1,619
Views
77
CrossRef citations to date
0
Altmetric
Review

Nanocarriers-Mediated Drug Delivery Systems for Anticancer Agents: An Overview and Perspectives

ORCID Icon, , , &
Pages 1313-1330 | Published online: 17 Feb 2021

References

  • Ali I, Nadeem Lone M, Al-Othman Z, Al-Warthan A, Sanagi SM. Heterocyclic scaffolds: centrality in anticancer drug development. Curr Drug Targets. 2015;16(7):711–734. doi:10.2174/1389450116666150309115922
  • Tsugane S, Sasazuki S. Diet and the risk of gastric cancer: review of epidemiological evidence. Gastric Cancer. 2007;10(2):75–83.
  • García-Aranda M, Immunotherapy: RM. A challenge of breast cancer treatment. Cancers. 2019;11(12):1822.
  • Arruebo M, Vilaboa N, Sáez-Gutierrez B, et al. Assessment of the evolution of cancer treatment therapies. Cancers. 2011;3(3):3279–3330.
  • Aslam MS, Naveed S, Ahmed A, Abbas Z, Gull I, Athar MA. Side effects of chemotherapy in cancer patients and evaluation of patients opinion about starvation based differential chemotherapy. J Cancer Ther. 2014;2014.
  • Rodgers GM, Becker PS, Blinder M, et al. Cancer-and chemotherapy-induced anemia. J Nat ComprehensCancer Network. 2012;10(5):628–653.
  • Gharpure KM, Wu SY, Li C, Lopez-Berestein G, Sood AK. Nanotechnology: future of oncotherapy. Clin Cancer Res. 2015;21(14):3121–3130.
  • Jabir NR, Tabrez S, Ashraf GM, Shakil S, Damanhouri GA, Kamal MA. Nanotechnology-based approaches in anticancer research. Int J Nanomedicine. 2012;7:4391.
  • Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology. 2018;16(1):71.
  • Ali I, Nadeem Lone M, Suhail M, Danish Mukhtar S, Asnin L. Advances in nanocarriers for anticancer drugs delivery. Curr Med Chem. 2016;23(20):2159–2187. doi:10.2174/0929867323666160405111152
  • Martinelli C, Pucci C, Ciofani G. Nanostructured carriers as innovative tools for cancer diagnosis and therapy. APL Bioengineering. 2019;3(1):011502.
  • Wolfram J, Zhu M, Yang Y, et al. Safety of nanoparticles in medicine. Curr Drug Targets. 2015;16(14):1671–1681.
  • Rizvi SA, Saleh AM. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J. 2018;26(1):64–70.
  • Stevanovic M, Uskokovic D. Poly (lactide-co-glycolide)-based micro and nanoparticles for the controlled drug delivery of vitamins. Curr Nanosci. 2009;5(1):1–14.
  • Zhang X, Li Y, Wei M, Liu C, Yu T, Yang J. Cetuximab-modified silica nanoparticle loaded with ICG for tumor-targeted combinational therapy of breast cancer. Drug Deliv. 2019;26(1):129–136.
  • Li M, Sun X, Zhang N, et al. NIR‐Activated Polydopamine‐Coated Carrier‐Free “Nanobomb” for In Situ On‐Demand Drug Release. Adv Sci. 2018;5(7):1800155.
  • Liu S, Pan J, Liu J, et al. Dynamically PEGylated and borate‐coordination‐polymer‐coated polydopamine nanoparticles for synergetic tumor‐targeted, chemo‐photothermal combination therapy. Small. 2018;14(13):1703968.
  • Scherer F, Anton M, Schillinger U, et al. Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther. 2002;9(2):102–109.
  • Alexiou C, Jurgons R, Schmid R, et al. In vitro and in vivo investigations of targeted chemotherapy with magnetic nanoparticles. J Magn Magn Mater. 2005;293(1):389–393.
  • Haacke EM, Cheng NY, House MJ, et al. Imaging iron stores in the brain using magnetic resonance imaging. Magn Reson Imaging. 2005;23(1):1–25.
  • Gleich B, Weizenecker J. Tomographic imaging using the nonlinear response of magnetic particles. Nature. 2005;435(7046):1214–1217.
  • Roduner E. Size matters: why nanomaterials are different. Chem Soc Rev. 2006;35(7):583–592.
  • Mays AN, Osheroff N, Xiao Y, et al. Evidence for direct involvement of epirubicin in the formation of chromosomal translocations in t (15; 17) therapy-related acute promyelocytic leukemia. Blood J Am Soc Hematology. 2010;115(2):326–330.
  • Deshpande PP, Biswas S, Torchilin VP. Current trends in the use of liposomes for tumor targeting. Nanomedicine. 2013;8(9):1509–1528.
  • Gao Y, Li Z, Xie X, et al. Dendrimeric anticancer prodrugs for targeted delivery of ursolic acid to folate receptor-expressing cancer cells: synthesis and biological evaluation. Eur J Pharm Sci. 2015;70:55–63.
  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 1997;23(1–3):3–25.
  • Szakács G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM. Targeting multidrug resistance in cancer. Nat Rev Drug Discov. 2006;5(3):219–234.
  • Couvreur P, Vauthier C. Nanotechnology: intelligent design to treat complex disease. Pharm Res. 2006;23(7):1417–1450.
  • Park JH, Lee S, Kim J-H, Park K, Kim K, Kwon IC. Polymeric nanomedicine for cancer therapy. Prog Polym Sci. 2008;33(1):113–137.
  • Madni A, Batool A, Noreen S, et al. Novel nanoparticulate systems for lung cancer therapy: an updated review. J Drug Target. 2017;25(6):499–512.
  • Rawat M, Singh D, Saraf S, Saraf S. Nanocarriers: promising vehicle for bioactive drugs. Biol Pharm Bull. 2006;29(9):1790–1798.
  • Adams ML, Lavasanifar A, Kwon GS. Amphiphilic block copolymers for drug delivery. J Pharm Sci. 2003;92(7):1343–1355.
  • Batrakova E, Dorodnych TY, Klinskii EY, et al. Anthracycline antibiotics non-covalently incorporated into the block copolymer micelles: in vivo evaluation of anticancer activity. Br J Cancer. 1996;74(10):1545–1552.
  • Nakanishi T, Fukushima S, Okamoto K, et al. Development of the polymer micelle carrier system for doxorubicin. J Controlled Release. 2001;74(1–3):295–302.
  • Nasongkla N, Bey E, Ren J, et al. Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett. 2006;6(11):2427–2430.
  • Zhou M, Yi Y, Liu L, et al. Polymeric micelles loading with ursolic acid enhancing antitumor effect on hepatocellular carcinoma. J Cancer. 2019;10(23):5820.
  • Gradishar WJ, Tjulandin S, Davidson N, et al. Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil–based paclitaxel in women with breast cancer. J Clin Oncol. 2005;23(31):7794–7803.
  • Green M, Manikhas G, Orlov S, et al. Abraxane®, a novel Cremophor®-free, albumin-bound particle form of paclitaxel for the treatment of advanced non-small-cell lung cancer. Ann Oncol. 2006;17(8):1263–1268.
  • Zhang F, Ni Q, Jacobson O, et al. Polymeric nanoparticles with a glutathione‐sensitive heterodimeric multifunctional prodrug for in vivo drug monitoring and synergistic cancer therapy. Angewandte Chemie Int Edition. 2018;57(24):7066–7070.
  • Bangham A. Liposomes: the Babraham connection. Chem Phys Lipids. 1993;64(1–3):275–285.
  • Hare JI, Lammers T, Ashford MB, Puri S, Storm G, Barry ST. Challenges and strategies in anticancer nanomedicine development: an industry perspective. Adv Drug Deliv Rev. 2017;108:25–38.
  • Hofheinz R-D, Gnad-Vogt SU, Beyer U, Hochhaus A. Liposomal encapsulated anticancer drugs. Anticancer Drugs. 2005;16(7):691–707.
  • Markman M. Pegylated liposomal doxorubicin in the treatment of cancers of the breast and ovary. Expert Opin Pharmacother. 2006;7(11):1469–1474.
  • Rosenthal E, Poizot-Martin I, Saint-Marc T, Spano J. Phase IV study of liposomal daunorubicin (DaunoXome) in AIDS-related Kaposi sarcoma. Am J Clin Oncol. 2002;25(1):57–59.
  • Attama AA, Momoh MA, Builders PF. Lipid nanoparticulate drug delivery systems: a revolution in dosage form design and development. Recent Adv Novel Drug Carrier Sys. 2012;5:107–140.
  • Haider M, Abdin SM, Kamal L, Orive G. Nanostructured lipid carriers for delivery of chemotherapeutics: A review. Pharmaceutics. 2020;12(3):288.
  • Severino P, Andreani T, Macedo AS, et al. Current state-of-art and new trends on lipid nanoparticles (SLN and NLC) for oral drug delivery. J Drug Deliv. 2012;2012.
  • Khatak S, Dureja H. Structural Composition of Solid Lipid Nanoparticles for Invasive and Non-invasive Drug Delivery. Curr Nanomater. 2017;2(3):129–153.
  • Mishra DK, Dhote V, Bhatnagar P, Mishra PK. Engineering solid lipid nanoparticles for improved drug delivery: promises and challenges of translational research. Drug Deliv Transl Res. 2012;2(4):238–253.
  • Manjunath K, Reddy JS, Venkateswarlu V. Solid lipid nanoparticles as drug delivery systems. Methods Find Exp Clin Pharmacol. 2005;27(2):127–144.
  • Sathali A, Ekambaram P, Priyanka K. Solid lipid nanoparticles: a review. Sci Rev Chem Commun. 2012;2(1):80–102.
  • Yadav N, Khatak S, Sara US. Solid lipid nanoparticles-a review. Int J Appl Pharm. 2013;5(2):8–18.
  • Lingayat VJ, Zarekar NS, Shendge RS. Solid lipid nanoparticles: a review. Nanosci Nanotech Res. 2017;2:67–72.
  • Kumar CS, Thangam R, Mary SA, Kannan PR, Arun G, Madhan B. Targeted delivery and apoptosis induction of trans-resveratrol-ferulic acid loaded chitosan coated folic acid conjugate solid lipid nanoparticles in colon cancer cells. Carbohydr Polym. 2020;231:115682.
  • Bayón-Cordero L, Alkorta I, Arana L. Application of solid lipid nanoparticles to improve the efficiency of anticancer drugs. Nanomaterials. 2019;9(3):474.
  • Dolatabadi JEN, Valizadeh H, Hamishehkar H. Solid lipid nanoparticles as efficient drug and gene delivery systems: recent breakthroughs. Adv Pharm Bulletin. 2015;5(2):151.
  • Puri A, Loomis K, Smith B, et al. Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Critical Rev Therapeutic Drug Carrier Sys. 2009;26:6.
  • Swathi G, Prasanthi N, Manikiran S, Ramarao N. Solid lipid nanoparticles: colloidal carrier systems for drug delivery. ChemInform. 2012;43(2).
  • Wissing S, Kayser O, Müller R. Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev. 2004;56(9):1257–1272.
  • Karagöz U, Kotmakçı M, Akbaba H, Çetintaş VB, Kantarcı G. Preparation and characterization of non-viral gene delivery systems with pEGFP-C1 Plasmid DNA. Br J Pharm Sci. 2018;54:1.
  • Zhao Y, Chang Y-X, Hu X, Liu C-Y, Quan L-H, Liao Y-H. Solid lipid nanoparticles for sustained pulmonary delivery of Yuxingcao essential oil: preparation, characterization and in vivo evaluation. Int J Pharm. 2017;516(1–2):364–371.
  • Souto EB, Baldim I, Oliveira WP, et al. SLN and NLC for topical, dermal, and transdermal drug delivery. Expert Opin Drug Deliv. 2020;17(3):357–377.
  • Benson HA, Grice JE, Mohammed Y, Namjoshi S, Roberts MS. Topical and transdermal drug delivery: from simple potions to smart technologies. Curr Drug Deliv. 2019;16(5):444–460.
  • Yang T, Cui F-D, Choi M-K, et al. Enhanced solubility and stability of PEGylated liposomal paclitaxel: in vitro and in vivo evaluation. Int J Pharm. 2007;338(1–2):317–326.
  • Béduneau A, Saulnier P, Benoit J-P. Active targeting of brain tumors using nanocarriers. Biomaterials. 2007;28(33):4947–4967.
  • Byrne JD, Betancourt T, Brannon-Peppas L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev. 2008;60(15):1615–1626.
  • Fundarò A, Cavalli R, Bargoni A, Vighetto D, Zara GP, Gasco MR. Non-stealth and stealth solid lipid nanoparticles (SLN) carrying doxorubicin: pharmacokinetics and tissue distribution after iv administration to rats. Pharmacol Res. 2000;42(4):337–343.
  • Sukumar UK, Bhushan B, Dubey P, Matai I, Sachdev A, Packirisamy G. Emerging applications of nanoparticles for lung cancer diagnosis and therapy. Int Nano Lett. 2013;3(1):45.
  • Nemunaitis J, Swisher SG, Timmons T, et al. Adenovirus-mediated p53 gene transfer in sequence with cisplatin to tumors of patients with non–small-cell lung cancer. J Clin Oncol. 2000;18(3):609.
  • Mundargi RC, Babu VR, Rangaswamy V, Patel P, Aminabhavi TM. Nano/micro technologies for delivering macromolecular therapeutics using poly (D, L-lactide-co-glycolide) and its derivatives. J Controlled Release. 2008;125(3):193–209.
  • Singh M, Briones M, Ott G, O’Hagan D. Cationic microparticles: a potent delivery system for DNA vaccines. Proce Nat Acad Sci. 2000;97(2):811–816.
  • Kim CH, Lee SG, Kang MJ, Lee S, Choi YW. Surface modification of lipid-based nanocarriers for cancer cell-specific drug targeting. J Pharm Inves. 2017;47(3):203–227.
  • Din F, Aman W, Ullah I, et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine. 2017;12:7291.
  • Arias Clares L. Lipid-based drug delivery systems for cancer treatment. Curr Drug Targets. 2011;12(8):1151–1165.
  • Lin Y-S, Lee M-Y, Yang C-H, Huang K-S. Active targeted drug delivery for microbes using nanocarriers. Curr Top Med Chem. 2015;15(15):1525–1531.
  • Attia MF, Anton N, Wallyn J, Omran Z, Vandamme TF. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J Pharm Pharm. 2019;71(8):1185–1198.
  • Khan MM, Madni A, Torchilin V, et al. Lipid-chitosan hybrid nanoparticles for controlled delivery of cisplatin. Drug Deliv. 2019;26(1):765–772.
  • Harms M, Müller-Goymann C. Solid lipid nanoparticles for drug delivery. J Drug Deliv Sci Technol. 2011;21(1):89–99.
  • Das S, Das MK. Surface Modification of Resorcinarene-Based Self-Assembled Solid Lipid Nanoparticles for Drug Targeting. Springer: Surface Modification of Nanoparticles for Targeted Drug Delivery; 2019:311–329.
  • Song H, Wei M, Zhang N, et al. Enhanced permeability of blood–brain barrier and targeting function of brain via borneol-modified chemically solid lipid nanoparticle. Int J Nanomedicine. 2018;13:1869.
  • Bartsch M, Weeke-Klimp AH, Hoenselaar EP, et al. Stabilized lipid coated lipoplexes for the delivery of antisense oligonucleotides to liver endothelial cells in vitro and in vivo. J Drug Target. 2004;12(9–10):613–621.
  • Paliwal R, Rai S, Vaidya B, et al. Effect of lipid core material on characteristics of solid lipid nanoparticles designed for oral lymphatic delivery. Nanomedicine. 2009;5(2):184–191.
  • Lu B, Xiong S-B, Yang H, Yin X-D, Chao R-B. Solid lipid nanoparticles of mitoxantrone for local injection against breast cancer and its lymph node metastases. Eur j Pharm Sci. 2006;28(1–2):86–95.
  • Cai W, Shin D-W, Chen K, et al. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett. 2006;6(4):669–676.
  • Yaghini E, Seifalian AM, MacRobert AJ Quantum dots and their potential biomedical applications in photosensitization for photodynamic therapy. 2009.
  • Samia AC, Chen X, Burda C. Semiconductor quantum dots for photodynamic therapy. J Am Chem Soc. 2003;125(51):15736–15737.
  • Hardman R. A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect. 2006;165–172.
  • Samanta S, Kumar S, Battula V, Jaryal A, Sardana N, Kailasam K. Quantum dot-sensitized O-linked heptazine polymer photocatalyst for the metal-free visible light hydrogen generation. RSC Adv. 2020;10(50):29633–29641.
  • Cong S, Zhao Z Carbon Quantum Dots: A Component of Efficient Visible Light Photocatalysts: InTech; 2018.
  • Abbasi E, Kafshdooz T, Bakhtiary M, et al. Biomedical and biological applications of quantum dots. Artif Cells, Nanomed Biotechnol. 2016;44(3):885–891.
  • Jamieson T, Bakhshi R, Petrova D, Pocock R, Imani M, Seifalian AM. Biological applications of quantum dots. Biomaterials. 2007;28(31):4717–4732.
  • Santana CP, Mansur AA, Carvalho SM. Bi-functional quantum dot-polysaccharide-antibody immunoconjugates for bioimaging and killing brain cancer cells in vitro. Mater Lett. 2019;252:333–337.
  • Wilson R, Spiller DG, Beckett A, Prior IA, Sée V. Highly stable dextran-coated quantum dots for biomolecular detection and cellular imaging. Chem Mater. 2010;22(23):6361–6369.
  • Wen L, Qiu L, Wu Y, Hu X, Zhang X. Aptamer-modified semiconductor quantum dots for biosensing applications. Sensors. 2017;17(8):1736.
  • Thovhogi N, Sibuyi NRS, Onani MO, Meyer M, Madiehe AM. Peptide-functionalized quantum dots for potential applications in the imaging and treatment of obesity. Int J Nanomedicine. 2018;13:2551.
  • Pal S, Dalal C, Jana NR. Supramolecular Host–Guest Chemistry-Based Folate/Riboflavin Functionalization and Cancer Cell Labeling of Nanoparticles. ACS Omega. 2017;2(12):8948–8958.
  • Malik P, Gulia S, Kakkar R. Quantum dots for diagnosis of cancers. Adv Mat Lett. 2013;4:811–822.
  • Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T. Quantum dots versus organic dyes as fluorescent labels. Nat Methods. 2008;5(9):763.
  • Zhang H, Yee D, Wang C Quantum dots for cancer diagnosis and therapy: biological and clinical perspectives. 2008.
  • Park J-H, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ. Micellar hybrid nanoparticles for simultaneous magnetofluorescent imaging and drug delivery. Angewandte Chemie. 2008;120(38):7394–7398. doi:10.1002/ange.200801810
  • Gao J, Chen K, Miao Z, et al. Affibody-based nanoprobes for HER2-expressing cell and tumor imaging. Biomaterials. 2011;32(8):2141–2148. doi:10.1016/j.biomaterials.2010.11.053
  • Dubertret B. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science. 2002;298(5599):1759–1762. doi:10.1126/science.1077194
  • Carion O, Mahler B, Pons T, Dubertret B. Synthesis, encapsulation, purification and coupling of single quantum dots in phospholipid micelles for their use in cellular and in vivo imaging. Nat Protoc. 2007;2(10):2383–2390. doi:10.1038/nprot.2007.351
  • Schroeder J, Shweky I, Shmeeda H, Banin U, Gabizon A. Folate-mediated tumor cell uptake of quantum dots entrapped in lipid nanoparticles. J Controlled Release. 2007;124(1–2):28–34. doi:10.1016/j.jconrel.2007.08.028
  • Olerile LD, Liu Y, Zhang B, et al. Near-infrared mediated quantum dots and paclitaxel co-loaded nanostructured lipid carriers for cancer theragnostic. Colloids Surf B Biointerfaces. 2017;150:121–130. doi:10.1016/j.colsurfb.2016.11.032
  • Wei Z, Yin X, Cai Y, et al. Antitumor effect of a Pt-loaded nanocomposite based on graphene quantum dots combats hypoxia-induced chemoresistance of oral squamous cell carcinoma. <![CDATA[International Journal of Nanomedicine]]>. 2018;13:1505. doi:10.2147/IJN.S156984
  • Liu X, Shou D, Chen C, Mao H, Kong Y, Tao Y. Core-shell structured polypyrrole/mesoporous SiO2 nanocomposite capped with graphene quantum dots as gatekeeper for irradiation-controlled release of methotrexate. Mater Sci Eng. 2017;81:206–212. doi:10.1016/j.msec.2017.08.001
  • Li L, Wang J, Kong H, Zeng Y, Liu G. Functional biomimetic nanoparticles for drug delivery and theranostic applications in cancer treatment. Sci Tech Adv Materials. 2018;19(1):771–790. doi:10.1080/14686996.2018.1528850
  • Wang X, Wang Y, Chen ZG, Shin DM. Advances of cancer therapy by nanotechnology. Cancer Res Treatment. 2009;41(1):1.
  • Luo Y, Yin X, Yin X, et al. Dual pH/redox-responsive mixed polymeric micelles for anticancer drug delivery and controlled release. Pharmaceutics. 2019;11(4):176.
  • RVd A, SdS S, Igne Ferreira E, Giarolla J. New advances in general biomedical applications of PAMAM dendrimers. Molecules. 2018;23(11):2849.
  • Lee S, Son SJ, Song SJ, Ha TH, Choi JS. Polyamidoamine (PAMAM) dendrimers modified with cathepsin-B cleavable oligopeptides for enhanced gene delivery. Polymers. 2017;9(6):224.
  • Tomalia DA, Fréchet JM. Discovery of dendrimers and dendritic polymers: a brief historical perspective. J Polym Sci a Polym Chem. 2002;40(16):2719–2728.
  • Oliveira JM, Salgado AJ, Sousa N, Mano JF, Reis RL. Dendrimers and derivatives as a potential therapeutic tool in regenerative medicine strategies—A review. Prog Polym Sci. 2010;35(9):1163–1194.
  • Sharma AK, Gothwal A, Kesharwani P, Alsaab H, Iyer AK, Gupta U. Dendrimer nanoarchitectures for cancer diagnosis and anticancer drug delivery. Drug Discov Today. 2017;22(2):314–326.
  • Gai S, Yang G, Yang P, et al. Recent advances in functional nanomaterials for light–triggered cancer therapy. Nano Today. 2018;19:146–187.
  • Nigam S, Bahadur D. Dendrimer-conjugated iron oxide nanoparticles as stimuli-responsive drug carriers for thermally-activated chemotherapy of cancer. Colloids Surf B Biointerfaces. 2017;155:182–192.
  • Amreddy N, Babu A, Panneerselvam J, et al. Chemo-biologic combinatorial drug delivery using folate receptor-targeted dendrimer nanoparticles for lung cancer treatment. Nanomedicine. 2018;14(2):373–384.
  • Yousef S, Alsaab HO, Sau S, Iyer AK. Development of asialoglycoprotein receptor directed nanoparticles for selective delivery of curcumin derivative to hepatocellular carcinoma. Heliyon. 2018;4(12):e01071.
  • Mishra V, Kesharwani P. Dendrimer technologies for brain tumor. Drug Discov Today. 2016;21(5):766–778.
  • Liu S, Guo Y, Huang R, et al. Gene and doxorubicin co-delivery system for targeting therapy of glioma. Biomaterials. 2012;33(19):4907–4916.
  • Cisterna BA, Kamaly N, Choi WI, Tavakkoli A, Farokhzad OC, Vilos C. Targeted nanoparticles for colorectal cancer. Nanomedicine. 2016;11(18):2443–2456.
  • Xie J, Wang J, Chen H, et al. Multivalent conjugation of antibody to dendrimers for the enhanced capture and regulation on colon cancer cells. Sci Rep. 2015;5(1):1–10.
  • Gulbake A, Jain A, Jain A, Jain A, Jain SK. Insight to drug delivery aspects for colorectal cancer. World j Gastroenterology. 2016;22(2):582.
  • Zhao K, Shi N, Sa Z, Wang HX, Lu CH, Xu XY. Text mining and analysis of treatise on febrile diseases based on natural language processing. World J Tradit Chin Med. 2020;6:67–73.
  • Minelli C, Lowe SB, Stevens MM. Engineering nanocomposite materials for cancer therapy. Small. 2010;6(21):2336–2357.
  • Shao W, Paul A, Rodes L, Prakash S. A new carbon nanotube-based breast cancer drug delivery system: preparation and in vitro analysis using paclitaxel. Cell Biochem Biophys. 2015;71(3):1405–1414.
  • Boncel S, Zając P, Koziol KK. Liberation of drugs from multi-wall carbon nanotube carriers. J Controlled Release. 2013;169(1–2):126–140.
  • Eatemadi A, Daraee H, Karimkhanloo H, et al. Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Res Lett. 2014;9(1):393.
  • Wong BS, Yoong SL, Jagusiak A, et al. Carbon nanotubes for delivery of small molecule drugs. Adv Drug Deliv Rev. 2013;65(15):1964–2015.
  • Matsumura S, Ajima K, Yudasaka M, Iijima S, Shiba K. Dispersion of cisplatin-loaded carbon nanohorns with a conjugate comprised of an artificial peptide aptamer and polyethylene glycol. Mol Pharm. 2007;4(5):723–729.
  • Li J, Yap SQ, Yoong SL, et al. Carbon nanotube bottles for incorporation, release and enhanced cytotoxic effect of cisplatin. Carbon. 2012;50(4):1625–1634.
  • Gao L, Jia CH, Wang W. Recent advances in the study of ancient books on traditional Chinese medicine. World J Tradit Chin Med. 2020;6:61–66.
  • Bhirde AA, Patel V, Gavard J, et al. Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano. 2009;3(2):307–316.
  • Bhirde AA, Sousa AA, Patel V, et al. Imaging the distribution of individual platinum-based anticancer drug molecules attached to single-wall carbon nanotubes. Nanomedicine. 2009;4(7):763–772.
  • Tsang S, Chen Y, Harris P, Green M. A simple chemical method of opening and filling carbon nanotubes. Nature. 1994;372(6502):159–162.
  • Smolensky ED, Park HYE, Berquó TS, Pierre VC. Surface functionalization of magnetic iron oxide nanoparticles for MRI applications–effect of anchoring group and ligand exchange protocol. Contrast Media Mol Imaging. 2011;6(4):189–199.
  • Kale SN, Jadhav AD, Verma S, et al. Characterization of biocompatible NiCo2O4 nanoparticles for applications in hyperthermia and drug delivery. Nanomedicine. 2012;8(4):452–459.
  • Sayed FN, Jayakumar OD, Sudakar C, Naik R, Tyagi AK. Possible weak ferromagnetism in pure and M (Mn, Cu, Co, Fe and Tb) doped NiGa2O4 nanoparticles. J Nanosci Nanotechnol. 2011;11(4):3363–3369.
  • Grassi-Schultheiss P, Heller F, Dobson J. Analysis of magnetic material in the human heart, spleen and liver. Biometals. 1997;10(4):351–355.
  • Banerjee IA, Yu L, Shima M, et al. Magnetic nanotube fabrication by using bacterial magnetic nanocrystals. Adv Mater. 2005;17(9):1128–1131.
  • Yadollahpour A, Rashidi S. Magnetic nanoparticles: a review of chemical and physical characteristics important in medical applications. Oriental J Chem. 2015;31(Special Issue 1):25–30.
  • Neuberger T, Schöpf B, Hofmann H, Hofmann M, Von Rechenberg B. Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J Magn Magn Mater. 2005;293(1):483–496.
  • Akbarzadeh A, Samiei M, Davaran S. Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett. 2012;7(1):144.
  • Chen KX. Academician kai-xian chen talks about the development of traditional chinese medicine and global medicine. World J Tradit Chin Med. 2020;6:1–11.
  • Zhou H, Qian W, Uckun FM, et al. IGF1 receptor targeted theranostic nanoparticles for targeted and image-guided therapy of pancreatic cancer. ACS Nano. 2015;9(8):7976–7991.
  • Lee GY, Qian WP, Wang L, et al. Theranostic nanoparticles with controlled release of gemcitabine for targeted therapy and MRI of pancreatic cancer. ACS Nano. 2013;7(3):2078–2089.
  • Lima-Tenorio MK, Pineda EAG, Ahmad NM, Fessi H, Elaissari A. Magnetic nanoparticles: in vivo cancer diagnosis and therapy. Int J Pharm. 2015;493(1–2):313–327.
  • Huang X, Yi C, Fan Y, et al. Magnetic Fe3O4 nanoparticles grafted with single-chain antibody (scFv) and docetaxel loaded β-cyclodextrin potential for ovarian cancer dual-targeting therapy. Mater Sci Eng. 2014;42:325–332.
  • Aires A, Ocampo SM, Simões BM, et al. Multifunctionalized iron oxide nanoparticles for selective drug delivery to CD44-positive cancer cells. Nanotechnology. 2016;27(6):065103.
  • Tong HY, Zhang SQ, Murtaza G, et al. The present scenario, challenges, and future anticipation of traditional Mongolian medicine in China. World J Tradit Chin Med. 2019;4:187–192.
  • Dong H, Huang J, Koepsel RR, Ye P, Russell AJ, Matyjaszewski K. Recyclable antibacterial magnetic nanoparticles grafted with quaternized poly (2-(dimethylamino) ethyl methacrylate) brushes. Biomacromolecules. 2011;12(4):1305–1311.
  • Huang Y-F, Wang Y-F, Yan X-P. Amine-functionalized magnetic nanoparticles for rapid capture and removal of bacterial pathogens. Environ Sci Technol. 2010;44(20):7908–7913.
  • Meng X, Seton HC, Lu LT, Prior IA, Thanh NT, Song B. Magnetic CoPt nanoparticles as MRI contrast agent for transplanted neural stem cells detection. Nanoscale. 2011;3(3):977–984.
  • Yiu HH, Pickard MR, Olariu CI, Williams SR, Chari DM, Rosseinsky MJ. Fe 3 O 4-PEI-RITC magnetic nanoparticles with imaging and gene transfer capability: development of a tool for neural cell transplantation therapies. Pharm Res. 2012;29(5):1328–1343.
  • Harisinghani MG, Barentsz J, Hahn PF, et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. New Eng J Med. 2003;348(25):2491–2499.
  • Yang SJ, Wang ZY, Zhao HH, Ren XQ. Modern research of tibetan medicine. World J Tradit Chin Med. 2019;5:131–138.
  • Frullano L, Meade TJ. Multimodal MRI contrast agents. JBIC J Biol Inorganic Chem. 2007;12(7):939–949.
  • Weissleder R, Pittet MJ. Imaging in the era of molecular oncology. Nature. 2008;452(7187):580–589.
  • Vallabani NV, Singh S, Karakoti AS. Magnetic nanoparticles: current trends and future aspects in diagnostics and nanomedicine. Curr Drug Metab. 2019;20(6):457–472.