227
Views
7
CrossRef citations to date
0
Altmetric
Review

Advances in Subcutaneous Delivery Systems of Biomacromolecular Agents for Diabetes Treatment

ORCID Icon, , , & ORCID Icon
Pages 1261-1280 | Published online: 17 Feb 2021

References

  • Stumvoll M, Goldstein BJ, Van Haeften TW. Type 2 diabetes: principles of pathogenesis and therapy. Lancet. 2005;365(9467):1333–1346. doi:10.1016/S0140-6736(05)61032-X
  • Cho NH, Shaw JE, Karuranga S, et al. IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271–281. doi:10.1016/j.diabres.2018.02.023
  • Garber AJ, Abrahamson MJ, Barzilay JI, et al. Consensus statement by the American association of clinical endocrinologists and American college of endocrinology on the comprehensive type 2 diabetes management algorithm - 2019 executive summary. Endocr Pract. 2019;25(1):69–100.
  • Zaric BL, Obradovic M, Sudar-Milovanovic E, et al. Drug delivery systems for diabetes treatment. Curr Pharm Des. 2019;25(2):166–173. doi:10.2174/1381612825666190306153838
  • Rosenfeld L. Insulin: discovery and controversy. Clin Chem. 2002;48(12):2270–2288. doi:10.1093/clinchem/48.12.2270
  • Cheng AYY, Patel DK, Reid TS, et al. Differentiating basal insulin preparations: understanding how they work explains why they are different. Adv Ther. 2019;36(5):1018–1030. doi:10.1007/s12325-019-00925-6
  • Lovshin JA, Drucker DJ. Incretin-based therapies for type 2 diabetes mellitus. Nat Rev Endocrinol. 2009;5(5):262–269. doi:10.1038/nrendo.2009.48
  • Knudsen LB, Nielsen PF, Huusfeldt PO, et al. Potent derivatives of glucagon-like peptide-1 with pharmacokinetic properties suitable for once daily administration. J Med Chem. 2000;43(9):1664–1669. doi:10.1021/jm9909645
  • Kolterman OG, Buse JB, Fineman MS, et al. Synthetic exendin-4 (exenatide) significantly reduces postprandial and fasting plasma glucose in subjects with type 2 diabetes. J Clin Endocrinol Metab. 2003;88(7):3082–3089. doi:10.1210/jc.2002-021545
  • Lovshin JA. Glucagon-like peptide-1 receptor agonists: a class update for treating type 2 diabetes. Can J Diabetes. 2017;41(5):524–535. doi:10.1016/j.jcjd.2017.08.242
  • Werner U, Haschke G, Herling AW, et al. Pharmacological profile of lixisenatide: a new GLP-1 receptor agonist for the treatment of type 2 diabetes. Regul Pept. 2010;164(2–3):58–64. doi:10.1016/j.regpep.2010.05.008
  • Bolli GB, Munteanu M, Dotsenko S, et al. Efficacy and safety of lixisenatide once daily vs. placebo in people with type 2 diabetes insufficiently controlled on metformin (GetGoal-F1). Diabet Med. 2014;31(2):176–184. doi:10.1111/dme.12328
  • Bolli GB, Munteanu M, Dotsenko S, et al. Safety, tolerability, pharmacodynamics and pharmacokinetics of albiglutide, a long-acting glucagon-like peptide-1 mimetic, in healthy subjects. Diabetes Obes Metab. 2009;11(5):498–505. doi:10.1111/j.1463-1326.2008.00992.x
  • Nauck MA, Stewart MW, Perkins C, et al. Efficacy and safety of once-weekly GLP-1 receptor agonist albiglutide (HARMONY 2): 52 week primary endpoint results from a randomised, placebo-controlled trial in patients with type 2 diabetes mellitus inadequately controlled with diet and exercise. Diabetologia. 2016;59(2):266–274. doi:10.1007/s00125-015-3795-1
  • Glaesner W, Vick AM, Millican R, et al. Engineering and characterization of the long-acting glucagon-like peptide-1 analogue LY2189265, an Fc fusion protein. Diabetes Metab Res Rev. 2010;26(4):287–296. doi:10.1002/dmrr.1080
  • Jendle J, Grunberger G, Blevins T, et al. Efficacy and safety of dulaglutide in the treatment of type 2 diabetes: a comprehensive review of the dulaglutide clinical data focusing on the AWARD Phase 3 clinical trial program. Diabetes Metab Res Rev. 2016;32(8):776–790. doi:10.1002/dmrr.2810
  • Lau J, Bloch P, Schäffer L, et al. Discovery of the once-weekly glucagon-like peptide-1 (GLP-1) analogue semaglutide. J Med Chem. 2015;58(18):7370–7380. doi:10.1021/acs.jmedchem.5b00726
  • Sharma G, Sharma AR, Nam J-S, et al. Nanoparticle based insulin delivery system: the next generation efficient therapy for type 1 diabetes. J Nanobiotechnology. 2015;13(1):74. doi:10.1186/s12951-015-0136-y
  • Easa N, Alany RG, Carew M, et al. A review of non-invasive insulin delivery systems for diabetes therapy in clinical trials over the past decade. Drug Discov Today. 2019;24(2):440–451. doi:10.1016/j.drudis.2018.11.010
  • Fink JB, Molloy L, Patton JS, et al. Good things in small packages: an innovative delivery approach for inhaled insulin. Pharm Res. 2017;34(12):2568–2578. doi:10.1007/s11095-017-2215-2
  • Chen MC, Sonaje K, Chen KJ, et al. A review of the prospects for polymeric nanoparticle platforms in oral insulin delivery. Biomaterials. 2011;32(36):9826–9838. doi:10.1016/j.biomaterials.2011.08.087
  • Eldor R, Arbit E, Corcos A, et al. Glucose-reducing effect of the ORMD-0801 oral insulin preparation in patients with uncontrolled type 1 diabetes: a pilot study. PLoS One. 2013;8(4):e59524. doi:10.1371/journal.pone.0059524
  • Luzio SD, Dunseath G, Lockett A, et al. The glucose lowering effect of an oral insulin (Capsulin) during an isoglycaemic clamp study in persons with type 2 diabetes. Diabetes Obes Metab. 2010;12(1):82–87. doi:10.1111/j.1463-1326.2009.01146.x
  • Stote R, Miller M, Marbury T, et al. Enhanced absorption of nasulin, an ultrarapid-acting intranasal insulin formulation, using single nostril administration in normal subjects. J Diabetes Sci Technol. 2011;5(1):113–119. doi:10.1177/193229681100500116
  • Shahani S, Shahani L. Use of insulin in diabetes: a century of treatment. Hong Kong Med J. 2015;21(6):553–559. doi:10.12809/hkmj154557
  • Pettus J, Santos Cavaiola T, Tamborlane WV, et al. The past, present, and future of basal insulins. Diabetes Metab Res Rev. 2016;32(6):478–496. doi:10.1002/dmrr.2763
  • Heise T, Mathieu C. Impact of the mode of protraction of basal insulin therapies on their pharmacokinetic and pharmacodynamic properties and resulting clinical outcomes. Diabetes Obes Metab. 2017;19(1):3–12. doi:10.1111/dom.12782
  • Villegas MR, Baeza A, Vallet-Regí M. Nanotechnological strategies for protein delivery. Molecules. 2018;23(5):1008. doi:10.3390/molecules23051008
  • Kovalainen M, Mönkäre J, Riikonen J, et al. Novel delivery systems for improving the clinical use of peptides. Pharmacol Rev. 2015;67(3):541–561. doi:10.1124/pr.113.008367
  • Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces. 2010;75(1):1–18. doi:10.1016/j.colsurfb.2009.09.001
  • Danhier F, Ansorena E, Silva JM, et al. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release. 2012;161(2):505–522. doi:10.1016/j.jconrel.2012.01.043
  • Barichello JM, Morishita M, Takayama K, et al. Encapsulation of hydrophilic and lipophilic drugs in PLGA nanoparticles by the nanoprecipitation method. Drug Dev Ind Pharm. 1999;25(4):471–476. doi:10.1081/DDC-100102197
  • Barichello JM, Morishita M, Takayama K, et al. Absorption of insulin from pluronic F-127 gels following subcutaneous administration in rats. Int J Pharm. 1999;184(2):189–198. doi:10.1016/S0378-5173(99)00119-2
  • Shenoy DB, D’Souza RJ, Tiwari SB, et al. Potential applications of polymeric microsphere suspension as subcutaneous depot for insulin. Drug Dev Ind Pharm. 2003;29(5):555–563. doi:10.1081/DDC-120018644
  • Lassalle V, Ferreira ML. PLGA based drug delivery systems (DDS) for the sustained release of insulin: insight into the protein/polyester interactions and the insulin release behavior. J Chem Technol Biotechnol. 2010;85(12):1588–1596. doi:10.1002/jctb.2470
  • Cui F, Shi K, Zhang L, et al. Biodegradable nanoparticles loaded with insulin–phospholipid complex for oral delivery: preparation, in vitro characterization and in vivo evaluation. J Control Release. 2006;114(2):242–250.
  • Yin D, Lu Y, Zhang H, et al. Preparation of glucagon-like peptide-1 loaded PLGA microspheres: characterizations, release studies and bioactivities in vitro/in vivo. Chem Pharm Bull (Tokyo). 2008;56(2):156–161. doi:10.1248/cpb.56.156
  • Youn YS, Kwon MJ, Na DH, et al. Improved intrapulmonary delivery of site-specific PEGylated salmon calcitonin: optimization by PEG size selection. J Control Release. 2008;125(1):68–75. doi:10.1016/j.jconrel.2007.10.008
  • Kim TH, Park CW, Kim HY, et al. Low molecular weight (1 kDa) polyethylene glycol conjugation markedly enhances the hypoglycemic effects of intranasally administered exendin-4 in type 2 diabetic db/db mice. Biol Pharm Bull. 2012;35(7):1076–1083. doi:10.1248/bpb.b12-00029
  • Lim SM, Eom HN, Jiang HH, et al. Evaluation of PEGylated exendin-4 released from poly (lactic-co-glycolic acid) microspheres for antidiabetic therapy. J Pharm Sci. 2015;104(1):72–80. doi:10.1002/jps.24238
  • Wu J, Wu L, Xu X, et al. Microspheres made by w/o/o emulsion method with reduced initial burst for long-term delivery of endostar, a novel recombinant human endostatin. J Pharm Sci. 2009;98(6):2051–2058. doi:10.1002/jps.21589
  • Xuan J, Lin Y, Huang J, et al. Exenatide-loaded PLGA microspheres with improved glycemic control: in vitro bioactivity and in vivo pharmacokinetic profiles after subcutaneous administration to SD rats. Peptides. 2013;46:172–179. doi:10.1016/j.peptides.2013.06.005
  • Kim BS, Oh JM, Hyun H, et al. Insulin-loaded microcapsules for in vivo delivery. Mol Pharm. 2009;6(2):353–365. doi:10.1021/mp800087t
  • Jiang G, Qiu W, DeLuca PP. Preparation and in vitro/in vivo evaluation of insulin-loaded poly(acryloyl-hydroxyethyl starch)-PLGA composite microspheres. Pharm Res. 2003;20(3):452–459. doi:10.1023/A:1022668507748
  • Dozier JK, Distefano MD. Site-specific PEGylation of therapeutic proteins. Int J Mol Sci. 2015;16(10):25831–25864. doi:10.3390/ijms161025831
  • Saravanan SS, Malathi MS. Hydrophilic poly (ethylene glycol) capped poly (lactic-co-glycolic) acid nanoparticles for subcutaneous delivery of insulin in diabetic rats. Int J Biol Macromol. 2017;95:1190–1198. doi:10.1016/j.ijbiomac.2016.11.009
  • Kang HC, Lee JE, Bae YH. Nanoscaled buffering zone of charged (PLGA)n-b-bPEI micelles in acidic microclimate for potential protein delivery application. J Control Release. 2012;160(3):440–450. doi:10.1016/j.jconrel.2012.02.024
  • Wang J, Li S, Chen T, et al. Nanoscale cationic micelles of amphiphilic copolymers based on star-shaped PLGA and PEI cross-linked PEG for protein delivery application. J Mater Sci Mater Med. 2019;30(8):93. doi:10.1007/s10856-019-6294-y
  • Xiong XY, Li QH, Li YP, et al. Pluronic P85/poly(lactic acid) vesicles as novel carrier for oral insulin delivery. Colloids Surf B Biointerfaces. 2013;111:282–288. doi:10.1016/j.colsurfb.2013.06.019
  • Giovino C, Ayensu I, Tetteh J, et al. An integrated buccal delivery system combining chitosan films impregnated with peptide loaded PEG-b-PLA nanoparticles. Colloids Surf B Biointerfaces. 2013;112:9–15. doi:10.1016/j.colsurfb.2013.07.019
  • Yeh MK, Chen JL, Chiang CH. In vivo and in vitro characteristics for insulin-loaded PLA microparticles prepared by w/o/w solvent evaporation method with electrolytes in the continuous phase. J Microencapsul. 2004;21(7):719–728. doi:10.1080/02652040400008481
  • Pérez C, Castellanos IJ, Costantino HR, et al. Recent trends in stabilizing protein structure upon encapsulation and release from bioerodible polymers. J Pharm Pharmacol. 2002;54(3):301–313. doi:10.1211/0022357021778448
  • Ibrahim MA, Ismail A, Fetouh MI, et al. Stability of insulin during the erosion of poly(lactic acid) and poly(lactic-co-glycolic acid) microspheres. J Control Release. 2005;106(3):241–252. doi:10.1016/j.jconrel.2005.02.025
  • Manoharan C, Singh J. Insulin loaded PLGA microspheres: effect of zinc salts on encapsulation, release, and stability. J Pharm Sci. 2009;98(2):529–542. doi:10.1002/jps.21445
  • Sheshala R, Peh KK, Darwis Y. Preparation, characterization, and in vivo evaluation of insulin-loaded PLA-PEG microspheres for controlled parenteral drug delivery. Drug Dev Ind Pharm. 2009;35(11):1364–1374. doi:10.3109/03639040902939213
  • Halim A, Keong L, Zainol I, et al. In: Sarmento B, Neves JD, editors. Chitosan-Based Systems for Biopharmaceuticals: Delivery, Targeting and Polymer Therapeutics. John Wiley & Sons; 2012:57–73.
  • Sun Y, Wan A. Preparation of nanoparticles composed of chitosan and its derivatives as delivery systems for macromolecules. J Appl Polym Sci. 2007;105(2):552–561. doi:10.1002/app.26038
  • Zhang Z, Cai H, Liu Z, et al. Effective enhancement of hypoglycemic effect of insulin by liver-targeted nanoparticles containing cholic acid-modified chitosan derivative. Mol Pharm. 2016;13(7):2433–2442. doi:10.1021/acs.molpharmaceut.6b00188
  • Li H, Zhang Z, Bao X, et al. Fatty acid and quaternary ammonium modified chitosan nanoparticles for insulin delivery. Colloids Surf B Biointerfaces. 2018;170:136–143. doi:10.1016/j.colsurfb.2018.05.063
  • Yao YC, Zhan XY, Zhang J, et al. A specific drug targeting system based on polyhydroxyalkanoate granule binding protein PhaP fused with targeted cell ligands. Biomaterials. 2008;29(36):4823–4830. doi:10.1016/j.biomaterials.2008.09.008
  • Peng Q, Zhang ZR, Gong T, et al. A rapid-acting, long-acting insulin formulation based on a phospholipid complex loaded PHBHHx nanoparticles. Biomaterials. 2012;33(5):1583–1588. doi:10.1016/j.biomaterials.2011.10.072
  • Peng Q, Yang YJ, Zhang T, et al. The implantable and biodegradable PHBHHx 3D scaffolds loaded with protein-phospholipid complex for sustained delivery of proteins. Pharm Res. 2013;30(4):1077–1085. doi:10.1007/s11095-012-0944-9
  • Peng Q, Sun X, Gong T, et al. Injectable and biodegradable thermosensitive hydrogels loaded with PHBHHx nanoparticles for the sustained and controlled release of insulin. Acta Biomater. 2013;9(2):5063–5069. doi:10.1016/j.actbio.2012.09.034
  • Kumar N, Langer RS, Domb AJ. Polyanhydrides: an overview. Adv Drug Deliv Rev. 2002;54(7):889–910. doi:10.1016/S0169-409X(02)00050-9
  • Manoharan C, Singh J. Evaluation of polyanhydride microspheres for basal insulin delivery: effect of copolymer composition and zinc salt on encapsulation, in vitro release, stability, in vivo absorption and bioactivity in diabetic rats. J Pharm Sci. 2009;98(11):4237–4250. doi:10.1002/jps.21741
  • Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev. 2001;53(3):321–339. doi:10.1016/S0169-409X(01)00203-4
  • Dhawan S, Kapil R, Kapoor DN. Development and evaluation of in situ gel-forming system for sustained delivery of insulin. J Biomater Appl. 2011;25(7):699–720. doi:10.1177/0885328209359959
  • Choi S, Kim SW. Controlled release of insulin from injectable biodegradable triblock copolymer depot in ZDF rats. Pharm Res. 2003;20(12):2008–2010. doi:10.1023/B:PHAM.0000008050.99985.5c
  • Al-Tahami K, Oak M, Mandke R, et al. Basal level insulin delivery: in vitro release, stability, biocompatibility, and in vivo absorption from thermosensitive triblock copolymers. J Pharm Sci. 2011;100(11):4790–4803. doi:10.1002/jps.22685
  • Sharma D, Singh J. Long-term glycemic control and prevention of diabetes complications in vivo using oleic acid-grafted-chitosan‑zinc-insulin complexes incorporated in thermosensitive copolymer. J Control Release. 2020;323:161–178. doi:10.1016/j.jconrel.2020.04.012
  • Li K, Yu L, Liu X, et al. A long-acting formulation of a polypeptide drug exenatide in treatment of diabetes using an injectable block copolymer hydrogel. Biomaterials. 2013;34(11):2834–2842. doi:10.1016/j.biomaterials.2013.01.013
  • Yu L, Li K, Liu X, et al. In vitro and in vivo evaluation of a once-weekly formulation of an antidiabetic peptide drug exenatide in an injectable thermogel. J Pharm Sci. 2005;106(3):4140–4149. doi:10.1002/jps.23735
  • Chen Y, Li Y, Shen W, et al. Controlled release of liraglutide using thermogelling polymers in treatment of diabetes. Sci Rep. 2016;6(1):31593. doi:10.1038/srep31593
  • Zhuang Y, Yang X, Li Y, et al. Sustained release strategy designed for lixisenatide delivery to synchronously treat diabetes and associated complications. ACS Appl Mater Interfaces. 2019;11(33):29604–29618. doi:10.1021/acsami.9b10346
  • Schmolka IR. Artificial skin. I. Preparation and properties of pluronic F-127 gels for treatment of burns. J Biomed Mater Res. 1972;6(6):571–582.
  • Nasir F, Iqbal Z, Khan A, et al. Development and evaluation of pluronic- and methylcellulose-based thermoreversible drug delivery system for insulin. Drug Dev Ind Pharm. 2014;40(11):1503–1508. doi:10.3109/03639045.2013.831441
  • Li J, Chu MK, Lu B, et al. Enhancing thermal stability of a highly concentrated insulin formulation with pluronic F-127 for long-term use in microfabricated implantable devices. Drug Deliv Transl Res. 2017;7(4):529–543. doi:10.1007/s13346-017-0381-8
  • Chen X, Wong BCK, Chen H, et al. Long-lasting insulin treatment via a single subcutaneous administration of liposomes in thermoreversible pluronic(R) F127 based hydrogel. Curr Pharm Des. 2018;23(39):6079–6085. doi:10.2174/1381612823666170509123844
  • Oh KS, Kim JY, Yoon BD, et al. Sol-gel transition of nanoparticles/polymer mixtures for sustained delivery of exenatide to treat type 2 diabetes mellitus. Eur J Pharm Biopharm. 2014;88(3):664–669. doi:10.1016/j.ejpb.2014.08.004
  • Ghasemi Tahrir F, Ganji F, Mani AR, et al. In vitro and in vivo evaluation of thermosensitive chitosan hydrogel for sustained release of insulin. Drug Deliv. 2016;23(3):1038–1046. doi:10.3109/10717544.2014.932861
  • Lee C, Choi JS, Kim I, et al. Decanoic acid-modified glycol chitosan hydrogels containing tightly adsorbed palmityl-acylated exendin-4 as a long-acting sustained-release anti-diabetic system. Acta Biomater. 2014;10(2):812–820. doi:10.1016/j.actbio.2013.10.009
  • Higashi T, Hirayama F, Arima H, et al. Polypseudorotaxanes of pegylated insulin with cyclodextrins: application to sustained release system. Bioorg Med Chem Lett. 2007;17(7):1871–1874. doi:10.1016/j.bmcl.2007.01.029
  • Higashi T, Hirayama F, Misumi S, et al. Design and evaluation of polypseudorotaxanes of pegylated insulin with cyclodextrins as sustained release system. Biomaterials. 2008;29(28):3866–3871. doi:10.1016/j.biomaterials.2008.06.019
  • Higashi T, Abu Hashim II, Anno T, et al. Potential use of gamma-cyclodextrin polypseudorotaxane hydrogels as an injectable sustained release system for insulin. Int J Pharm. 2010;392(1–2):83–91. doi:10.1016/j.ijpharm.2010.03.026
  • Jeong Y, Joo MK, Bahk KH, et al. Enzymatically degradable temperature-sensitive polypeptide as a new in-situ gelling biomaterial. J Control Release. 2009;137(1):25–30. doi:10.1016/j.jconrel.2009.03.008
  • Schneider EL, Henise J, Reid R, et al. Hydrogel drug delivery system using self-cleaving covalent linkers for once-a-week administration of exenatide. Bioconjug Chem. 2016;27(5):1210–1215. doi:10.1021/acs.bioconjchem.5b00690
  • Schneider EL, Hearn BR, Pfaff SJ, et al. A hydrogel-microsphere drug delivery system that supports once-monthly administration of a GLP-1 receptor agonist. ACS Chem Biol. 2017;12(8):2107–2116. doi:10.1021/acschembio.7b00218
  • Schneider EL, Reid R, Parkes DG, et al. A once-monthly GLP-1 receptor agonist for treatment of diabetic cats. Domest Anim Endocrinol. 2020;70:106373. doi:10.1016/j.domaniend.2019.07.001
  • Huynh DP, Nguyen MK, Pi BS, et al. Functionalized injectable hydrogels for controlled insulin delivery. Biomaterials. 2008;29(16):2527–2534. doi:10.1016/j.biomaterials.2008.02.016
  • Huynh DP, Im GJ, Chae SY, et al. Controlled release of insulin from pH/temperature-sensitive injectable pentablock copolymer hydrogel. J Control Release. 2009;137(1):20–24. doi:10.1016/j.jconrel.2009.02.021
  • Zhou C, Xia X, Liu Y, et al. The preparation of a complex of insulin-phospholipids and their interaction mechanism. J Pept Sci. 2012;18(9):541–548. doi:10.1002/psc.2423
  • Stevenson RW, Patel HM, Parsons JA, et al. Prolonged hypoglycemic effect in diabetic dogs due to subcutaneous administration of insulin in liposomes. Diabetes. 1982;31(6 Pt 1):506–511. doi:10.2337/diab.31.6.506
  • Zhang L, Ding L, Tang C, Li Y, Yang L. Liraglutide-loaded multivesicular liposome as a sustained-delivery reduces blood glucose in SD rats with diabetes. Drug Deliv. 2016;23(9):3358–3363. doi:10.1080/10717544.2016.1180723
  • Brandl M. Vesicular phospholipid gels: a technology platform. J Liposome Res. 2007;17(1):15–26. doi:10.1080/08982100601186490
  • Zhang Y, Zhong Y, Hu M, et al. In vitro and in vivo sustained release of exenatide from vesicular phospholipid gels for type II diabetes. Drug Dev Ind Pharm. 2016;42(7):1042–1049. doi:10.3109/03639045.2015.1107090
  • Hu M, Zhang Y, Xiang N, et al. Long-acting phospholipid gel of exenatide for long-term therapy of type II diabetes. Pharm Res. 2016;33(6):1318–1326. doi:10.1007/s11095-016-1873-9
  • Huotari A, Xu W, Mönkäre J, et al. Effect of surface chemistry of porous silicon microparticles on glucagon-like peptide-1 (GLP-1) loading, release and biological activity. Int J Pharm. 2013;454(1):67–73. doi:10.1016/j.ijpharm.2013.06.063
  • Chen C, Zheng H, Xu J, et al. Sustained-release study on exenatide loaded into mesoporous silica nanoparticles: in vitro characterization and in vivo evaluation. Daru. 2017;25(1):20. doi:10.1186/s40199-017-0186-9
  • Gordijo CR, Koulajian K, Shuhendler AJ, et al. Nanotechnology-enabled closed loop insulin delivery device: in vitro and in vivo evaluation of glucose-regulated insulin release for diabetes control. Adv Funct Mater. 2011;21(1):73–82. doi:10.1002/adfm.201001762
  • Chu MKL, Chen J, Gordijo CR, et al. In vitro and in vivo testing of glucose-responsive insulin-delivery microdevices in diabetic rats. Lab Chip. 2012;12(14):2533–2539. doi:10.1039/c2lc40139h
  • Chu MKL, Gordijo CR, Li J, et al. In vivo performance and biocompatibility of a subcutaneous implant for real-time glucose-responsive insulin delivery. Diabetes Technol Ther. 2015;17(4):255–267. doi:10.1089/dia.2014.0229
  • Gu Z, Dang TT, Ma M, et al. Glucose-responsive microgels integrated with enzyme nanocapsules for closed-loop insulin delivery. ACS Nano. 2013;7(8):6758–6766. doi:10.1021/nn401617u
  • Gu Z, Aimetti AA, Wang Q, et al. Injectable nano-network for glucose-mediated insulin delivery. ACS Nano. 2013;7(5):4194–4201. doi:10.1021/nn400630x
  • Tai W, Mo R, Di J, et al. Bio-inspired synthetic nanovesicles for glucose-responsive release of insulin. Biomacromolecules. 2014;15(10):3495–3502. doi:10.1021/bm500364a
  • Mohammadpour F, Hadizadeh F, Tafaghodi M, et al. Preparation, in vitro and in vivo evaluation of PLGA/Chitosan based nano-complex as a novel insulin delivery formulation. Int J Pharm. 2019;572:118710. doi:10.1016/j.ijpharm.2019.118710
  • Yu J, Wang Q, Liu H, et al. Glucose-responsive microspheres as a smart drug delivery system for controlled release of insulin. Eur J Drug Metab Pharmacokinet. 2020;45(1):113–121. doi:10.1007/s13318-019-00588-2
  • Xu C, Lei C, Huang L, et al. Glucose-responsive nanosystem mimicking the physiological insulin secretion via an enzyme-polymer layer-by-layer coating strategy. Chem Mater. 2017;29(18):7725–7732. doi:10.1021/acs.chemmater.7b01804
  • Volpatti LR, Matranga MA, Cortinas AB, et al. Glucose-responsive nanoparticles for rapid and extended self-regulated insulin delivery. ACS Nano. 2020;14(1):488–497. doi:10.1021/acsnano.9b06395
  • Zhang C, Hong S, Liu MD, et al. pH-sensitive MOF integrated with glucose oxidase for glucose-responsive insulin delivery. J Control Release. 2020;320:159–167. doi:10.1016/j.jconrel.2020.01.038
  • Li C, Liu X, Liu Y, et al. Glucose and H2O2 dual-sensitive nanogels for enhanced glucose-responsive insulin delivery. Nanoscale. 2019;11(18):9163–9175. doi:10.1039/C9NR01554J
  • Mandal D, Mandal SK, Ghosh M, et al. Phenylboronic acid appended pyrene-based low-molecular-weight injectable hydrogel: glucose-stimulated insulin release. Chemistry. 2015;21(34):12042–12052. doi:10.1002/chem.201501170
  • Zhao F, Wu D, Yao D, et al. An injectable particle-hydrogel hybrid system for glucose-regulatory insulin delivery. Acta Biomater. 2017;64:334–345. doi:10.1016/j.actbio.2017.09.044
  • Wu JZ, Williams GR, Li HY, et al. Insulin-loaded PLGA microspheres for glucose-responsive release. Drug Deliv. 2017;24(1):1513–1525. doi:10.1080/10717544.2017.1381200
  • Wang J, Yu J, Zhang Y, et al. Charge-switchable polymeric complex for glucose-responsive insulin delivery in mice and pigs. Sci Adv. 2019;5(7):eaaw4357. doi:10.1126/sciadv.aaw4357
  • Brownlee M, Cerami A. A glucose-controlled insulin-delivery system: semisynthetic insulin bound to lectin. Science. 1979;206(4423):1190–1191. doi:10.1126/science.505005
  • Brownlee M, Cerami A. Glycosylated insulin complexed to concanavalin A. biochemical basis for a closed-loop insulin delivery system. Diabetes. 1983;32(6):499–504. doi:10.2337/diab.32.6.499
  • Seminoff LA, Gleeson JM, Zheng J, et al. A self-regulating insulin delivery system. II. in vivo characteristics of a synthetic glycosylated insulin. Int J Pharm. 1989;54(3):251–257. doi:10.1016/0378-5173(89)90102-6
  • Makino K, Mack EJ, Okano T, et al. A microcapsule self-regulating delivery system for insulin. J Control Release. 1990;12(3):235–239. doi:10.1016/0168-3659(90)90104-2
  • Makino K, Mack EJ, Okano T, et al. Self-regulated delivery of insulin from microcapsules. Biomater Artif Cells Immobilization Biotechnol. 1991;19(1):219–228. doi:10.3109/10731199109117829
  • Miyata T, Jikihara A, Nakamae K, et al. Preparation of poly(2-glucosyloxyethyl methacrylate)-concanavalin A complex hydrogel and its glucose-sensitivity. Macromol Chem Phys. 1996;197(3):1135–1146.
  • Yin R, Tong Z, Yang D, et al. Glucose-responsive insulin delivery microhydrogels from methacrylated dextran/concanavalin A: preparation and in vitro release study. Carbohydr Polym. 2012;89(1):117–123. doi:10.1016/j.carbpol.2012.02.059
  • Yin R, Wang K, Du S, et al. Design of genipin-crosslinked microgels from concanavalin A and glucosyloxyethyl acrylated chitosan for glucose-responsive insulin delivery. Carbohydr Polym. 2014;103:369–376. doi:10.1016/j.carbpol.2013.12.067
  • Ye T, Yan S, Hu Y, et al. Synthesis and volume phase transition of concanavalin A-based glucose-responsive nanogels. Polym Chem. 2014;5(1):186–194. doi:10.1039/C3PY00778B
  • Wu S, Huang X, Du X. Glucose- and pH-responsive controlled release of cargo from protein-gated carbohydrate-functionalized mesoporous silica nanocontainers. Angew Chem Int Ed Engl. 2013;52(21):5580–5584. doi:10.1002/anie.201300958
  • Wang Y, Fan Y, Zhang M, et al. Glycopolypeptide nanocarriers based on dynamic covalent bonds for glucose dual-responsiveness and self-regulated release of insulin in diabetic rats. Biomacromolecules. 2020;21(4):1507–1515. doi:10.1021/acs.biomac.0c00067
  • Chai Z, Dong H, Sun X, et al. Development of glucose oxidase-immobilized alginate nanoparticles for enhanced glucose-triggered insulin delivery in diabetic mice. Int J Biol Macromol. 2020;159:640–647. doi:10.1016/j.ijbiomac.2020.05.097
  • Finotelli PV, Da Silva D, Sola-Penna M, et al. Microcapsules of alginate/chitosan containing magnetic nanoparticles for controlled release of insulin. Colloids Surf B Biointerfaces. 2010;81(1):206–211. doi:10.1016/j.colsurfb.2010.07.008
  • Di J, Price J, Gu X, et al. Ultrasound-triggered regulation of blood glucose levels using injectable nano-network. Adv Healthc Mater. 2014;3(6):811–816. doi:10.1002/adhm.201300490
  • Di J, Yu J, Wang Q, et al. Ultrasound-triggered noninvasive regulation of blood glucose levels using microgels integrated with insulin nanocapsules. Nano Res. 2017;10(4):1393–1402. doi:10.1007/s12274-017-1500-z
  • Timko BP, Arruebo M, Shankarappa SA, et al. Near-infrared-actuated devices for remotely controlled drug delivery. Proc Natl Acad Sci U S A. 2014;111(4):1349–1354. doi:10.1073/pnas.1322651111
  • Veiseh O, Tang BC, Whitehead KA, et al. Managing diabetes with nanomedicine: challenges and opportunities. Nat Rev Drug Discov. 2015;14(1):45–57. doi:10.1038/nrd4477