327
Views
31
CrossRef citations to date
0
Altmetric
Review

Silver-Based Nanomaterials as Therapeutic Agents Against Coronaviruses: A Review

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 9301-9315 | Published online: 23 Nov 2020

References

  • Payne S. Family Coronaviridae In: Viruses. Elsevier; Acquisitions Editor: Linda Versteeg-Buschman 2017:149–158. doi:10.1016/B978-0-12-803109-4.00017-9
  • King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ, eds. Family - Coronaviridae. In: Virus Taxonomy. Elsevier; 2012:806-828. doi:10.1016/B978-0-12-384684-6.00068-9.
  • Yang P, Wang X. COVID-19: a new challenge for human beings. Cell Mol Immunol. 2020;17(5):555–557. doi:10.1038/s41423-020-0407-x32235915
  • Fan Y, Zhao K, Shi Z-L, Zhou P. Bat Coronaviruses in China. Viruses. 2019;11(3):210. doi:10.3390/v11030210
  • Bande F, Arshad SS, Omar AR, Bejo MH, Abubakar MS, Abba Y. Pathogenesis and diagnostic approaches of avian infectious bronchitis. Adv Virol. 2016;2016:1–11. doi:10.1155/2016/4621659
  • Kahn JS, McIntosh K. History and recent advances in coronavirus discovery. Pediatr Infect Dis J. 2005;24(Supplement):S223–S227. doi:10.1097/01.inf.0000188166.17324.6016378050
  • Virology: coronaviruses. Nature. 1968;220(5168):650. doi:10.1038/220650b0
  • Schoeman D, Fielding BC. Coronavirus envelope protein: current knowledge. Virol J. 2019;16(1):69. doi:10.1186/s12985-019-1182-031133031
  • Hsin W-C, Chang C-H, Chang C-Y, et al. Nucleocapsid protein-dependent assembly of the RNA packaging signal of Middle East respiratory syndrome coronavirus. J Biomed Sci. 2018;25(1):47. doi:10.1186/s12929-018-0449-x29793506
  • Belouzard S, Millet JK, Licitra BN, Whittaker GR. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses. 2012;4(6):1011–1033. doi:10.3390/v406101122816037
  • Tai W, He L, Zhang X, et al. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell Mol Immunol. 2020;17(6):613–620. doi:10.1038/s41423-020-0400-432203189
  • Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet. 2020;395(10224):565–574. doi:10.1016/S0140-6736(20)30251-8
  • Zhou P, Yang X-L, Wang X-G, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–273. doi:10.1038/s41586-020-2012-732015507
  • Yi Y, Lagniton PNP, Ye S, Li E, Xu R-H. COVID-19: what has been learned and to be learned about the novel coronavirus disease. Int J Biol Sci. 2020;16(10):1753–1766. doi:10.7150/ijbs.4513432226295
  • Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020;5(4):536–544. doi:10.1038/s41564-020-0695-z.32123347
  • Wu Y, Ho W, Huang Y, et al. SARS-CoV-2 is an appropriate name for the new coronavirus. The Lancet. 2020;395(10228):949–950. doi:10.1016/S0140-6736(20)30557-2
  • Zhang Y-Z, Holmes EC. A genomic perspective on the origin and emergence of SARS-CoV-2. Cell. 2020;181(2):223–227. doi:10.1016/j.cell.2020.03.03532220310
  • WHO Coronavirus Disease (COVID-19) Dashboard. Available from: https://covid19.who.int Accessed 1018, 2020.
  • Mullard A. COVID-19 vaccine development pipeline gears up. The Lancet. 2020;395(10239):1751–1752. doi:10.1016/S0140-6736(20)31252-6
  • Le Thanh T, Andreadakis Z, Kumar A, et al. The COVID-19 vaccine development landscape. Nat Rev Drug Discov. 2020;19(5):305–306. doi:10.1038/d41573-020-00073-532273591
  • Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology. 2018;16(1):71. doi:10.1186/s12951-018-0392-830231877
  • Khandel P, Yadaw RK, Soni DK, Kanwar L, Shahi SK. Biogenesis of metal nanoparticles and their pharmacological applications: present status and application prospects. J Nanostructure Chem. 2018;8(3):217–254. doi:10.1007/s40097-018-0267-4
  • Elahi N, Kamali M, Baghersad MH. Recent biomedical applications of gold nanoparticles: a review. Talanta. 2018;184:537–556. doi:10.1016/j.talanta.2018.02.08829674080
  • Azharuddin M, Zhu GH, Das D, et al. A repertoire of biomedical applications of noble metal nanoparticles. Chem Commun. 2019;55(49):6964–6996. doi:10.1039/C9CC01741K
  • Dukhinova MS, Prilepskii A, Shtil AA, Vinogradov VV. Metal oxide nanoparticles in therapeutic regulation of macrophage functions. Nanomaterials. 2019;9(11):1631. doi:10.3390/nano9111631
  • Das C, Sen S, Singh T, et al. Green synthesis, characterization and application of natural product coated magnetite nanoparticles for wastewater treatment. Nanomaterials. 2020;10(8):1615. doi:10.3390/nano10081615
  • Kim -Y-Y, Walsh D. Metal sulfide nanoparticles synthesized via enzyme treatment of biopolymer stabilized nanosuspensions. Nanoscale. 2010;2(2):240–247. doi:10.1039/B9NR00194H20644800
  • Wang L. Synthetic methods of CuS nanoparticles and their applications for imaging and cancer therapy. RSC Adv. 2016;6(86):82596–82615. doi:10.1039/C6RA18355G
  • Khan I, Saeed K, Khan I. Nanoparticles: properties, applications and toxicities. Arab J Chem. 2019;12(7):908–931. doi:10.1016/j.arabjc.2017.05.011
  • Chen J, Huang Y, Wei X, et al. Covalent organic nanospheres: facile preparation and application in high-resolution gas chromatographic separation. Chem Commun. 2019;55(73):10908–10911. doi:10.1039/C9CC05307G
  • Abbasi E, Aval S, Akbarzadeh A, et al. Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett. 2014;9(1):247. doi:10.1186/1556-276X-9-24724994950
  • Çağdaş M, Sezer AD, Bucak S. Liposomes as potential drug carrier systems for drug delivery In: Sezer AD editor. Application of Nanotechnology in Drug Delivery. InTech;2014. doi:10.5772/58459
  • Ahmad Z, Shah A, Siddiq M, Kraatz H-B. Polymeric micelles as drug delivery vehicles. RSC Adv. 2014;4(33):17028–17038. doi:10.1039/C3RA47370H
  • Pandey A. Solid lipid nanoparticles: a multidimensional drug delivery system In: Daima HK, Pn N, Ranjan S, Dasgupta N, Lichtfouse E editors. Nanoscience in Medicine Vol. 1. Vol 39. Environmental Chemistry for a Sustainable World. Springer International Publishing; 2020:249–295. doi:10.1007/978-3-030-29207-2_8.
  • Khalid K, Tan X, Mohd Zaid HF, et al. Advanced in developmental organic and inorganic nanomaterial: a review. Bioengineered. 2020;11(1):328–355. doi:10.1080/21655979.2020.173624032138595
  • Ruiz‐Hitzky E, Darder M, Wicklein B, et al. Nanotechnology responses to COVID‐19. Adv Healthc Mater. 2020;September:2000979. doi:10.1002/adhm.202000979
  • Burdușel A-C, Gherasim O, Grumezescu AM, Mogoantă L, Ficai A, Andronescu E. Biomedical applications of silver nanoparticles: an up-to-date overview. Nanomaterials. 2018;8(9):681. doi:10.3390/nano8090681
  • Ivanova N, Gugleva V, Dobreva M, Pehlivanov I, Stefanov S, Andonova V. Silver nanoparticles as multi-functional drug delivery systems In: Akhyar Farrukh M editor. Nanomedicines. IntechOpen;2019. doi:10.5772/intechopen.80238
  • Prabhu S, Poulose EK. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett. 2012;2(1):32. doi:10.1186/2228-5326-2-32
  • Roy CN, Ghosh D, Mondal S, Kundu S, Maiti S, Saha A. SERS enhancement on the basis of temperature-dependent chemisorption: microcalorimetric evidence. ChemPhysChem. 2016;17(24):4144–4148. doi:10.1002/cphc.20160094127723947
  • Roy CN, Ghosh D, Mondal S, Saha A. Reductant control on particle size, size distribution and morphology in the process of surface enhanced raman spectroscopy active silver colloid synthesis. J Nanosci Nanotechnol. 2015;15(2):1771–1779. doi:10.1166/jnn.2015.951126353731
  • Bhosale A, Bhanage M. Silver nanoparticles: synthesis, characterization and their application as a sustainable catalyst for organic transformations. Curr Org Chem. 2015;19(8):708–727. doi:10.2174/1385272819666150207001154
  • Jiang Z-J, Liu C-Y, Sun L-W. Catalytic properties of silver nanoparticles supported on silica spheres. J Phys Chem B. 2005;109(5):1730–1735. doi:10.1021/jp046032g16851151
  • Das TK, Karmakar S, Maiti S, Kundu S, Saha A. Room temperature synthesis of NIR emitting Ag2S nanoparticles through aqueous route and its influence on structural modulation of DNA. Spectrochim Acta A Mol Biomol Spectrosc. 2020;227:117536. doi:10.1016/j.saa.2019.11753631703989
  • Basheer NS, Kumar BR, Kurian A, George SD. Silver nanoparticle size–dependent measurement of quantum efficiency of Rhodamine 6G. Appl Phys B. 2013;113(4):581–587. doi:10.1007/s00340-013-5513-3
  • Cornelis G, Pang L, Doolette C, Kirby JK, McLaughlin MJ. Transport of silver nanoparticles in saturated columns of natural soils. Sci Total Environ. 2013;463–464:120–130. doi:10.1016/j.scitotenv.2013.05.089
  • Mahdi KNM, Peters R, van der Ploeg M, Ritsema C, Geissen V. Tracking the transport of silver nanoparticles in soil: a saturated column experiment. Water Air Soil Pollut. 2018;229(10):334. doi:10.1007/s11270-018-3985-930416217
  • Das G, Patra JK, Shin H-S. Biosynthesis, and potential effect of fern mediated biocompatible silver nanoparticles by cytotoxicity, antidiabetic, antioxidant and antibacterial, studies. Mater Sci Eng C. 2020;114:111011. doi:10.1016/j.msec.2020.111011
  • Loo YY, Rukayadi Y, Nor-Khaizura M-A-R, et al. In Vitro antimicrobial activity of green synthesized silver nanoparticles against selected gram-negative foodborne pathogens. Front Microbiol. 2018;9:1555. doi:10.3389/fmicb.2018.0155530061871
  • Ahn E-Y, Park Y. Anticancer prospects of silver nanoparticles green-synthesized by plant extracts. Mater Sci Eng C. 2020;116:111253. doi:10.1016/j.msec.2020.111253
  • Gomathi AC, Xavier Rajarathinam SR, Mohammed Sadiq A, Rajeshkumar S. Anticancer activity of silver nanoparticles synthesized using aqueous fruit shell extract of Tamarindus indica on MCF-7 human breast cancer cell line. J Drug Deliv Sci Technol. 2020;55:101376. doi:10.1016/j.jddst.2019.101376
  • Deshmukh SP, Patil SM, Mullani SB, Delekar SD. Silver nanoparticles as an effective disinfectant: a review. Mater Sci Eng C. 2019;97:954–965. doi:10.1016/j.msec.2018.12.102
  • Lu S, Gao W, Gu HY. Construction, application and biosafety of silver nanocrystalline chitosan wound dressing. Burns. 2008;34(5):623–628. doi:10.1016/j.burns.2007.08.02018226459
  • Rao YN, Das SK, Saha A. Room temperature aqueous synthesis of bipyramidal silver nanostructures. J Nanosci Nanotechnol. 2012;12(3):2014–2021. doi:10.1166/jnn.2012.516522755014
  • Shrivas K, Nirmalkar N, Deb MK, Dewangan K, Nirmalkar J, Kumar S. Application of functionalized silver nanoparticles as a biochemical sensor for selective detection of lysozyme protein in milk sample. Spectrochim Acta A Mol Biomol Spectrosc. 2019;213:127–133. doi:10.1016/j.saa.2019.01.03930684881
  • Loiseau A, Asila V, Boitel-Aullen G, Lam M, Salmain M, Boujday S. Silver-based plasmonic nanoparticles for and their use in biosensing. Biosensors. 2019;9(2):78. doi:10.3390/bios9020078
  • Rasool K, Lee DS. Inhibitory effects of silver nanoparticles on removal of organic pollutants and sulfate in an anaerobic biological wastewater treatment process. J Nanosci Nanotechnol. 2016;16(5):4456–4463. doi:10.1166/jnn.2016.1098427483773
  • Singh J, Kumar V, Singh Jolly S, et al. Biogenic synthesis of silver nanoparticles and its photocatalytic applications for removal of organic pollutants in water. J Ind Eng Chem. 2019;80:247–257. doi:10.1039/B9NR00194H
  • Sumesh E, Bootharaju MS, Anshup PT. A practical silver nanoparticle-based adsorbent for the removal of Hg2+ from water. J Hazard Mater. 2011;189(1–2):450–457. doi:10.1016/j.jhazmat.2011.02.06121398028
  • Al-Qahtani KM. Cadmium removal from aqueous solution by green synthesis zero valent silver nanoparticles with Benjamina leaves extract. Egypt J Aquat Res. 2017;43(4):269–274. doi:10.1007/s11270-018-3985-9
  • Pandiarajan J, Krishnan M. Properties, synthesis and toxicity of silver nanoparticles. Environ Chem Lett. 2017;15(3):387–397. doi:10.1007/s10311-017-0624-4
  • Loiseau A, Asila V, Boitel-Aullen G, Lam M, Salmain M, Boujday S. Silver-based plasmonic nanoparticles for and their use in biosensing. Biosensors. 2019;9(2):78. doi:10.3390/bios9020078
  • Siddiqi KS, Husen A, Rao RAK. A review on biosynthesis of silver nanoparticles and their biocidal properties. J Nanobiotechnology. 2018;16(1):14. doi:10.1186/s12951-018-0334-529452593
  • Zhang X-F, Liu Z-G, Shen W, Gurunathan S. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci. 2016;17(9):1534. doi:10.3390/ijms17091534
  • Chouhan N. Silver nanoparticles: synthesis, characterization and applications In: Maaz K editor. Silver Nanoparticles - Fabrication, Characterization and Applications. InTech;2018. doi:10.5772/intechopen.75611
  • Lara HH, Ayala-Nuñez NV, Ixtepan-Turrent L, Rodriguez-Padilla C. Mode of antiviral action of silver nanoparticles against HIV-1. J Nanobiotechnology. 2010;8(1):1. doi:10.1186/1477-3155-8-120145735
  • Lin Z, Li Y, Guo M, et al. The inhibition of H1N1 influenza virus-induced apoptosis by silver nanoparticles functionalized with zanamivir. RSC Adv. 2017;7(2):742–750. doi:10.1039/C6RA25010F
  • Chai H, Zhao Y, Zhao C, Gong P. Synthesis and in vitro anti-hepatitis B virus activities of some ethyl 6-bromo-5-hydroxy-1H-indole-3-carboxylates. Bioorg Med Chem. 2006;14(4):911–917. doi:10.1016/j.bmc.2005.08.04116183290
  • Baram-Pinto D, Shukla S, Perkas N, Gedanken A, Sarid R. Inhibition of Herpes Simplex Virus Type 1 infection by silver nanoparticles capped with mercaptoethane sulfonate. Bioconjug Chem. 2009;20(8):1497–1502. doi:10.1021/bc900215b21141805
  • Rogers JV, Parkinson CV, Choi YW, Speshock JL, Hussain SM. A preliminary assessment of silver nanoparticle inhibition of monkeypox virus plaque formation. Nanoscale Res Lett. 2008;3(4):129–133. doi:10.1007/s11671-008-9128-2
  • Weiss C, Carriere M, Fusco L, et al. Toward nanotechnology-enabled approaches against the COVID-19 Pandemic. ACS Nano. 2020;14(6):6383–6406. doi:10.1021/acsnano.0c0369732519842
  • Chan WCW. Nano research for COVID-19. ACS Nano. 2020;14(4):3719–3720. doi:10.1021/acsnano.0c0254032227916
  • Łoczechin A, Séron K, Barras A, et al. Functional carbon quantum dots as medical countermeasures to human coronavirus. ACS Appl Mater Interfaces. 2019;11(46):42964–42974. doi:10.1021/acsami.9b1503231633330
  • Nikaeen G, Abbaszadeh S, Yousefinejad S. Application of nanomaterials in treatment, anti-infection and detection of coronaviruses. Nanomed. 2020;15(15):1501–1512. doi:10.2217/nnm-2020-0117
  • Gurunathan S, Qasim M, Choi Y, et al. Antiviral potential of nanoparticles—can nanoparticles fight against coronaviruses?. Nanomaterials. 2020;10(9):1645. doi:10.3390/nano10091645
  • Galdiero S, Falanga A, Vitiello M, Cantisani M, Marra V, Galdiero M. Silver nanoparticles as potential antiviral agents. Molecules. 2011;16(10):8894–8918. doi:10.3390/molecules1610889422024958
  • Zhang Z, Shen W, Xue J, et al. Recent advances in synthetic methods and applications of silver nanostructures. Nanoscale Res Lett. 2018;13(1):54. doi:10.1186/s11671-018-2450-429457198
  • Du T, Liang J, Dong N, et al. Glutathione-Capped Ag 2 S nanoclusters inhibit coronavirus proliferation through blockage of Viral RNA synthesis and budding. ACS Appl Mater Interfaces. 2018;10(5):4369–4378. doi:10.1021/acsami.7b1381129337529
  • Lv X, Wang P, Bai R, et al. Inhibitory effect of silver nanomaterials on transmissible virus-induced host cell infections. Biomaterials. 2014;35(13):4195–4203. doi:10.1016/j.biomaterials.2014.01.05424524838
  • Hummers WS, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc. 1958;80(6):1339. doi:10.1021/ja01539a017
  • Du T, Lu J, Liu L, et al. Antiviral activity of graphene oxide–silver nanocomposites by preventing viral entry and activation of the antiviral innate immune response. ACS Appl Bio Mater. 2018;1(5):1286–1293. doi:10.1021/acsabm.8b00154
  • Huy TQ, Hien Thanh NT, Thuy NT, et al. Cytotoxicity and antiviral activity of electrochemical – synthesized silver nanoparticles against poliovirus. J Virol Methods. 2017;241:52–57. doi:10.1016/j.jviromet.2016.12.01528040515
  • Chen Y-N, Hsueh Y-H, Hsieh C-T, Tzou D-Y, Chang P-L. Antiviral activity of graphene–silver nanocomposites against non-enveloped and enveloped viruses. Int J Environ Res Public Health. 2016;13(4):430. doi:10.3390/ijerph1304043027104546
  • Lara HH, Ixtepan-Turrent L, Garza-Treviño EN, Rodriguez-Padilla C. PVP-coated silver nanoparticles block the transmission of cell-free and cell-associated HIV-1 in human cervical culture. J Nanobiotechnology. 2010;8(1):15. doi:10.1186/1477-3155-8-1520626911
  • Morris D, Ansar M, Speshock J, et al. Antiviral and immunomodulatory activity of silver nanoparticles in experimental RSV infection. Viruses. 2019;11(8):732. doi:10.3390/v11080732
  • Xiang D, Zheng C, Zheng Y, et al.. Inhibition of A/Human/Hubei/3/2005 (H3N2) influenza virus infection by silver nanoparticles in vitro and in vivo. Int J Nanomedicine. 2013:4103. doi:10.2147/IJN.S53622.24204140
  • Zhang R, Lin Z, Lui VCH, et al. Silver nanoparticle treatment ameliorates biliary atresia syndrome in rhesus rotavirus inoculated mice. Nanomedicine Nanotechnol Biol Med. 2017;13(3):1041–1050. doi:10.1016/j.nano.2016.11.013
  • Stebounova LV, Adamcakova-Dodd A, Kim J, et al. Nanosilver induces minimal lung toxicity or inflammation in a subacute murine inhalation model. Part Fibre Toxicol. 2011;8(1):5. doi:10.1186/1743-8977-8-521266073
  • Nakamura S, Sato M, Sato Y, et al. Synthesis and application of silver nanoparticles (Ag NPs) for the prevention of infection in healthcare workers. Int J Mol Sci. 2019;20(15):3620. doi:10.3390/ijms20153620
  • Yang E-J, Kim S, Kim JS, Choi I-H. Inflammasome formation and IL-1β release by human blood monocytes in response to silver nanoparticles. Biomaterials. 2012;33(28):6858–6867. doi:10.1016/j.biomaterials.2012.06.01622770526
  • Alphandéry E. The potential of various nanotechnologies for coronavirus diagnosis/treatment highlighted through a literature analysis. Bioconjug Chem. 2020;31(8):1873–1882. doi:10.1021/acs.bioconjchem.0c0028732639742
  • Sanchez-Guzman D, Le Guen P, Villeret B, et al. Silver nanoparticle-adjuvanted vaccine protects against lethal influenza infection through inducing BALT and IgA-mediated mucosal immunity. Biomaterials. 2019;217:119308. doi:10.1016/j.biomaterials.2019.11930831279103
  • Dobrovolskaia MA, Aggarwal P, Hall JB, McNeil SE. Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol Pharm. 2008;5(4):487–495. doi:10.1021/mp800032f18510338
  • Ninan N, Goswami N, Vasilev K. The impact of engineered silver nanomaterials on the immune system. Nanomaterials. 2020;10(5):967. doi:10.3390/nano10050967
  • Carlson C, Hussain SM, Schrand AM, et al. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B. 2008;112(43):13608–13619. doi:10.1021/jp712087m18831567
  • Park J, Lim D-H, Lim H-J, et al. Size dependent macrophage responses and toxicological effects of Ag nanoparticles. Chem Commun. 2011;47(15):4382. doi:10.1039/c1cc10357a
  • Martínez-Gutierrez F, Thi EP, Silverman JM, et al. Antibacterial activity, inflammatory response, coagulation and cytotoxicity effects of silver nanoparticles. Nanomedicine Nanotechnol Biol Med. 2012;8(3):328–336. doi:10.1016/j.nano.2011.06.014
  • Park E-J, Bae E, Yi J, et al. Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environ Toxicol Pharmacol. 2010;30(2):162–168. doi:10.1016/j.etap.2010.05.00421787647
  • Xu Y, Tang H, Liu J, Wang H, Liu Y. Evaluation of the adjuvant effect of silver nanoparticles both in vitro and in vivo. Toxicol Lett. 2013;219(1):42–48. doi:10.1016/j.toxlet.2013.02.01023454833
  • Aderibigbe B. Metal-based nanoparticles for the treatment of infectious diseases. Molecules. 2017;22(8):1370. doi:10.3390/molecules22081370
  • Le Ouay B, Stellacci F. Antibacterial activity of silver nanoparticles: a surface science insight. Nano Today. 2015;10(3):339–354. doi:10.1016/j.nantod.2015.04.002
  • Liao S, Zhang Y, Pan X, et al. Antibacterial activity and mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aeruginosa. Int J Nanomedicine. 2019;14:1469–1487. doi:10.2147/IJN.S19134030880959
  • Haggag E, Elshamy A, Rabeh M, et al. Antiviral potential of green synthesized silver nanoparticles of Lampranthus coccineus and Malephora lutea. Int J Nanomedicine. 2019;14:6217–6229. doi:10.2147/IJN.S21417131496682
  • Zachar O. Formulations for COVID-19 Early Stage Treatment via Silver Nanoparticles Inhalation Delivery at Home and Hospital; 2020. doi:10.14293/S2199-1006.1.SOR-.PPHBJEO.v1
  • Tien D-C, Tseng K-H, Liao C-Y, Tsung -T-T. Identification and quantification of ionic silver from colloidal silver prepared by electric spark discharge system and its antimicrobial potency study. J Alloys Compd. 2009;473(1–2):298–302. doi:10.1016/j.jallcom.2008.05.063
  • Dong Y, Zhu H, Shen Y, Zhang W, Zhang L. Antibacterial activity of silver nanoparticles of different particle size against Vibrio Natriegens. Mukherjee A, ed. PLOS ONE. 2019;14(9):e0222322. doi:10.1371/journal.pone.022232231518380
  • Elechiguerra J, Burt JL, Morones JR, et al. Interaction of silver nanoparticles with HIV-1. J Nanobiotechnology. 2005;3(1):6. doi:10.1186/1477-3155-3-615987516
  • Pazos-Ortiz E, Roque-Ruiz JH, Hinojos-Márquez EA, et al. Dose-dependent antimicrobial activity of silver nanoparticles on polycaprolactone fibers against gram-positive and gram-negative bacteria. J Nanomater. 2017;2017:1–9. doi:10.1155/2017/4752314
  • Cho Y-M, Mizuta Y, Akagi J, Toyoda T, Sone M, Ogawa K. Size-dependent acute toxicity of silver nanoparticles in mice. J Toxicol Pathol. 2018;31(1):73–80. doi:10.1293/tox.2017-004329479144
  • Williams KM, Gokulan K, Cerniglia CE, Khare S. Size and dose dependent effects of silver nanoparticle exposure on intestinal permeability in an in vitro model of the human gut epithelium. J Nanobiotechnology. 2016;14(1):62. doi:10.1186/s12951-016-0214-927465730
  • Staroverov SA, Volkov AA, Mezhenny PV, et al. Prospects for the use of spherical gold nanoparticles in immunization. Appl Microbiol Biotechnol. 2019;103(1):437–447. doi:10.1007/s00253-018-9476-530402771
  • Sekimukai H, Iwata‐Yoshikawa N, Fukushi S, et al. Gold nanoparticle‐adjuvanted S protein induces a strong antigen‐specific IgG response against severe acute respiratory syndrome‐related coronavirus infection, but fails to induce protective antibodies and limit eosinophilic infiltration in lungs. Microbiol Immunol. 2020;64(1):33–51. doi:10.1111/1348-0421.1275431692019
  • Layqah LA, Eissa S. An electrochemical immunosensor for the corona virus associated with the Middle East respiratory syndrome using an array of gold nanoparticle-modified carbon electrodes. Microchim Acta. 2019;186(4):224. doi:10.1007/s00604-019-3345-5
  • Ahmed SR, É N, Neethirajan S. Self-assembled star-shaped chiroplasmonic gold nanoparticles for an ultrasensitive chiro-immunosensor for viruses. RSC Adv. 2017;7(65):40849–40857. doi:10.1039/C7RA07175B
  • Liu I-L, Lin Y-C, Lin Y-C, et al.. Strip for antigen detection of avian infectious bronchitis virus. Int J Mol Sci. 2019;20(9):2216. doi:10.3390/ijms20092216
  • Wang K, Zhu J, Dong H, Pei Z, Zhou T, Hu G. Rapid detection of variant and classical porcine epidemic diarrhea virus by nano-nest PCR. Pak Vet J Published Online. 2017;5.
  • Weng X, Neethirajan S. Immunosensor based on antibody-functionalized MoS 2 for rapid detection of avian coronavirus on cotton thread. IEEE Sens J. 2018;18(11):4358–4363. doi:10.1109/JSEN.2018.282908432390783
  • Ahmed SR, Kang SW, Oh S, Lee J, Neethirajan S. Chiral zirconium quantum dots: a new class of nanocrystals for optical detection of coronavirus. Heliyon. 2018;4(8):e00766. doi:10.1016/j.heliyon.2018.e0076630186985
  • Kim Y-S, Son A, Kim J, et al. Chaperna-mediated assembly of ferritin-based middle east respiratory syndrome-coronavirus nanoparticles. Front Immunol. 2018;9:1093. doi:10.3389/fimmu.2018.0109329868035
  • Khaiboullina S, Uppal T, Dhabarde N, Subramanian VR, Verma SC. Vitro Inactivation of Human Coronavirus by Titania Nanoparticle Coatings and UVC Radiation: throwing Light on SARS-CoV-2. Microbiology. 2020. doi:10.1101/2020.08.25.265223
  • Villanueva-Flores F, Castro-Lugo A, Ramírez OT, Palomares LA. Understanding cellular interactions with nanomaterials: towards a rational design of medical nanodevices. Nanotechnology. 2020;31(13):132002. doi:10.1088/1361-6528/ab5bc831770746