441
Views
9
CrossRef citations to date
0
Altmetric
Original Research

Comparative Analysis of Commercial Colloidal Silver Products

& ORCID Icon
Pages 10425-10434 | Published online: 22 Dec 2020

References

  • De M, Ghosh PS, Rotello VM. Applications of nanoparticles in biology. Adv Mater. 2008;20(22):4225–4241.
  • Ghosh Chaudhuri R, Paria S. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev. 2012;112(4):2373–2433. doi:10.1021/cr100449n22204603
  • Mallick K, Witcomb M, Scurrell M. Silver nanoparticle catalysed redox reaction: an electron relay effect. Mater Chem Phys. 2006;97(2–3):283–287. doi:10.1016/j.matchemphys.2005.08.011
  • McFarland AD, Van Duyne RP. Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett. 2003;3(8):1057–1062. doi:10.1021/nl034372s
  • Evanoff DD, Chumanov G. Size-controlled synthesis of nanoparticles. 1. “silver-only” aqueous suspensions via hydrogen reduction. J Phys Chem B. 2004;108(37):13948–13956. doi:10.1021/jp047565s
  • Jana NR, Gearheart L, Murphy CJ. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio. Chem Commun. 2001;7:617–618. doi:10.1039/b100521i
  • Balantrapu K, Goia DV. Silver nanoparticles for printable electronics and biological applications. J Mater Res. 2011;24(09):2828–2836. doi:10.1557/jmr.2009.0336
  • Tabatabaei M, Sangar A, Kazemi-Zanjani N, Torchio P, Merlen A, Lagugné-Labarthet F. Optical properties of silver and gold tetrahedral nanopyramid arrays prepared by nanosphere lithography. J Phys Chem C. 2013;117(28):14778–14786. doi:10.1021/jp405125c
  • Choi SJ, Won JW, Park KM, Chang P-S, New A. Method for determining the emulsion stability index by backscattering light detection. J Food Process Eng. 2014;37(3):229–236. doi:10.1111/jfpe.12078
  • Ankireddy K, Vunnam S, Kellar J, Cross W. Highly conductive short chain carboxylic acid encapsulated silver nanoparticle based inks for direct write technology applications. J Materials Chemistry C. 2013;1(3):572. doi:10.1039/C2TC00336H
  • Elechiguerra JL, Reyes-Gasga J, Yacaman MJ. The role of twinning in shape evolution of anisotropic noble metal nanostructures. J Mater Chem. 2006;16(40):3906. doi:10.1039/b607128g
  • Nge TT, Nogi M, Suganuma K. Electrical functionality of inkjet-printed silver nanoparticle conductive tracks on nanostructured paper compared with those on plastic substrates. J Materials Chemistry C. 2013;1(34):5235. doi:10.1039/c3tc31220h
  • Magdassi S, Grouchko M, Berezin O, Kamyshny A. Triggering the sintering of silver nanoparticles at room temperature. ACS Nano. 2010;4(4):1943–1948. doi:10.1021/nn901868t20373743
  • Lv Y, Liu H, Wang Z, et al. Silver nanoparticle-decorated porous ceramic composite for water treatment. J Memb Sci. 2009;331(1–2):50–56. doi:10.1016/j.memsci.2009.01.007
  • Desireddy A, Conn BE, Guo J, et al. Ultrastable silver nanoparticles. Nature. 2013;501(7467):399–402. doi:10.1038/nature1252324005327
  • Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci. 2004;275(1):177–182. doi:10.1016/j.jcis.2004.02.01215158396
  • Lee KJ, Browning LM, Nallathamby PD, Xu X-HN. Study of charge-dependent transport and toxicity of peptide-functionalized silver nanoparticles using zebrafish embryos and single nanoparticle plasmonic spectroscopy. Chem Res Toxicol. 2013;26(6):904–917. doi:10.1021/tx400087d23621491
  • Meyer MW, Smith EA. Optimization of silver nanoparticles for surface enhanced Raman spectroscopy of structurally diverse analytes using visible and near-infrared excitation. Analyst. 2011;136(17):3542. doi:10.1039/c0an00851f21301711
  • Durán N, Durán M, de Jesus MB, Seabra AB, Fávaro WJ, Nakazato G. Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity. Nanomedicine. 2016;12(3):789–799. doi:10.1016/j.nano.2015.11.01626724539
  • Reidy B, Haase A, Luch A, Dawson K, Lynch I. Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials. 2013;6(6):2295–2350. doi:10.3390/ma606229528809275
  • Rogers JV, Parkinson CV, Choi YW, Speshock JL, Hussain SM, Preliminary A. Assessment of silver nanoparticle inhibition of monkeypox virus plaque formation. Nanoscale Res Lett. 2008;3(4):129–133. doi:10.1007/s11671-008-9128-2
  • Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain SM. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci. 2008;101(2):239–253. doi:10.1093/toxsci/kfm24017872897
  • Suber L, Sondi I, Matijević E, Goia DV. Preparation and the mechanisms of formation of silver particles of different morphologies in homogeneous solutions. J Colloid Interface Sci. 2005;288(2):489–495. doi:10.1016/j.jcis.2005.03.01715927616
  • Zhang Z, Patel RC, Kothari R, Johnson CP, Friberg SE, Aikens PA. Stable silver clusters and nanoparticles prepared in polyacrylate and inverse micellar solutions. J Phys Chem B. 2000;104(6):1176–1182. doi:10.1021/jp991569t
  • Ershov BG, Janata E, Henglein A. Growth of silver particles in aqueous solution: long-lived “magic” clusters and ionic strength effects. J Phys Chem. 1993;97(2):339–343. doi:10.1021/j100104a013
  • Ershov BG, Abkhalimov EA, Sukhov NL. Formation of long-lived clusters and silver nucleation in the γ-irradiation of aqueous silver perchlorate solutions containing polyphosphate. High Energy Chem. 2005;39(2):55–59.
  • Durán N, Marcato PD, Conti RD, Alves OL, Costa FTM, Brocchi M. Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. J Braz Chem Soc. 2010;21(6):949–959. doi:10.1590/S0103-50532010000600002
  • Hullo M-F, Martin-Verstraete I, Soutourina O. Complex phenotypes of a mutant inactivated for CymR, the global regulator of cysteine metabolism in Bacillus subtilis: pleiotropic role of CymR in Bacillus subtilis. FEMS Microbiol Lett. 2010;no–no. doi:10.1111/j.1574-6968.2010.02043.x
  • Wüthrich D, Irmler S, Berthoud H, Guggenbühl B, Eugster E, Bruggmann R. Conversion of methionine to cysteine in lactobacillus paracasei depends on the highly mobile cysk-ctl-cyse gene cluster. Front Microbiol. 2018;9:2415. doi:10.3389/fmicb.2018.0241530386310
  • Lok C-N, Ho C-M, Chen R, et al. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res. 2006;5(4):916–924. doi:10.1021/pr050407916602699
  • Rai MK, Deshmukh SD, Ingle AP, Gade AK. Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria: activity of silver nanoparticles against MDR bacteria. J Appl Microbiol. 2012;112(5):841–852. doi:10.1111/j.1365-2672.2012.05253.x22324439
  • Mirzajani F, Ghassempour A, Aliahmadi A, Esmaeili MA. Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Res Microbiol. 2011;162(5):542–549. doi:10.1016/j.resmic.2011.04.00921530652
  • Sánchez-López E, Gomes D, Esteruelas G, et al. Metal-based nanoparticles as antimicrobial agents: an overview. Nanomaterials. 2020;10(2):292. doi:10.3390/nano10020292