1,492
Views
33
CrossRef citations to date
0
Altmetric
Review

Oral Nano Drug Delivery Systems for the Treatment of Type 2 Diabetes Mellitus: An Available Administration Strategy for Antidiabetic Phytocompounds

, , , , , , , , & show all
Pages 10215-10240 | Published online: 16 Dec 2020

References

  • Fangueiro JF, Silva AM, Garcia ML, Souto EB. Current nanotechnology approaches for the treatment and management of diabetic retinopathy. Eur J Pharm Biopharm. 2015;95(Pt B):307–322. doi:10.1016/j.ejpb.2014.12.02325536109
  • Uppal S, Italiya KS, Chitkara D, Mittal A. Nanoparticulate-based drug delivery systems for small molecule anti-diabetic drugs: an emerging paradigm for effective therapy. Acta Biomaterialia. 2018;81:20–42. doi:10.1016/j.actbio.2018.09.04930268916
  • Thomas CC, Philipson LH. Update on diabetes classification. Med Clin North Am. 2015;99(1):1–16.25456640
  • Ran Q, Wang J, Wang L, Zeng HR, Yang XB, Huang QW. Rhizoma coptidis as a Potential Treatment Agent for Type 2 Diabetes Mellitus and the Underlying Mechanisms: A Review. Front Pharmacol. 2019;10:805.31396083
  • Sun Z, Sun X, Li J, et al. Using probiotics for type 2 diabetes mellitus intervention: advances, questions, and potential. Crit Rev Food Sci Nutr. 2020;60(4):670–683.30632770
  • Manukumar HM, Shiva Kumar J, Chandrasekhar B, Raghava S, Umesha S. Evidences for diabetes and insulin mimetic activity of medicinal plants: present status and future prospects. Crit Rev Food Sci Nutr. 2017;57(12):2712–2729.26857927
  • Rios JL, Francini F, Schinella GR. Natural Products for the Treatment of Type 2 Diabetes Mellitus. Planta Med. 2015;81(12–13):975–994.26132858
  • Choudhury H, Pandey M, Hua CK, et al. An update on natural compounds in the remedy of diabetes mellitus: A systematic review. J Tradit Complement Med. 2018;8(3):361–376.29992107
  • Habtemariam S. The Quest to Enhance the Efficacy of Berberine for Type-2 Diabetes and Associated Diseases: physicochemical Modification Approaches. Biomedicines. 2020;8:4.
  • Adisakwattana S. Cinnamic Acid and Its Derivatives: mechanisms for Prevention and Management of Diabetes and Its Complications. Nutrients. 2017;9(2):2. doi:10.3390/nu9020163
  • Inzucchi SE, Bergenstal RM, Buse JB, et al. Management of Hyperglycemia in Type 2 Diabetes, 2015: A Patient-Centered Approach: update to a Position Statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care. 2015;38(1):140–149. doi:10.2337/dc14-244125538310
  • Rubino F, Schauer PR, Kaplan LM, Cummings DE. Metabolic surgery to treat type 2 diabetes: clinical outcomes and mechanisms of action. Annu Rev Med. 2010;61(1):393–411. doi:10.1146/annurev.med.051308.10514820059345
  • Yanai H, Adachi H, Katsuyama H, Moriyama S, Hamasaki H, Sako A. Causative anti-diabetic drugs and the underlying clinical factors for hypoglycemia in patients with diabetes. World J Diabetes. 2015;6(1):30–36.25685276
  • Salehi B, Ata A, Vak N, et al. Antidiabetic Potential of Medicinal Plants and Their Active Components. Biomolecules. 2019;9:10.
  • Petrovska BB. Historical review of medicinal plants′ usage. Pharmacogn Rev. 2012;6(11):1–5. doi:10.4103/0973-7847.9584922654398
  • Oh YS. Plant-Derived Compounds Targeting Pancreatic Beta Cells for the Treatment of Diabetes. Evid Based Complement Alternat Med. 2015;2015:629863. doi:10.1155/2015/62986326587047
  • Munhoz ACM, Frode TS. Isolated Compounds from Natural Products with Potential Antidiabetic Activity - A Systematic Review. Curr Diabetes Rev. 2018;14(1):36–106.28474555
  • Qaseem A, Barry MJ, Humphrey LL, Forciea MA. Clinical Guidelines Committee of the American College of P. Oral Pharmacologic Treatment of Type 2 Diabetes Mellitus: A Clinical Practice Guideline Update From the American College of Physicians. Ann Intern Med. 2017;166(4):279–290. doi:10.7326/M16-186028055075
  • Apostolova N, Iannantuoni F, Gruevska A, Muntane J, Rocha M, Victor VM. Mechanisms of action of metformin in type 2 diabetes: effects on mitochondria and leukocyte-endothelium interactions. Redox Biol. 2020;34:101517. doi:10.1016/j.redox.2020.10151732535544
  • Alam F, Islam MA, Kamal MA, Gan SH. Updates on Managing Type 2 Diabetes Mellitus with Natural Products: towards Antidiabetic Drug Development. Curr Med Chem. 2019;25(39):5395–5431. doi:10.2174/0929867323666160813222436
  • Chang CLT, Lin Y, Bartolome AP, Chen Y-C, Chiu S-C, Yang W-C. Herbal therapies for type 2 diabetes mellitus: chemistry, biology, and potential application of selected plants and compounds. Evid Based Complement Alternat Med. 2013;2013:378657. doi:10.1155/2013/37865723662132
  • Singh J, Cumming E, Manoharan G, Kalasz H, Adeghate E. Medicinal chemistry of the anti-diabetic effects of momordica charantia: active constituents and modes of actions. Open Med Chem J. 2011;5(Suppl 2):70–77. doi:10.2174/187410450110501007021966327
  • Chen H. Oral particulate delivery: status and future trends. Adv Drug Deliv Rev. 1998;34(2–3):339–350. doi:10.1016/S0169-409X(98)00047-710837685
  • Nouri Z, Hajialyani M, Izadi Z, Bahramsoltani R, Farzaei MH, Abdollahi M. Nanophytomedicines for the Prevention of Metabolic Syndrome: A Pharmacological and Biopharmaceutical Review. Front Bioeng Biotechnol. 2020;8:425.32478050
  • Long J, Song J, Zhang X, et al. Tea saponins as natural stabilizers for the production of hesperidin nanosuspensions. Int J Pharm. 2020;583:119406.32387309
  • Dening TJ, Rao S, Thomas N, Prestidge CA. Oral nanomedicine approaches for the treatment of psychiatric illnesses. J Control Release. 2016;223:137–156.26739547
  • Ochubiojo M, Chinwude I, Ibanga E, Ifianyi S. Nanotechnology in Drug Delivery. Recent Advances in Novel Drug Carrier Systems. 2012.
  • Gutierrez RMP, Mendez JVM, Vazquez IA. Chapter 2 - A novel approach to the oral delivery of bionanostructures for systemic disease In: Andronescu E, Grumezescu AM, editors. Nanostructures for Oral Medicine. Elsevier; 2017:27–59.
  • Bacanli M, Dilsiz SA, Basaran N, Basaran AA. Effects of phytochemicals against diabetes. Adv Food Nutr Res. 2019;89:209–238.31351526
  • Ezuruike UF, Prieto JM. The use of plants in the traditional management of diabetes in Nigeria: pharmacological and toxicological considerations. J Ethnopharmacol. 2014;155(2):857–924.24929108
  • Xu L, Li Y, Dai Y, Peng J. Natural products for the treatment of type 2 diabetes mellitus: pharmacology and mechanisms. Pharmacol Res. 2018;130:451–465.29395440
  • Li R, Zhang Y, Rasool S, Geetha T, Babu JR. Effects and Underlying Mechanisms of Bioactive Compounds on Type 2 Diabetes Mellitus and Alzheimer’s Disease. Oxid Med Cell Longev. 2019;2019:8165707.30800211
  • Bai L, Li X, He L, et al. Antidiabetic Potential of Flavonoids from Traditional Chinese Medicine: A Review. Am J Chin Med. 2019;47(5):933–957.31248265
  • Wang PC, Zhao S, Yang BY, Wang QH, Kuang HX. Anti-diabetic polysaccharides from natural sources: A review. Carbohydr Polym. 2016;148:86–97.27185119
  • He JH, Chen LX, Li H. Progress in the discovery of naturally occurring anti-diabetic drugs and in the identification of their molecular targets. Fitoterapia. 2019;134:270–289.30840917
  • Tundis R, Loizzo MR, Menichini F. Natural products as alpha-amylase and alpha-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: an update. Mini Rev Med Chem. 2010;10(4):315–331.20470247
  • Gray GM. Carbohydrate digestion and absorption. Role of the small intestine. N Engl J Med. 1975;292(23):1225–1230.1093023
  • Abbas G, Al Harrasi A, Hussain H, Hamaed A, Supuran CT. The management of diabetes mellitus-imperative role of natural products against dipeptidyl peptidase-4, alpha-glucosidase and sodium-dependent glucose co-transporter 2 (SGLT2). Bioorg Chem. 2019;86:305–315.30738330
  • Blaschek W. Natural Products as Lead Compounds for Sodium Glucose Cotransporter (SGLT) Inhibitors. Planta Med. 2017;83(12–13):985–993.28395363
  • Moradi-Marjaneh R, Paseban M, Sahebkar A. Natural products with SGLT2 inhibitory activity: possibilities of application for the treatment of diabetes. Phytother Res. 2019;33(10):2518–2530.31359514
  • Gannon NP, Conn CA, Vaughan RA. Dietary stimulators of GLUT4 expression and translocation in skeletal muscle: a mini-review. Mol Nutr Food Res. 2015;59(1):48–64.25215442
  • Hussain T, Tan B, Murtaza G, et al. Flavonoids and type 2 diabetes: evidence of efficacy in clinical and animal studies and delivery strategies to enhance their therapeutic efficacy. Pharmacol Res. 2020;152:104629.31918019
  • Cline GW, Petersen KF, Krssak M, et al. Impaired glucose transport as a cause of decreased insulin-stimulated muscle glycogen synthesis in type 2 diabetes. N Engl J Med. 1999;341(4):240–246.10413736
  • Sayem ASM, Arya A, Karimian H, Krishnasamy N, Ashok Hasamnis A, Hossain CF. Action of Phytochemicals on Insulin Signaling Pathways Accelerating Glucose Transporter (GLUT4) Protein Translocation. Molecules. 2018;23:2.
  • Dominguez Avila JA, Rodrigo Garcia J, Gonzalez Aguilar GA. de la Rosa LA. The Antidiabetic Mechanisms of Polyphenols Related to Increased Glucagon-Like Peptide-1 (GLP1) and Insulin Signaling. Molecules. 2017;22:6.
  • Wani JH, John-Kalarickal J, Fonseca VA. Dipeptidyl Peptidase-4 as a New Target of Action for Type 2 Diabetes Mellitus: A Systematic Review. Cardiology Clinics. 2008;26(4):639–648.18929237
  • Duarte AM, Guarino MP, Barroso S, Gil MM. Phytopharmacological Strategies in the Management of Type 2 Diabetes Mellitus. Foods. 2020;9:3.
  • Jiang CS, Liang LF, Guo YW. Natural products possessing protein tyrosine phosphatase 1B (PTP1B) inhibitory activity found in the last decades. Acta Pharmacol Sin. 2012;33(10):1217–1245.22941286
  • Fukunaga T, Zou W, Rohatgi N, Colca JR, Teitelbaum SL. An insulin-sensitizing thiazolidinedione, which minimally activates PPARγ, does not cause bone loss. J Bone Miner Res. 2015;30(3):481–488.25257948
  • Wang L, Waltenberger B, Pferschy-Wenzig EM, et al. Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): a review. Biochem Pharmacol. 2014;92(1):73–89.25083916
  • Matsuda H, Nakamura S, Yoshikawa M. Search for new type of PPARγ agonist-like anti-diabetic compounds from medicinal plants. Biol Pharm Bull. 2014;37(6):884–891.24882400
  • Dembinska-Kiec A, Mykkanen O, Kiec-Wilk B, Mykkanen H. Antioxidant phytochemicals against type 2 diabetes. Br J Nutr. 2008;99 E Suppl 1:ES109–117.18503731
  • Halim M, Halim A. The effects of inflammation, aging and oxidative stress on the pathogenesis of diabetes mellitus (type 2 diabetes). Diabetes Metab Syndr. 2019;13(2):1165–1172.31336460
  • Rahimi-Madiseh M, Malekpour-Tehrani A, Bahmani M, Rafieian-Kopaei M. The research and development on the antioxidants in prevention of diabetic complications. Asian Pac J Trop Med. 2016;9(9):825–831.27633293
  • Dal S, Sigrist S. The Protective Effect of Antioxidants Consumption on Diabetes and Vascular Complications. Diseases. 2016;4:3.
  • Leiherer A, Mundlein A, Drexel H. Phytochemicals and their impact on adipose tissue inflammation and diabetes. Vascul Pharmacol. 2013;58(1–2):3–20.22982056
  • Gothai S, Ganesan P, Park SY, Fakurazi S, Choi DK. Natural Phyto-Bioactive Compounds for the Treatment of Type 2 Diabetes: inflammation as a Target. Nutrients. 2016;8:8.
  • Ahangarpour A, Sayahi M, Sayahi M. The antidiabetic and antioxidant properties of some phenolic phytochemicals: A review study. Diabetes Metab Syndr. 2019;13(1):854–857.30641821
  • Lagoa R, Silva J, Rodrigues JR, Bishayee A. Advances in phytochemical delivery systems for improved anticancer activity. Biotechnol Adv. 2020;38:107382.30978386
  • Rezaeiamiri E, Bahramsoltani R, Rahimi R. Plant-derived natural agents as dietary supplements for the regulation of glycosylated hemoglobin: A review of clinical trials. Clin Nutr. 2020;39(2):331–342.30797623
  • Xie J, Yang Z, Zhou C, Zhu J, Lee RJ, Teng L. Nanotechnology for the delivery of phytochemicals in cancer therapy. Biotechnol Adv. 2016;34(4):343–353.27071534
  • Ganesan P, Arulselvan P, Choi DK. Phytobioactive compound-based nanodelivery systems for the treatment of type 2 diabetes mellitus - current status. Int J Nanomedicine. 2017;12:1097–1111.28223801
  • Pathak S, Regmi S, Nguyen TT, et al. Polymeric microsphere-facilitated site-specific delivery of quercetin prevents senescence of pancreatic islets in vivo and improves transplantation outcomes in mouse model of diabetes. Acta Biomater. 2018;75:287–299.29883808
  • Meena KP, Vijayakumar MR, Dwibedy PS. Catechin-loaded Eudragit microparticles for the management of diabetes: formulation, characterization and in vivo evaluation of antidiabetic efficacy. J Microencapsul. 2017;34(4):342–350.28562190
  • Chen L, Lin X, Teng H. Emulsions loaded with dihydromyricetin enhance its transport through Caco-2 monolayer and improve anti-diabetic effect in insulin resistant HepG2 cell. Journal of Functional Foods. 2020;64.
  • Zhaojie M, Ming Z, Shengnan W, et al. Amorphous solid dispersion of berberine with absorption enhancer demonstrates a remarkable hypoglycemic effect via improving its bioavailability. Int J Pharm. 2014;467(1–2):50–59.24607213
  • Li J, Du H, Zhang M, et al. Amorphous solid dispersion of Berberine mitigates apoptosis via iPLA2beta/Cardiolipin/Opa1 pathway in db/db mice and in Palmitate-treated MIN6 beta-cells. Int J Biol Sci. 2019;15(7):1533–1545.31337982
  • Shulman M, Cohen M, Soto-Gutierrez A, et al. Enhancement of naringenin bioavailability by complexation with hydroxypropyl-beta-cyclodextrin. [corrected]. PLoS One. 2011;6(4):e18033.21494673
  • Demirdirek B, Uhrich KE. Salicylic acid-based pH-sensitive hydrogels as potential oral insulin delivery systems. J Drug Target. 2015;23(7–8):716–724.26453167
  • Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology. 2018;16(1):71.30231877
  • Prasad M, Lambe UP, Brar B, et al. Nanotherapeutics: an insight into healthcare and multi-dimensional applications in medical sector of the modern world. Biomed Pharmacother. 2018;97:1521–1537.29793315
  • Panwar R, Raghuwanshi N, Srivastava AK, Sharma AK, Pruthi V. In-vivo sustained release of nanoencapsulated ferulic acid and its impact in induced diabetes. Mater Sci Eng C Mater Biol Appl. 2018;92:381–392.30184764
  • Akolade JO, Oloyede HOB, Onyenekwe PC. Encapsulation in chitosan-based polyelectrolyte complexes enhances antidiabetic activity of curcumin. Journal of Functional Foods. 2017;35:584–594.
  • Maity S, Mukhopadhyay P, Kundu PP, Chakraborti AS. Alginate coated chitosan core-shell nanoparticles for efficient oral delivery of naringenin in diabetic animals-An in vitro and in vivo approach. Carbohydr Polym. 2017;170:124–132.28521977
  • Mukhopadhyay P, Maity S, Mandal S, Chakraborti AS, Prajapati AK, Kundu PP. Preparation, characterization and in vivo evaluation of pH sensitive, safe quercetin-succinylated chitosan-alginate core-shell-corona nanoparticle for diabetes treatment. Carbohydr Polym. 2018;182:42–51.29279124
  • Rani R, Dahiya S, Dhingra D, Dilbaghi N, Kim KH, Kumar S. Improvement of antihyperglycemic activity of nano-thymoquinone in rat model of type-2 diabetes. Chem Biol Interact. 2018;295:119–132.29421519
  • Rani R, Dahiya S, Dhingra D, Dilbaghi N, Kim KH, Kumar S. Evaluation of anti-diabetic activity of glycyrrhizin-loaded nanoparticles in nicotinamide-streptozotocin-induced diabetic rats. Eur J Pharm Sci. 2017;106:220–230.28595874
  • Chitkara D, Nikalaje SK, Mittal A, Chand M, Kumar N. Development of quercetin nanoformulation and in vivo evaluation using streptozotocin induced diabetic rat model. Drug Deliv Transl Res. 2012;2(2):112–123.25786720
  • Kozuka C, Shimizu-Okabe C, Takayama C, et al. Marked augmentation of PLGA nanoparticle-induced metabolically beneficial impact of gamma-oryzanol on fuel dyshomeostasis in genetically obese-diabetic ob/ob mice. Drug Deliv. 2017;24(1):558–568.28181829
  • Mishra SB, Malaviya J, Mukerjee A. Attenuation of Oxidative Stress and Glucose Toxicity by Lutein Loaded Nanoparticles from Spinacia oleracea Leaves. Journal of Pharmaceutical Sciences and Pharmacology. 2015;2(3):242–249.
  • El-Naggar ME, Al-Joufi F, Anwar M, Attia MF, El-Bana MA, Curcumin-loaded PLA. PEG copolymer nanoparticles for treatment of liver inflammation in streptozotocin-induced diabetic rats. Colloids Surf B Biointerfaces. 2019;177:389–398.30785036
  • Paul D, Dey TK, Mukherjee S, Ghosh M, Dhar P. Comparative prophylactic effects of α-eleostearic acid rich nano and conventional emulsions in induced diabetic rats. J Food Sci Technol. 2014;51(9):1724–1736.25190828
  • Xu HY, Liu CS, Huang CL, et al. Nanoemulsion improves hypoglycemic efficacy of berberine by overcoming its gastrointestinal challenge. Colloids Surf B Biointerfaces. 2019;181:927–934.31382342
  • Nait Bachir Y, Nait Bachir R, Hadj-Ziane-Zafour A. Nanodispersions stabilized by β-cyclodextrin nanosponges: application for simultaneous enhancement of bioactivity and stability of sage essential oil. Drug Dev Ind Pharm. 2019;45(2):333–347.30388376
  • Hatanaka J, Chikamori H, Sato H, et al. Physicochemical and pharmacological characterization of α-tocopherol-loaded nano-emulsion system. Int J Pharm. 2010;396(1–2):188–193.20558261
  • Garg V, Kaur P, Singh SK, et al. Solid self-nanoemulsifying drug delivery systems for oral delivery of polypeptide-k: formulation, optimization, in-vitro and in-vivo antidiabetic evaluation. Eur J Pharm Sci. 2017;109:297–315.28842349
  • Garg V, Kaur P, Gulati M, et al. Coadministration of Polypeptide-k and Curcumin Through Solid Self-Nanoemulsifying Drug Delivery System for Better Therapeutic Effect Against Diabetes Mellitus: formulation, Optimization, Biopharmaceutical Characterization, and Pharmacodynamic Assessment. Assay Drug Dev Technol. 2019;17(4):201–221.31100018
  • Balata GF, Essa EA, Shamardl HA, Zaidan SH, Abourehab MA. Self-emulsifying drug delivery systems as a tool to improve solubility and bioavailability of resveratrol. Drug Des Devel Ther. 2016;10:117–128.
  • Wang H, Li Q, Deng W, et al. Self-nanoemulsifying drug delivery system of trans-cinnamic acid: formulation development and pharmacodynamic evaluation in alloxan-induced type 2 diabetic rat model. Drug Dev Res. 2015;76(2):82–93.25847843
  • Ahangarpour A, Oroojan AA, Khorsandi L, Kouchak M, Badavi M. Solid Lipid Nanoparticles of Myricitrin Have Antioxidant and Antidiabetic Effects on Streptozotocin-Nicotinamide-Induced Diabetic Model and Myotube Cell of Male Mouse. Oxid Med Cell Longev. 2018;2018:7496936.30116491
  • Mohseni R, ArabSadeghabadi Z, Ziamajidi N, Abbasalipourkabir R, RezaeiFarimani A. Oral Administration of Resveratrol-Loaded Solid Lipid Nanoparticle Improves Insulin Resistance Through Targeting Expression of SNARE Proteins in Adipose and Muscle Tissue in Rats with Type 2 Diabetes. Nanoscale Res Lett. 2019;14(1):227.31290033
  • Xue M, Yang MX, Zhang W, et al. Characterization, pharmacokinetics, and hypoglycemic effect of berberine loaded solid lipid nanoparticles. Int J Nanomedicine. 2013;8:4677–4687.24353417
  • Xue M, Zhang L, Yang MX, et al. Berberine-loaded solid lipid nanoparticles are concentrated in the liver and ameliorate hepatosteatosis in db/db mice. Int J Nanomedicine. 2015;10:5049–5057.26346310
  • Piazzini V, Micheli L, Luceri C, et al. Nanostructured lipid carriers for oral delivery of silymarin: improving its absorption and in vivo efficacy in type 2 diabetes and metabolic syndrome model. Int J Pharm. 2019;572:118838.31715362
  • Piazzini V, Lemmi B, D’Ambrosio M, et al. Nanostructured Lipid Carriers as Promising Delivery Systems for Plant Extracts: the Case of Silymarin. Applied Sciences. 2018;8:7.
  • Shi F, Wei Z, Zhao Y, Xu X. Nanostructured Lipid Carriers Loaded with Baicalin: an Efficient Carrier for Enhanced Antidiabetic Effects. Pharmacogn Mag. 2016;12(47):198–202.27601850
  • Amjadi S, Mesgari Abbasi M, Shokouhi B, Ghorbani M, Hamishehkar H. Enhancement of therapeutic efficacy of betanin for diabetes treatment by liposomal nanocarriers. Journal of Functional Foods. 2019;59:119–128.
  • Pk S. P S, A J, M C, A B. Anti-Diabetic Activity of Lycopene Niosomes: experimental Observation. J Pharm Drug Dev. 2017;4:1.
  • Alam MS, Ahad A, Abidin L, Aqil M, Mir SR, Mujeeb M. Embelin-loaded oral niosomes ameliorate streptozotocin-induced diabetes in Wistar rats. Biomed Pharmacother. 2018;97:1514–1520.29793314
  • Singhal T, Mujeeb M, Ahad A, et al. Preparation, optimization and biological evaluation of gymnemic acid loaded niosomes against streptozotocin-nicotinamide induced diabetic-nephropathy in Wistar rats. J Drug Deliv Sci Technol. 2019;54.
  • Yu F, Li Y, Chen Q, et al. Monodisperse microparticles loaded with the self-assembled berberine-phospholipid complex-based phytosomes for improving oral bioavailability and enhancing hypoglycemic efficiency. Eur J Pharm Biopharm. 2016;103:136–148. doi:10.1016/j.ejpb.2016.03.01927020531
  • Zhang J, Zhou J, Zhang T, et al. Facile Fabrication of an Amentoflavone-Loaded Micelle System for Oral Delivery To Improve Bioavailability and Hypoglycemic Effects in KKAy Mice. ACS Appl Mater Interfaces. 2019;11(13):12904–12913. doi:10.1021/acsami.9b0327530860811
  • Singh J, Mittal P, Vasant Bonde G, Ajmal G, Mishra B. Design, optimization, characterization and in-vivo evaluation of Quercetin enveloped Soluplus®/P407 micelles in diabetes treatment. Artif Cells Nanomed Biotechnol. 2018;46(sup3):S546–S555. doi:10.1080/21691401.2018.150137930322273
  • El-Far YM, Zakaria MM, Gabr MM, El Gayar AM, El-Sherbiny IM, Eissa LA. A newly developed silymarin nanoformulation as a potential antidiabetic agent in experimental diabetes. Nanomedicine. 2016;11(19):2581–2602. doi:10.2217/nnm-2016-020427623396
  • El-Far YM, Zakaria MM, Gabr MM, El Gayar AM, Eissa LA, El-Sherbiny IM. Nanoformulated natural therapeutics for management of streptozotocin-induced diabetes: potential use of curcumin nanoformulation. Nanomedicine. 2017;12(14):1689–1711. doi:10.2217/nnm-2017-010628635562
  • Akbar MU, Zia KM, Akash MSH, Nazir A, Zuber M, Ibrahim M. In-vivo anti-diabetic and wound healing potential of chitosan/alginate/maltodextrin/pluronic-based mixed polymeric micelles: curcumin therapeutic potential. Int J Biol Macromol. 2018;120(Pt B):2418–2430. doi:10.1016/j.ijbiomac.2018.09.01030195611
  • Hussein J, Attia MF, El Bana M, et al. Solid state synthesis of docosahexaenoic acid-loaded zinc oxide nanoparticles as a potential antidiabetic agent in rats. Int J Biol Macromol. 2019;140:1305–1314. doi:10.1016/j.ijbiomac.2019.08.20131449866
  • Liu Y, Zeng S, Liu Y, et al. Synthesis and antidiabetic activity of selenium nanoparticles in the presence of polysaccharides from Catathelasma ventricosum. Int J Biol Macromol. 2018;114:632–639. doi:10.1016/j.ijbiomac.2018.03.16129601883
  • Yin J, Hou Y, Yin Y, Song X. Selenium-coated nanostructured lipid carriers used for oral delivery of berberine to accomplish a synergic hypoglycemic effect. Int J Nanomedicine. 2017;12:8671–8680. doi:10.2147/IJN.S14461529263662
  • Huang P-K, Lin S-X, Tsai M-J, et al. Encapsulation of 16-Hydroxycleroda-3,13-Dine-16,15-Olide in Mesoporous Silica Nanoparticles as a Natural Dipeptidyl Peptidase-4 Inhibitor Potentiated Hypoglycemia in Diabetic Mice. Nanomaterials. 2017;7(5):5. doi:10.3390/nano7050112
  • Gouda W, Hafiz NA, Mageed L, et al. Effects of nano-curcumin on gene expression of insulin and insulin receptor. Bulletin Nat Res Centre. 2019;43(1):1. doi:10.1186/s42269-019-0164-0
  • Abu-Taweel GM, Attia MF, Hussein J, et al. Curcumin nanoparticles have potential antioxidant effect and restore tetrahydrobiopterin levels in experimental diabetes. Biomed Pharm. 2020;131.
  • Singh AK, Pandey H, Ramteke PW, Mishra SB. Nano-suspension of ursolic acid for improving oral bioavailability and attenuation of type II diabetes: A histopathological investigation. Biocatalysis and Agricultural Biotechnology. 2019;2:22.
  • Wang Z, Wu J, Zhou Q, Wang Y, Chen T. Berberine nanosuspension enhances hypoglycemic efficacy on streptozotocin induced diabetic C57BL/6 mice. Evid Based Complement Alternat Med. 2015;2015:239749.25866534
  • Ravichandran R. Studies on Gymnemic Acids Nanoparticulate Formulations Against Diabetes Mellitus. Int J Biomed Clin Eng. 2012;1(2):1–12. doi:10.4018/ijbce.2012070101
  • Zhao X, Wang W, Zu Y, et al. Preparation and characterization of betulin nanoparticles for oral hypoglycemic drug by antisolvent precipitation. Drug Deliv. 2014;21(6):467–479. doi:10.3109/10717544.2014.88143824479653
  • Banik BL, Fattahi P, Brown JL. Polymeric nanoparticles: the future of nanomedicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2016;8(2):271–299. doi:10.1002/wnan.136426314803
  • Katuwavila NP, Perera ADLC, Samarakoon SR, et al. Chitosan-Alginate Nanoparticle System Efficiently Delivers Doxorubicin to MCF-7 Cells. Journal of Nanomaterials. 2016;2016:1–12.
  • Jao D, Xue Y, Medina J, Protein-Based Drug-Delivery HX. Materials. Materials (Basel. 2017;10:5.
  • Fonte P, Araujo F, Silva C, et al. Polymer-based nanoparticles for oral insulin delivery: revisited approaches. Biotechnol Adv. 2015;33(6):1342–1354. doi:10.1016/j.biotechadv.2015.02.01025728065
  • Sami El-banna F, Mahfouz ME, Leporatti S, El-Kemary M, Hanafy AN. N. Chitosan as a Natural Copolymer with Unique Properties for the Development of Hydrogels. Applied Sciences. 2019;9(11):11. doi:10.3390/app9112193
  • Rizeq BR, Younes NN, Rasool K, Nasrallah GK. Synthesis, Bioapplications, and Toxicity Evaluation of Chitosan-Based Nanoparticles. Int J Mol Sci. 2019;20(22):22. doi:10.3390/ijms20225776
  • George A, Shah PA, Shrivastav PS. Natural biodegradable polymers based nano-formulations for drug delivery: A review. Int J Pharm. 2019;561:244–264. doi:10.1016/j.ijpharm.2019.03.01130851391
  • Chauhan P, Tamrakar AK, Mahajan S, Prasad G. Chitosan encapsulated nanocurcumin induces GLUT-4 translocation and exhibits enhanced anti-hyperglycemic function. Life Sci. 2018;213:226–235. doi:10.1016/j.lfs.2018.10.02730343126
  • Sonia TA, Sharma CP. An overview of natural polymers for oral insulin delivery. Drug Discov Today. 2012;17(13–14):784–792. doi:10.1016/j.drudis.2012.03.01922521664
  • Karlsson J, Vaughan HJ, Green JJ. Biodegradable Polymeric Nanoparticles for Therapeutic Cancer Treatments. Annu Rev Chem Biomol Eng. 2018;9(1):105–127. doi:10.1146/annurev-chembioeng-060817-08405529579402
  • Wang W, Meng Q, Li Q, et al. Chitosan Derivatives and Their Application in Biomedicine. Int J Mol Sci. 2020;21:2.
  • Zhu W, Zhang Z. Preparation and characterization of catechin-grafted chitosan with antioxidant and antidiabetic potential. Int J Biol Macromol. 2014;70:150–155. doi:10.1016/j.ijbiomac.2014.06.04724995632
  • Muzzarelli RAA, Chitosan Chemistry MC. Relevance to the Biomedical Sciences. In: Polysaccharides I. 2005;2:151–209.
  • Severino P, da Silva CF, Andrade LN, de Lima Oliveira D, Campos J, Souto EB. Alginate Nanoparticles for Drug Delivery and Targeting. Curr Pharm Des. 2019;25(11):1312–1334.31465282
  • Bassas-Galia M, Follonier S, Pusnik M, Zinn M. 2 - Natural polymers: A source of inspiration In: Perale G, Hilborn J, editors. Bioresorbable Polymers for Biomedical Applications. Woodhead Publishing; 2017:31–64.
  • Mandaogade PM, Satturwar PM, Fulzele SV, Gogte BB, Dorle AK. Rosin derivatives: novel film forming materials for controlled drug delivery. Reactive and Functional Polymers. 2002;50(3):233–242. doi:10.1016/S1381-5148(01)00117-1
  • Rani R, Dahiya S, Dhingra D, et al. <p>Antidiabetic activity enhancement in streptozotocin + nicotinamide–induced diabetic rats through combinational polymeric nanoformulation. Int J Nanomedicine. 2019;14:4383–4395. doi:10.2147/IJN.S20531931354267
  • Fan Z, Cheng P, Liu M, et al. Dynamic crosslinked and injectable biohydrogels as extracellular matrix mimics for the delivery of antibiotics and 3D cell culture. RSC Advances. 2020;10(33):19587–19599. doi:10.1039/D0RA02218G
  • Hamid Akash MS, Rehman K, Chen CS. Natural and Synthetic Polymers as Drug Carriers for Delivery of Therapeutic Proteins. Polymer Rev. 2015;55(3):371–406. doi:10.1080/15583724.2014.995806
  • Kapoor R, Singh S, Tripathi M, Bhatnagar P, Kakkar P, Gupta KC. O-hexadecyl-dextran entrapped berberine nanoparticles abrogate high glucose stress induced apoptosis in primary rat hepatocytes. PLoS One. 2014;9(2):e89124. doi:10.1371/journal.pone.008912424586539
  • Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable Controlled-Release Polymers and Polymeric Nanoparticles: mechanisms of Controlling Drug Release. Chem Rev. 2016;116(4):2602–2663. doi:10.1021/acs.chemrev.5b0034626854975
  • Angelova N, Hunkeler D. Rationalizing the design of polymeric biomaterials. Trends in Biotechnology. 1999;17(10):409–421. doi:10.1016/S0167-7799(99)01356-610481173
  • Obayemi JD, Jusu SM, Salifu AA, et al. Degradable porous drug-loaded polymer scaffolds for localized cancer drug delivery and breast cell/tissue growth. Mater Sci Eng C Mater Biol Appl. 2020;112:110794. doi:10.1016/j.msec.2020.11079432409024
  • Washington KE, Kularatne RN, Karmegam V, Biewer MC, Stefan MC. Recent advances in aliphatic polyesters for drug delivery applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017;9(4):4. doi:10.1002/wnan.1446
  • Mir M, Ahmed N, Rehman AU. Recent applications of PLGA based nanostructures in drug delivery. Colloids Surf B Biointerfaces. 2017;159:217–231. doi:10.1016/j.colsurfb.2017.07.03828797972
  • Samadder A, Abraham SK, Khuda-Bukhsh AR. Nanopharmaceutical approach using pelargonidin towards enhancement of efficacy for prevention of alloxan-induced DNA damage in L6 cells via activation of PARP and p53. Environ Toxicol Pharmacol. 2016;43:27–37. doi:10.1016/j.etap.2016.02.01026943895
  • Torché A-M, Jouan H, Le Corre P, et al. Ex vivo and in situ PLGA microspheres uptake by pig ileal Peyer’s patch segment. Int J Pharm. 2000;201(1):15–27. doi:10.1016/S0378-5173(00)00364-110867261
  • Ismail R, Bocsik A, Katona G, Grof I, Deli MA, Csoka I. Encapsulation in Polymeric Nanoparticles Enhances the Enzymatic Stability and the Permeability of the GLP-1 Analog, Liraglutide, Across a Culture Model of Intestinal Permeability. Pharmaceutics. 2019;11(11):11. doi:10.3390/pharmaceutics11110599
  • Nagarajan V, Mohanty AK, Misra M. Perspective on Polylactic Acid (PLA) based Sustainable Materials for Durable Applications: focus on Toughness and Heat Resistance. ACS Sustainable Chemistry & Engineering. 2016;4(6):2899–2916. doi:10.1021/acssuschemeng.6b00321
  • Vroman I, Tighzert L. Biodegradable Polymers. Materials. 2009;2(2):307–344. doi:10.3390/ma2020307
  • Barwal I, Sood A, Sharma M, Singh B, Yadav SC. Development of stevioside Pluronic-F-68 copolymer based PLA-nanoparticles as an antidiabetic nanomedicine. Colloids Surf B Biointerfaces. 2013;101:510–516. doi:10.1016/j.colsurfb.2012.07.00523022553
  • Ponsart S, Coudane J, Vert M. A novel route to poly(ε-caprolactone)-based copolymers via anionic derivatization. Biomacromolecules. 2000;1(2):275–281. doi:10.1021/bm005521t11710111
  • Weissenbock A, Wirth M, Gabor F. Pluronic® F-68 Enhances the Nanoparticle-Cell Interaction. J Control Release. 2004;99(3):383–392.15451596
  • Barwal I, Yadav YS. Rebaudioside A Loaded Poly-D, L-Lactide-Nanoparticles as an Anti-Diabetic Nanomedicine. Journal of Bionanoscience. 2014;8(2):137–140. doi:10.1166/jbns.2014.1212
  • Gholipour Kanani A, Bahrami SH. Effect of Changing Solvents on Poly(-Caprolactone) Nanofibrous Webs Morphology. Journal of Nanomaterials. 2011;2011:1–10. doi:10.1155/2011/72415321808638
  • Kamaraj N, Rajaguru PY, Issac PK, Sundaresan S. Fabrication, characterization, in vitro drug release and glucose uptake activity of 14-deoxy, 11, 12-didehydroandrographolide loaded polycaprolactone nanoparticles. Asian J Pharm Sci. 2017;12(4):353–362. doi:10.1016/j.ajps.2017.02.00332104346
  • Chen W, Hou Y, Tu Z, Gao L, Haag R. pH-degradable PVA-based nanogels via photo-crosslinking of thermo-preinduced nanoaggregates for controlled drug delivery. Journal of Controlled Release. 2017;259:160–167. doi:10.1016/j.jconrel.2016.10.03227810557
  • Sharma P, Sen D, Neelakantan V, Shankar V, Jhunjhunwala S. Disparate effects of PEG or albumin based surface modification on the uptake of nano- and micro-particles. Biomater Sci. 2019;7(4):1411–1421. doi:10.1039/C8BM01545G30663741
  • Masood F. Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater Sci Eng C Mater Biol Appl. 2016;60:569–578. doi:10.1016/j.msec.2015.11.06726706565
  • Ahlawat J, Henriquez G, Narayan M. Enhancing the Delivery of Chemotherapeutics: role of Biodegradable Polymeric Nanoparticles. Molecules. 2018;23(9):9. doi:10.3390/molecules23092157
  • Sechi M, Syed DN, Pala N, et al. Nanoencapsulation of dietary flavonoid fisetin: formulation and in vitro antioxidant and α-glucosidase inhibition activities. Mater Sci Eng C Mater Biol Appl. 2016;68:594–602. doi:10.1016/j.msec.2016.06.04227524059
  • Sanna V, Siddiqui IA, Sechi M, Mukhtar H. Resveratrol-Loaded Nanoparticles Based on Poly(epsilon-caprolactone) and Poly(d, l-lactic-glycolic acid)–Poly(ethylene glycol) Blend for Prostate Cancer Treatment. Mol Pharm. 2013;10(10):3871–3881. doi:10.1021/mp400342f23968375
  • Kong L, Campbell F, Kros A. DePEGylation strategies to increase cancer nanomedicine efficacy. Nanoscale Horiz. 2019;4(2):378–387. doi:10.1039/C8NH00417J32254090
  • Carbone JP, Reinert KH. Synthetic Polymers In: Reference Module in Earth Systems and Environmental Sciences. Elsevier; 2015.
  • Davatgaran-Taghipour Y, Masoomzadeh S, Farzaei MH, et al. Polyphenol nanoformulations for cancer therapy: experimental evidence and clinical perspective. Int J Nanomedicine. 2017;12:2689–2702. doi:10.2147/IJN.S13197328435252
  • Cerpnjak K, Zvonar A, Gasperlin M, Vrecer F. Lipid-based systems as a promising approach for enhancing the bioavailability of poorly water-soluble drugs. Acta Pharm. 2013;63(4):427–445. doi:10.2478/acph-2013-004024451070
  • Talegaonkar S, Bhattacharyya A. Potential of Lipid Nanoparticles (SLNs and NLCs) in Enhancing Oral Bioavailability of Drugs with Poor Intestinal Permeability. AAPS PharmSciTech. 2019;20(3):121. doi:10.1208/s12249-019-1337-830805893
  • Jia JL. Nanoparticle Formulation Increases Oral Bioavailability of Poorly Soluble Drugs: approaches, Experimental Evidences and Theory. Curr Nanosci. 2005;1(3):237–243. doi:10.2174/15734130577464293919865587
  • Gordillo-Galeano A, Mora-Huertas CE. Solid lipid nanoparticles and nanostructured lipid carriers: A review emphasizing on particle structure and drug release. Eur J Pharm Biopharm. 2018;133:285–308. doi:10.1016/j.ejpb.2018.10.01730463794
  • Sanchez-Lopez E, Guerra M, Dias-Ferreira J, et al. Current Applications of Nanoemulsions in Cancer Therapeutics. Nanomaterials. 2019;9(6):6. doi:10.3390/nano9060821
  • Pavoni L, Perinelli DR, Bonacucina G, Cespi M, Palmieri GF. An Overview of Micro- and Nanoemulsions as Vehicles for Essential Oils: formulation, Preparation and Stability. Nanomaterials. 2020;10(1):1. doi:10.3390/nano10010135
  • Salvia-Trujillo L, Soliva-Fortuny R, Rojas-Grau MA, McClements DJ, Martín-Belloso M-BO. Edible Nanoemulsions as Carriers of Active Ingredients: A Review. Annu Rev Food Sci Technol. 2017;8(1):439–466. doi:10.1146/annurev-food-030216-02590828125342
  • Jiang X-C, Gao J-Q. Exosomes as novel bio-carriers for gene and drug delivery. Int J Pharm. 2017;521(1–2):167–175. doi:10.1016/j.ijpharm.2017.02.03828216464
  • Singh Y, Meher JG, Raval K, et al. Nanoemulsion: concepts, development and applications in drug delivery. J Control Release. 2017;252:28–49. doi:10.1016/j.jconrel.2017.03.00828279798
  • Trotta F, Dianzani C, Caldera F, Mognetti B, Cavalli R. The application of nanosponges to cancer drug delivery. Expert Opin Drug Deliv. 2014;11(6):931–941. doi:10.1517/17425247.2014.91172924811423
  • Krabicova I, Appleton SL, Tannous M, et al. History of Cyclodextrin Nanosponges. Polymers (Basel. 2020;12(5):5. doi:10.3390/polym12051122
  • Pawar S, Shende P, Trotta F. Diversity of β-cyclodextrin-based nanosponges for transformation of actives. Int J Pharm. 2019;565:333–350. doi:10.1016/j.ijpharm.2019.05.01531082468
  • Karthik P, Ezhilarasi PN, Anandharamakrishnan C. Challenges associated in stability of food grade nanoemulsions. Crit Rev Food Sci Nutr. 2017;57(7):1435–1450. doi:10.1080/10408398.2015.100676726114624
  • Rehman FU, Shah KU, Shah SU, Khan IU, Khan GM, Khan A. From nanoemulsions to self-nanoemulsions, with recent advances in self-nanoemulsifying drug delivery systems (SNEDDS). Expert Opin Drug Deliv. 2017;14(11):1325–1340. doi:10.1080/17425247.2016.121846227485144
  • Gupta A, Eral HB, Hatton TA, Doyle PS. Nanoemulsions: formation, properties and applications. Soft Matter. 2016;12(11):2826–2841. doi:10.1039/C5SM02958A26924445
  • Tayeb HH, Sainsbury F. Nanoemulsions in drug delivery: formulation to medical application. Nanomedicine. 2018;13(19):2507–2525. doi:10.2217/nnm-2018-008830265218
  • Dokania S, Joshi AK. Self-microemulsifying drug delivery system (SMEDDS) – challenges and road ahead. Drug Deliv. 2015;22(6):675–690. doi:10.3109/10717544.2014.89605824670091
  • Alghananim A, Ozalp Y, Mesut B, Serakinci N, Ozsoy Y, Gungor S. A Solid Ultra Fine Self-Nanoemulsifying Drug Delivery System (S-SNEDDS) of Deferasirox for Improved Solubility: optimization, Characterization, and In Vitro Cytotoxicity Studies. Pharmaceuticals. 2020;13(8):8. doi:10.3390/ph13080162
  • Date AA, Desai N, Dixit R, Nagarsenker M. Self-nanoemulsifying drug delivery systems: formulation insights, applications and advances. Nanomedicine. 2010;5(10):1595–1616. doi:10.2217/nnm.10.12621143036
  • Date AA, Nagarsenker MS. Design and evaluation of self-nanoemulsifying drug delivery systems (SNEDDS) for cefpodoxime proxetil. Int J Pharm. 2007;329(1–2):166–172. doi:10.1016/j.ijpharm.2006.08.03817010543
  • Cherniakov I, Domb AJ, Hoffman A. Self-nano-emulsifying drug delivery systems: an update of the biopharmaceutical aspects. Expert Opin Drug Deliv. 2015;12(7):1121–1133. doi:10.1517/17425247.2015.99903825556987
  • Chatterjee B, Hamed Almurisi S, Ahmed Mahdi Dukhan A, Mandal UK, Sengupta P. Ahmed Mahdi Dukhan A, Mandal UK, Sengupta P. Controversies with self-emulsifying drug delivery system from pharmacokinetic point of view. Drug Deliv. 2016;23(9):3639–3652. doi:10.1080/10717544.2016.121499027685505
  • Kumar R, Khursheed R, Kumar R, et al. Self-nanoemulsifying drug delivery system of fisetin: formulation, optimization, characterization and cytotoxicity assessment. J Drug Deliv Sci Technol. 2019;54.
  • Kumar B, Garg V, Singh S, et al. Impact of spray drying over conventional surface adsorption technique for improvement in micromeritic and biopharmaceutical characteristics of self-nanoemulsifying powder loaded with two lipophilic as well as gastrointestinal labile drugs. Powder Technology. 2018;326:425–442. doi:10.1016/j.powtec.2017.12.005
  • Khursheed R, Singh SK, Wadhwa S, et al. Exploring role of probiotics and Ganoderma lucidum extract powder as solid carriers to solidify liquid self-nanoemulsifying delivery systems loaded with curcumin. Carbohydr Polym. 2020;250:116996. doi:10.1016/j.carbpol.2020.11699633049905
  • Sadegh Malvajerd S, Azadi A, Izadi Z, et al. Brain Delivery of Curcumin Using Solid Lipid Nanoparticles and Nanostructured Lipid Carriers: preparation, Optimization, and Pharmacokinetic Evaluation. ACS Chem Neurosci. 2019;10(1):728–739. doi:10.1021/acschemneuro.8b0051030335941
  • Garces A, Amaral MH, Sousa Lobo JM, Silva AC. Formulations based on solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for cutaneous use: A review. Eur J Pharm Sci. 2018;112:159–167. doi:10.1016/j.ejps.2017.11.02329183800
  • Ghasemiyeh P, Mohammadi-Samani S. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: applications, advantages and disadvantages. Res Pharm Sci. 2018;13(4):288–303. doi:10.4103/1735-5362.23515630065762
  • Tapeinos C, Battaglini M, Ciofani G. Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases. J Control Release. 2017;264:306–332. doi:10.1016/j.jconrel.2017.08.03328844756
  • Khosa A, Reddi S, Saha RN. Nanostructured lipid carriers for site-specific drug delivery. Biomed Pharmacother. 2018;103:598–613. doi:10.1016/j.biopha.2018.04.05529677547
  • Soussan E, Cassel S, Blanzat M, Rico-Lattes I. Drug delivery by soft matter: matrix and vesicular carriers. Angew Chem Int Ed Engl. 2009;48(2):274–288. doi:10.1002/anie.20080245319072808
  • Elizondo E, Moreno E, Cabrera I, et al. Liposomes and other vesicular systems: structural characteristics, methods of preparation, and use in nanomedicine. Prog Mol Biol Transl Sci. 2011;104:1–52.22093216
  • Kapoor B, Gupta R, Singh SK, Gulati M, Singh S. Prodrugs, phospholipids and vesicular delivery - An effective triumvirate of pharmacosomes. Adv Colloid Interface Sci. 2018;253:35–65. doi:10.1016/j.cis.2018.01.00329454464
  • Kapoor B, Gupta R, Gulati M, Singh SK, Khursheed R, Gupta M. The Why, Where, Who, How, and What of the vesicular delivery systems. Adv Colloid Interface Sci. 2019;271:101985. doi:10.1016/j.cis.2019.07.00631351415
  • Aloulou A, Ali YB, Bezzine S, Gargouri Y, Gelb MH. Phospholipases: an overview. Methods Mol Biol. 2012;861:63–85.22426712
  • Li T, Cipolla D, Rades T, Boyd BJ. Drug nanocrystallisation within liposomes. J Control Release. 2018;288:96–110. doi:10.1016/j.jconrel.2018.09.00130184465
  • Gnananath K, Sri Nataraj K, Ganga Rao B. Phospholipid Complex Technique for Superior Bioavailability of Phytoconstituents. Adv Pharm Bull. 2017;7(1):35–42.28507935
  • Li M, Du C, Guo N, et al. Composition design and medical application of liposomes. Eur J Med Chem. 2019;164:640–653. doi:10.1016/j.ejmech.2019.01.00730640028
  • Yucel Ç, Karatoprak GŞ, Aktas Y. Nanoliposomal Resveratrol as a Novel Approach to Treatment of Diabetes Mellitus. J Nanosci Nanotechnol. 2018;18(6):3856–3864. doi:10.1166/jnn.2018.1524729442719
  • Asprea M, Tatini F, Piazzini V, Rossi F, Bergonzi MC, Bilia AR. Stable, Monodisperse, and Highly Cell-Permeating Nanocochleates from Natural Soy Lecithin Liposomes. Pharmaceutics. 2019;11(1):1. doi:10.3390/pharmaceutics11010034
  • Zhong X, Chen B, Yang Z. Nanocochleates as the Potential Delivery Systems for Oral Antitumor of Hydroxycamptothecin. J Biomed Nanotechnol. 2018;14(7):1339–1346. doi:10.1166/jbn.2018.257229944107
  • Bhosale RR, Ghodake PP, Mane AN, Ghadge AA. Nanocochleates: A novel carrier for drug transfer. J surg. 2013;2(5):964–969.
  • Bothiraja C, Yojana BD, Pawar AP, Shaikh KS, Thorat UH. Fisetin-loaded nanocochleates: formulation, characterisation, in anticancer testing, bioavailability and biodistribution study. Expert Opin Drug Deliv. 2014;11(1):17–29. doi:10.1517/17425247.2013.86013124294925
  • Shende P, Khair R, Gaud RS. Nanostructured cochleates: a multi-layered platform for cellular transportation of therapeutics. Drug Dev Ind Pharm. 2019;45(6):869–881. doi:10.1080/03639045.2019.158375730767577
  • Ç YÜCEL, GŞ KARATOPRAK, Atmar A. Novel Resveratrol-Loaded Nanocochleates and Effectiveness in the Treatment of Diabetes. Fabad Journal of Pharmaceutical Sciences. 2018;43(2):35–44.
  • Bozo T, Wacha A, Mihaly J, Bota A, Kellermayer MSZ. Dispersion and stabilization of cochleate nanoparticles. Eur J Pharm Biopharm. 2017;117:270–275. doi:10.1016/j.ejpb.2017.04.03028461084
  • Mahale NB, Thakkar PD, Mali RG, Walunj DR, Chaudhari SR. Niosomes: novel sustained release nonionic stable vesicular systems — an overview. Adv Colloid Interface Sci. 2012;183-184:46–54. doi:10.1016/j.cis.2012.08.00222947187
  • Pk S, P PS. Novel Encapsulation of Lycopene in Niosomes and Assessment of its Anticancer Activity. Journal of Bioequivalence & Bioavailability. 2016;8(5):5. doi:10.4172/jbb.1000300
  • Ghanbarzadeh B, Babazadeh A, Hamishehkar H. Nano-phytosome as a potential food-grade delivery system. Food Bioscience. 2016;15:126–135. doi:10.1016/j.fbio.2016.07.006
  • Lu M, Qiu Q, Luo X, et al. Phyto-phospholipid complexes (phytosomes): A novel strategy to improve the bioavailability of active constituents. Asian J Pharm Sci. 2019;14(3):265–274. doi:10.1016/j.ajps.2018.05.01132104457
  • Mirzaei H, Shakeri A, Rashidi B, Jalili A, Banikazemi Z, Sahebkar A. Phytosomal curcumin: A review of pharmacokinetic, experimental and clinical studies. Biomed Pharmacother. 2017;85:102–112. doi:10.1016/j.biopha.2016.11.09827930973
  • Babazadeh A, Zeinali M, Hamishehkar HH. Nano-Phytosome: A Developing Platform for Herbal Anti-Cancer Agents in Cancer Therapy. Curr Drug Targets. 2018;19(2):170–180. doi:10.2174/138945011866617050809525028482783
  • Kim S-M, Jung J-I, Chai C, Imm J-Y. Characteristics and Glucose Uptake Promoting Effect of Chrysin-Loaded Phytosomes Prepared with Different Phospholipid Matrices. Nutrients. 2019;11(10):10. doi:10.3390/nu11102549
  • Torchilin VP, Lukyanov AN, Gao Z, Papahadjopoulos-Sternberg B. Immunomicelles: targeted pharmaceutical carriers for poorly soluble drugs. Proc Natl Acad Sci U S A. 2003;100(10):6039–6044. doi:10.1073/pnas.093142810012716967
  • Simoes SM, Figueiras AR, Veiga F, Concheiro A, Alvarez-Lorenzo C. Polymeric micelles for oral drug administration enabling locoregional and systemic treatments. Expert Opin Drug Deliv. 2015;12(2):297–318. doi:10.1517/17425247.2015.96084125227130
  • Reddy BP, Yadav HKS, Nagesha DK, Raizaday A, Karim A. Polymeric Micelles as Novel Carriers for Poorly Soluble Drugs— review. J Nanosci Nanotechnol. 2015;15(6):4009–4018. doi:10.1166/jnn.2015.971326369007
  • Cho H, Lai TC, Tomoda K, Kwon GS. Polymeric micelles for multi-drug delivery in cancer. AAPS PharmSciTech. 2015;16(1):10–20. doi:10.1208/s12249-014-0251-325501872
  • Han J, Oh J, Ihm S-H S-H, Lee M. Peptide micelle-mediated curcumin delivery for protection of islet β-cells under hypoxia. Journal of Drug Targeting. 2016;24(7):618–623. doi:10.3109/1061186X.2015.113222026768151
  • Tousif Ayyub K, Moravkar K, Maniruzzaman M, Amin P. Effect of melt extrudability and melt binding efficiency of polyvinyl caprolactam polyvinyl acetate polyethylene glycol graft copolymer (Soluplus®) on release pattern of hydrophilic and high dose drugs. Mater Sci Eng C Mater Biol Appl. 2019;99:563–574. doi:10.1016/j.msec.2019.01.12630889730
  • Li Z-L, Peng S-F, Chen X, et al. Pluronics modified liposomes for curcumin encapsulation: sustained release, stability and bioaccessibility. Food Res Int. 2018;108:246–253. doi:10.1016/j.foodres.2018.03.04829735054
  • Batrakova EV, Kabanov AV. Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J Control Release. 2008;130(2):98–106. doi:10.1016/j.jconrel.2008.04.01318534704
  • Lu Y, Yue Z, Xie J, et al. Micelles with ultralow critical micelle concentration as carriers for drug delivery. Nat Biomed Eng. 2018;2(5):318–325. doi:10.1038/s41551-018-0234-x30936455
  • Fernandez-Pineiro I, Badiola I, Sanchez A. Nanocarriers for microRNA delivery in cancer medicine. Biotechnol Adv. 2017;35(3):350–360. doi:10.1016/j.biotechadv.2017.03.00228286148
  • Sabio RM, Meneguin AB, Ribeiro TC, Silva RR, Chorilli M. New insights towards mesoporous silica nanoparticles as a technological platform for chemotherapeutic drugs delivery. Int J Pharm. 2019;564:379–409. doi:10.1016/j.ijpharm.2019.04.06731028801
  • Ahmed HH, Abd El-Maksoud MD, Abdel Moneim AE, Aglan HA. Pre-Clinical Study for the Antidiabetic Potential of Selenium Nanoparticles. Biol Trace Elem Res. 2017;177(2):267–280. doi:10.1007/s12011-016-0876-z27785741
  • Al-Quraishy S, Dkhil MA, Abdel Moneim AE. Anti-hyperglycemic activity of selenium nanoparticles in streptozotocin-induced diabetic rats. Int J Nanomedicine. 2015;10:6741–6756.26604749
  • Uma Suganya KS, Govindaraju K, Veena Vani C, Premanathan M, Ganesh Kumar VK. In vitro biological evaluation of anti-diabetic activity of organic–inorganic hybrid gold nanoparticles. IET Nanobiotechnol. 2019;13(2):226–229. doi:10.1049/iet-nbt.2018.513931051455
  • Hussein JS, Rasheed W, Ramzy T, et al. Synthesis of docosahexaenoic acid–loaded silver nanoparticles for improving endothelial dysfunctions in experimental diabetes. Hum Exp Toxicol. 2019;38(8):962–973. doi:10.1177/096032711984358631018711
  • Hussein J, El-Naggar ME, Latif YA, et al. Solvent-free and one-pot synthesis of silver and zinc oxide nanoparticles: activity toward cell membrane component and insulin signaling pathway in experimental diabetes. Colloids and Surfaces B: Biointerfaces. 2018;170:76–84. doi:10.1016/j.colsurfb.2018.05.05829883845
  • Alkaladi A, Abdelazim AM, Afifi M. Antidiabetic activity of zinc oxide and silver nanoparticles on streptozotocin-induced diabetic rats. Int J Mol Sci. 2014;15(2):2015–2023. doi:10.3390/ijms1502201524477262
  • Lushchak O, Zayachkivska A, Vaiserman A. Metallic Nanoantioxidants as Potential Therapeutics for Type 2 Diabetes: A Hypothetical Background and Translational Perspectives. Oxid Med Cell Longev. 2018;2018:3407375. doi:10.1155/2018/340737530050652
  • Hanan NA, Chiu HI, Ramachandran MR, et al. Cytotoxicity of Plant-Mediated Synthesis of Metallic Nanoparticles: A Systematic Review. Int J Mol Sci. 2018;19(6):6. doi:10.3390/ijms19061725
  • Anand K, Tiloke C, Naidoo P, Chuturgoon AA. Phytonanotherapy for management of diabetes using green synthesis nanoparticles. J Photochem Photobiol B. 2017;173:626–639. doi:10.1016/j.jphotobiol.2017.06.02828709077
  • Rajarajeshwari T, Shivashri C, Rajasekar P. Synthesis and characterization of biocompatible gymnemic acid–gold nanoparticles: a study on glucose uptake stimulatory effect in 3T3-L1 adipocytes. RSC Adv. 2014;4(108):63285–63295. doi:10.1039/C4RA07087A
  • Chockalingam S, Thada R, Dhandapani RK, Panchamoorthy R. Biogenesis, characterization, and the effect of vicenin-gold nanoparticles on glucose utilization in 3T3-L1 adipocytes: a bioinformatic approach to illuminate its interaction with PTP 1B and AMPK. Biotechnology Progress. 2015;31(4):1096–1106. doi:10.1002/btpr.211226014104
  • Shamprasad BR, Keerthana S, Megarajan S, Lotha R, Aravind S, Veerappan A. Photosynthesized escin stabilized gold nanoparticles exhibit antidiabetic activity in L6 rat skeletal muscle cells. Materials Letters. 2019;241:198–201. doi:10.1016/j.matlet.2019.01.086
  • Khaleel Basha S, Govindaraju K, Manikandan R, Ahn JS, Bae EY, Singaravelu G. Phytochemical mediated gold nanoparticles and their PTP 1B inhibitory activity. Colloids Surf B Biointerfaces. 2010;75(2):405–409.19815393
  • Ranjous Y, Regdon G, Pintye-Hodi K, Sovany T. Standpoint on the priority of TNTs and CNTs as targeted drug delivery systems. Drug Discov Today. 2019;24(9):1704–1709. doi:10.1016/j.drudis.2019.05.01931158513
  • Wong BS, Yoong SL, Jagusiak A, et al. Carbon nanotubes for delivery of small molecule drugs. Adv Drug Deliv Rev. 2013;65(15):1964–2015.23954402
  • Martincic M, Tobias G. Filled carbon nanotubes in biomedical imaging and drug delivery. Expert Opin Drug Deliv. 2015;12(4):563–581.25430876
  • Ilie I, Ilie R, Mocan T, Tabaran F, Iancu C, Mocan L. Nicotinamide-functionalized multiwalled carbon nanotubes increase insulin production in pancreatic beta cells via MIF pathway. Int J Nanomedicine. 2013;8:3345–3353.24039418
  • Li Z, Zhang Y, Feng N. Mesoporous silica nanoparticles: synthesis, classification, drug loading, pharmacokinetics, biocompatibility, and application in drug delivery. Expert Opin Drug Deliv. 2019;16(3):219–237.30686075
  • Yang G, Phua SZF, Bindra AK, Degradability ZY. Clearance of Inorganic Nanoparticles for Biomedical Applications. Adv Mater. 2019;31(10):e1805730.30614561
  • Croissant JG, Fatieiev Y, Almalik A, Khashab NM, Silica M. Organosilica Nanoparticles: physical Chemistry, Biosafety, Delivery Strategies, and Biomedical Applications. Adv Healthc Mater. 2018;7:4.
  • Mohammadpour R, Dobrovolskaia MA, Cheney DL, Greish KF, Ghandehari H. Subchronic and chronic toxicity evaluation of inorganic nanoparticles for delivery applications. Adv Drug Deliv Rev. 2019;144:112–132.31295521
  • Lai F, Schlich M, Pireddu R, Fadda AM, Sinico C. Nanocrystals as Effective Delivery Systems of Poorly Water-soluble Natural Molecules. Curr Med Chem. 2019;26(24):4657–4680.30543163
  • Liversidge GG, Cundy KC. Particle size reduction for improvement of oral bioavailability of hydrophobic drugs: I. Absolute oral bioavailability of nanocrystalline danazol in beagle dogs. Int J Pharm. 1995;125(1):91–97.
  • Chen C, Fu X. Spheroidization on Fructus Mori polysaccharides to enhance bioavailability and bioactivity by anti-solvent precipitation method. Food Chem. 2019;300:125245.31352287
  • Wang Y, Zheng Y, Zhang L, Wang Q, Zhang D. Stability of nanosuspensions in drug delivery. J Control Release. 2013;172(3):1126–1141.23954372
  • Wang L, Du J, Zhou Y, Wang Y. Safety of nanosuspensions in drug delivery. Nanomedicine. 2017;13(2):455–469.27558350
  • Gao L, Liu G, Ma J, Wang X, Zhou L, Li X. Drug nanocrystals: in vivo performances. Journal of Controlled Release. 2012;160(3):418–430.22465393
  • Souto EB, Souto SB, Campos JR, et al. Nanoparticle Delivery Systems in the Treatment of Diabetes Complications. Molecules. 2019;24:23.
  • Rho JG, Han HS, Han JH, et al. Self-assembled hyaluronic acid nanoparticles: implications as a nanomedicine for treatment of type 2 diabetes. J Control Release. 2018;279:89–98.29649530
  • Rahimi HR, Mohammadpour AH, Dastani M, et al. The effect of nano-curcumin on HbA1c, fasting blood glucose, and lipid profile in diabetic subjects: a randomized clinical trial. Avicenna Journal of Phytomedicine. 2016;6(5):567–577.27761427
  • Asadi S, Gholami MS, Siassi F, Qorbani M, Khamoshian K, Sotoudeh G. Nano curcumin supplementation reduced the severity of diabetic sensorimotor polyneuropathy in patients with type 2 diabetes mellitus: A randomized double-blind placebo- controlled clinical trial. Complement Ther Med. 2019;43:253–260.30935539
  • Veiseh O, Tang BC, Whitehead KA, Anderson DG, Langer R. Managing diabetes with nanomedicine: challenges and opportunities. Nat Rev Drug Discov. 2015;14(1):45–57.25430866