1 and promote antitumor efficacy against cervical cancer. Drug Deliv. 2020;27(1):15–25.31830840
  • Xia Y, Tang G, Guo M, et al. Silencing KLK12 expression via RGDfC-decorated selenium nanoparticles for the treatment of colorectal cancer in vitro and in vivo. Mater Sci Eng C Mater Biol Appl. 2020;110:110594.32204058
  • Yu G, Ning Q, Mo Z, Tang S. Intelligent polymeric micelles for multidrug co-delivery and cancer therapy. Artif Cells Nanomed Biotechnol. 2019;47(1):1476–1487.31070063
  • Hwang D, Ramsey JD, Kabanov AV. Polymeric micelles for the delivery of poorly soluble drugs: from nanoformulation to clinical approval. Adv Drug Deliv Rev. 2020.
  • Attia ABE, Ong ZY, Hedrick JL, et al. Mixed micelles self-assembled from block copolymers for drug delivery. Curr Opin Colloid Interface Sci. 2011;16(3):182–194.
  • Saxena V, Hussain MD. Poloxamer 407/TPGS mixed micelles for delivery of gambogic acid to breast and multidrug-resistant cancer. Int J Nanomed. 2012;7:713–721.
  • Yu F, Jiang FG, Tang XH, Wang BC. N-octyl-N-arginine-chitosan micelles for gambogic acid intravenous delivery: characterization, cell uptake, pharmacokinetics, and biodistribution. Drug Dev Ind Pharm. 2018;44(4):615–623.29188736
  • Wang SP, Yang Y, Wang YT, Chen MW. Gambogic acid-loaded pH-sensitive mixed micelles for overcoming breast cancer resistance. Int J Pharmaceut. 2015;495(2):840–848.
  • Wang Y, Liang XFQ, Tong RS, et al. Gambogic acid-loaded polymeric micelles for improved therapeutic effect in breast cancer. J Biomed Nanotechnol. 2018;14(10):1695–1704.30041717
  • Yu F, He CH, Waddad AY, et al. N-octyl-N-arginine-chitosan (OACS) micelles for gambogic acid oral delivery: preparation, characterization and its study on in situ intestinal perfusion. Drug Dev Ind Pharm. 2014;40(6):774–782.23679668
  • Sang MM, Liu FL, Wang Y, et al. A novel redox/pH dual-responsive and hyaluronic acid-decorated multifunctional magnetic complex micelle for targeted gambogic acid delivery for the treatment of triple negative breast cancer. Drug Deliv. 2018;25(1):1846–1857.30334478
  • Ke ZC, Yang L, Wu H, Li ZH, Jia XB, Zhang ZH. Evaluation of in vitro and in vivo antitumor effects of gambogic acid-loaded layer-by-layer self-assembled micelles. Int J Pharmaceut. 2018;545(1–2):306–317.
  • Yan XF, Yang Y, He LQ, Peng DY, Yin DK. Gambogic acid grafted low molecular weight heparin micelles for targeted treatment in a hepatocellular carcinoma model with an enhanced anti-angiogenesis effect. Int J Pharmaceut. 2017;522(1–2):110–118.
  • Xu YQ, Wang SP, Chan HF, et al. Triphenylphosphonium-modified poly(ethylene glycol)-poly(epsilon-caprolactone) micelles for mitochondria- targeted gambogic acid delivery. Int J Pharmaceut. 2017;522(1–2):21–33.
  • Luo S, Tan X, Fang S, et al. MItochondria-targeted small-molecule fluorophores for dual modal cancer phototherapy. Adv Funct Mater. 2016;26(17):2826–2835.
  • Liang H, Zhou ZW, Luo RJ, et al. Tumor-specific activated photodynamic therapy with an oxidation-regulated strategy for enhancing anti-tumor efficacy. Theranostics. 2018;8(18):5059–5071.30429886
  • Vangijzegem T, Stanicki D, Laurent S. Magnetic iron oxide nanoparticles for drug delivery: applications and characteristics. Expert Opin Drug Deliv. 2019;16(1):69–78. doi:10.1080/17425247.2019.155464730496697
  • Wang CL, Zhang HJ, Chen BA, Yin HT, Wang WW. Study of the enhanced anticancer efficacy of gambogic acid on Capan-1 pancreatic cancer cells when mediated via magnetic Fe3O4 nanoparticles. Int J Nanomed. 2011;6:1929–1935.
  • Wang CL, Zhang HJ, Chen Y, Shi FF, Chen BA. Gambogic acid-loaded magnetic Fe3O4 nanoparticles inhibit Panc-1 pancreatic cancer cell proliferation and migration by inactivating transcription factor ETS1. Int J Nanomed. 2012;7:781–787.
  • Chen BA, Liang Y, Wu W, et al. Synergistic effect of magnetic nanoparticles of Fe3O4 with gambogic acid on apoptosis of K562 leukemia cells. Int J Nanomed. 2009;4:251–259. doi:10.2147/IJN.S7932
  • Fang LH, Chen BA, Liu SL, et al. Synergistic effect of a combination of nanoparticulate Fe3O4 and gambogic acid on phosphatidylinositol 3-kinase/Akt/Bad pathway of LOVO cells. Int J Nanomed. 2012;7:4109–4118.
  • Wang WW, Li XY, Wang ZH, et al. A novel “mosaic-type” nanoparticle for selective drug release targeting hypoxic cancer cells. Nanoscale. 2019;11(5):2211–2222. doi:10.1039/C8NR06452K30656317
  • Zhang Z, Qian HQ, Huang J, et al. Anti-EGFR-iRGD recombinant protein modified biomimetic nanoparticles loaded with gambogic acid to enhance targeting and antitumor ability in colorectal cancer treatment. Int J Nanomed. 2018;13:4961–4975. doi:10.2147/IJN.S170148
  • Zhang DH, Zou ZY, Ren W, et al. Gambogic acid-loaded PEG–PCL nanoparticles act as an effective antitumor agent against gastric cancer. Pharm Dev Technol. 2018;23(1):33–40. doi:10.1080/10837450.2017.129506829069711
  • Zhang Z, Qian HQ, Yang M, et al. Gambogic acid-loaded biomimetic nanoparticles in colorectal cancer treatment. Int J Nanomed. 2017;12:1593–1605. doi:10.2147/IJN.S127256
  • Wang SP, Shao M, Zhong ZF, et al. Co-delivery of gambogic acid and TRAIL plasmid by hyaluronic acid grafted PEI-PLGA nanoparticles for the treatment of triple negative breast cancer. Drug Deliv. 2017;24(1):1791–1800. doi:10.1080/10717544.2017.140655829172759
  • He MY, Ro LL, Liu J, Chu -C-C. Folate-decorated arginine-based poly(ester urea urethane) nanoparticles as carriers for gambogic acid and effect on cancer cells. J Biomed Mater Res A. 2017;105(2):475–490. doi:10.1002/jbm.a.3592427706899
  • Li R, He Y, Zhang S, Qin J, Wang J. Cell membrane-based nanoparticles: a new biomimetic platform for tumor diagnosis and treatment. Acta Pharm Sin B. 2018;8(1):14–22. doi:10.1016/j.apsb.2017.11.00929872619
  • Zhang Y, Yang ZJ, Tan XY, Tang X, Yang ZX. Development of a more efficient albumin-based delivery system for gambogic acid with low toxicity for lung cancer therapy. Aaps Pharmscitech. 2017;18(6):1987–1997. doi:10.1208/s12249-016-0670-427933587
  • Fang XB, Xu YQ, Wang SP, Wan JB, He CW, Chen MW. Pluronic F68-linoleic acid nano-spheres mediated delivery of gambogic acid for cancer therapy. Aaps Pharmscitech. 2017;18(1):147–155.26912357
  • Yang K, Xu H, Cheng L, Sun C, Wang J, Liu Z. In vitro and in vivo near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles. Adv Mater. 2012;24(41):5586–5592. doi:10.1002/adma.20120262522907876
  • Yang Y, Zhu WJ, Dong ZL, et al. 1D coordination polymer nanofibers for low-temperature photothermal therapy. Adv Mater. 2017;29:40.
  • Haine AT, Niidome T. Gold nanorods as nanodevices for bioimaging, photothermal therapeutics, and drug delivery. Chem Pharm Bull (Tokyo). 2017;65(7):625–628. doi:10.1248/cpb.c17-0010228674334
  • Wan H-Y, Chen J-L, Yu X-Y, Zhu X-M. Titania-coated gold nanorods as an effective carrier for gambogic acid. RSC Adv. 2017;7(78):49518–49525. doi:10.1039/C7RA08560E
  • Ji Y, Shan S, He MY, Chu -C-C. Inclusion complex from cyclodextrin-grafted hyaluronic acid and pseudo protein as biodegradable nano-delivery vehicle for gambogic acid. Acta Biomater. 2017;62:234–245. doi:10.1016/j.actbio.2017.08.03628859900
  • Zhan Q, Tang M. Research advances on apoptosis caused by quantum dots. Biol Trace Elem Res. 2014;161(1):3–12. doi:10.1007/s12011-014-0068-725062887
  • Xu PP, Li JY, Shi LX, Selke M, Chen BA, Wang XM. Synergetic effect of functional cadmium–tellurium quantum dots conjugated with gambogic acid for HepG2 cell-labeling and proliferation inhibition. Int J Nanomed. 2013;8:3729–3736. doi:10.2147/IJN.S51622
  • Kang YA, Lu L, Lan JS, et al. Redox-responsive polymeric micelles formed by conjugating gambogic acid with bioreducible poly(amido amine)s for the co-delivery of docetaxel and MMP-9 shRNA. Acta Biomater. 2018;68:137–153. doi:10.1016/j.actbio.2017.12.02829288085
  • Huang WZ, Wang X, Shi CY, et al. Fine-tuning vitamin E-containing telodendrimers for efficient delivery of gambogic acid in colon cancer treatment. Mol Pharmaceut. 2015;12(4):1216–1229. doi:10.1021/acs.molpharmaceut.5b00051
  • Zhang Y, Tan XY, Ren TY, Jia C, Yang ZX, Sun H. Folate-modified carboxymethyl-chitosan/polyethylenimine/bovine serum albumin based complexes for tumor site-specific drug delivery. Carbohyd Polym. 2018;198:76–85. doi:10.1016/j.carbpol.2018.06.055
  • Yang Y, Cai HX, Yuan XY, et al. Efficient targeting drug delivery system for lewis lung carcinoma, leading to histomorphological abnormalities restoration, physiological and psychological statuses improvement, and metastasis inhibition. Mol Pharmaceut. 2018;15(5):2007–2016.
  • Tian FC, Dahmani FZ, Qiao JN, et al. A targeted nanoplatform co-delivering chemotherapeutic and antiangiogenic drugs as a tool to reverse multidrug resistance in breast cancer. Acta Biomater. 2018;75:398–412. doi:10.1016/j.actbio.2018.05.05029874597
  • Xu YW, Wang CY, Ding YF, et al. Nanoparticles with optimal ratiometric co-delivery of docetaxel with gambogic acid for treatment of multidrug-resistant breast cancer. J Biomed Nanotechnol. 2016;12(9):1774–1781. doi:10.1166/jbn.2016.228229345888
  • Liu L, Qi X-J, Zhong Z-K, Zhang E-N. Nanomedicine-based combination of gambogic acid and retinoic acid chlorochalcone for enhanced anticancer efficacy in osteosarcoma. Biomed Pharmacother. 2016;83:79–84. doi:10.1016/j.biopha.2016.06.00127470553
  • Dahmani FZ, Xiao Y, Zhang J, Yu Y, Zhou JP, Yao J. Multifunctional polymeric nanosystems for dual-targeted combinatorial chemo/antiangiogenesis therapy of tumors. Adv Healthc Mater. 2016;5(12):1447–1461. doi:10.1002/adhm.20160016927125765
  • Yao J, Li YK, Sun XJ, Dahmani FZ, Liu HP, Zhou JP. Nanoparticle delivery and combination therapy of gambogic acid and all-trans retinoic acid. Int J Nanomed. 2014;9:3313–3324. doi:10.2147/IJN.S62793
  • Doddapaneni R, Patel K, Owaid IH, Singh M. Tumor neovasculature-targeted cationic PEGylated liposomes of gambogic acid for the treatment of triple-negative breast cancer. Drug Deliv. 2016;23(4):1232–1241. doi:10.3109/10717544.2015.112447226701717
  • Zhao W, You -C-C, Zhuang J-P, et al. Viability inhibition effect of gambogic acid combined with cisplatin on osteosarcoma cells via mitochondria-independent apoptotic pathway. Mol Cell Biochem. 2013;382(1–2):243–252. doi:10.1007/s11010-013-1740-523812885
  • Zou ZY, Xie L, Wei J, et al. Synergistic anti-proliferative effects of gambogic acid with docetaxel in gastrointestinal cancer cell lines. BMC Complement Altern Med. 2012;12(1):1–9. doi:10.1186/1472-6882-12-58
  • Wang J, Liu W, Zhao Q, et al. Synergistic effect of 5-fluorouracil with gambogic acid on BGC-823 human gastric carcinoma. Toxicology. 2009;256(1–2):135–140. doi:10.1016/j.tox.2008.11.01419084572
  • Zhou Y, Wang RJ, Chen B, Sun D, Hu Y, Xu PP. Daunorubicin and gambogic acid coloaded cysteamine-CdTe quantum dots minimizing the multidrug resistance of lymphoma in vitro and in vivo. Int J Nanomed. 2016;11:5429–5442. doi:10.2147/IJN.S115037