214
Views
10
CrossRef citations to date
0
Altmetric
Original Research

Honokiol/Magnolol-Loaded Self-Assembling Lecithin-Based Mixed Polymeric Micelles (lbMPMs) for Improving Solubility to Enhance Oral Bioavailability

, , , ORCID Icon, & ORCID Icon
Pages 651-665 | Published online: 26 Jan 2021

References

  • Shen -C-C, Ni C-L, Shen Y-C, et al. Phenolic Constituents from the Stem Bark of Magnolia officinalis. J Nat Prod. 2009;72(1):168–171. doi:10.1021/np800494e
  • Ong CP, Lee WL, Tang YQ, Yap WH. Honokiol: A Review of Its Anticancer Potential and Mechanisms. Cancers. 2019;12(1):1. doi:10.3390/cancers12010048
  • Yang C, Zhi X, Xu H. Advances on Semisynthesis, Total Synthesis, and Structure-Activity Relationships of Honokiol and Magnolol Derivatives. Mini Rev Med Chem. 2016;16(5):404–426. doi:10.2174/1389557516666151120115558
  • Zhao C, Liu Z-Q. Comparison of antioxidant abilities of magnolol and honokiol to scavenge radicals and to protect DNA. Biochimie. 2011;93(10):1755–1760. doi:10.1016/j.biochi.2011.06.012
  • Wang T, Chen W, Wu J. H2-P, a honokiol derivative, exerts anti-angiogenesis effects via c-MYC signaling pathway in glioblastoma. J Cell Biochem. 2018;119(4):3142–3148. doi:10.1002/jcb.26462
  • Lu X, Lu X, Zhang Z, Lv LH. Preparation and Characterization of Honokiol Nanosuspensions and Preliminary Evaluation of Anti-Inflammatory Effect. AAPS PharmSciTech. 2020;21(2):62. doi:10.1208/s12249-019-1602-x
  • Zhang B, Wang -P-P, Hu K-L, et al. Antidepressant-Like Effect and Mechanism of Action of Honokiol on the Mouse Lipopolysaccharide (LPS) Depression Model. Molecules. 2019;24(11):2035. doi:10.3390/molecules24112035
  • Banik K, Ranaware AM, Deshpande V, et al. Honokiol for cancer therapeutics: A traditional medicine that can modulate multiple oncogenic targets. Pharmacol Res. 2019;144:192–209. doi:10.1016/j.phrs.2019.04.004
  • Zhu M, Li B, Ma H, et al. Synthesis and in vitro antitumor evaluation of honokiol derivatives. Bioorg Med Chem Lett. 2020;30(2):126849. doi:10.1016/j.bmcl.2019.126849
  • Chei S, Oh H-J, Song J-H, Seo Y-J, Lee K, Lee B-Y. Magnolol Suppresses TGF-β-Induced Epithelial-to-Mesenchymal Transition in Human Colorectal Cancer Cells. Front Oncol. 2019;9:752. doi:10.3389/fonc.2019.00752
  • Shen J, Ma H, Zhang T, et al. Magnolol Inhibits the Growth of Non-Small Cell Lung Cancer via Inhibiting Microtubule Polymerization. Cell Physiol Biochem. 2017;42(5):1789–1801. doi:10.1159/000479458
  • Shen L, Zhang F, Huang R, Yan J, Shen B. Honokiol inhibits bladder cancer cell invasion through repressing SRC-3 expression and epithelial-mesenchymal transition. Oncol Lett. 2017;14(4):4294–4300. doi:10.3892/ol.2017.6665
  • Sengupta S, Nagalingam A, Muniraj N, et al. Activation of tumor suppressor LKB1 by honokiol abrogates cancer stem-like phenotype in breast cancer via inhibition of oncogenic Stat3. Oncogene. 2017;36(41):5709–5721. doi:10.1038/onc.2017.164
  • Tang H, Zhang Y, Li D, et al. Discovery and synthesis of novel magnolol derivatives with potent anticancer activity in non-small cell lung cancer. Eur J Med Chem. 2018;156:190–205. doi:10.1016/j.ejmech.2018.06.048
  • Yamaguchi N, Satoh-Yamaguchi K, Ono M. In vitro evaluation of antibacterial, anticollagenase, and antioxidant activities of hop components (Humulus lupulus) addressing acne vulgaris. Phytomedicine. 2009;16(4):369–376. doi:10.1016/j.phymed.2008.12.021
  • Kang JS, Lee KH, Han MH, et al. Antiinflammatory activity of methanol extract isolated from stem bark of Magnolia kobus. Phytother Res. 2008;22(7):883–888. doi:10.1002/ptr.2386
  • Lin S-P, Tsai S-Y, Lee Chao P-D, Chen Y-C, Hou Y-C. Pharmacokinetics, bioavailability, and tissue distribution of magnolol following single and repeated dosing of magnolol to rats. Planta Med. 2011;77(16):1800–1805. doi:10.1055/s-0030-1271159
  • Yu R, Zou Y, Liu B, Guo Y, Wang X, Han M. Surface modification of pH-sensitive honokiol nanoparticles based on dopamine coating for targeted therapy of breast cancer. Colloids Surf B Biointerfaces. 2019;177:1–10. doi:10.1016/j.colsurfb.2019.01.047
  • Wang XH, Deng LY, Cai LL, et al. Preparation, characterization, pharmacokinetics, and bioactivity of honokiol-in-hydroxypropyl-β-cyclodextrin-in-liposome. J Pharm Sci-Us. 2011;100(8):3357–3364. doi:10.1002/jps.22534
  • Wang X-H, Cai -L-L, Zhang X-Y, et al. Improved solubility and pharmacokinetics of PEGylated liposomal honokiol and human plasma protein binding ability of honokiol. Int J Pharmaceut. 2011;410(1–2):169–174. doi:10.1016/j.ijpharm.2011.03.003
  • Yang B, Ni X, Chen L, et al. Honokiol-loaded polymeric nanoparticles: an active targeting drug delivery system for the treatment of nasopharyngeal carcinoma. Drug Deliv. 2017;24(1):660–669. doi:10.1080/10717544.2017.1303854
  • Godugu C, Doddapaneni R, Singh M. Honokiol nanomicellar formulation produced increased oral bioavailability and anticancer effects in triple negative breast cancer (TNBC). Colloids Surf B Biointerfaces. 2017;153:208–219. doi:10.1016/j.colsurfb.2017.01.038
  • Gong J, Chen M, Zheng Y, Wang S, Wang Y. Polymeric micelles drug delivery system in oncology. J Control Release. 2012;159(3):312–323. doi:10.1016/j.jconrel.2011.12.012
  • Lu Y, Park K. Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs. Int J Pharm. 2013;453(1):198–214. doi:10.1016/j.ijpharm.2012.08.042
  • Jones M, Leroux J. Polymeric micelles – a new generation of colloidal drug carriers. Eur j Pharm Biopharm. 1999;48(2):101–111. doi:10.1016/S0939-6411(99)00039-9
  • Yokoyama M. Polymeric micelles as a new drug carrier system and their required considerations for clinical trials. Expert Opin Drug Del. 2010;7(2):145–158. doi:10.1517/17425240903436479
  • Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. J Control Release. 2000;65(1–2):271–284. doi:10.1016/S0168-3659(99)00248-5
  • Maeda H, Sawa T, Konno T. Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J Control Release. 2001;74(1–3):47–61. doi:10.1016/S0168-3659(01)00309-1
  • Chen Y-C, Su C-Y, Jhan H-J, Ho H-O, Sheu M-T. Physical characterization and in vivo pharmacokinetic study of self-assembling amphotericin B-loaded lecithin-based mixed polymeric micelles.. Int J Nanomedicine. 2015;10:7265–7274. doi:10.2147/IJN.S95194
  • Chen L-C, Chen Y-C, Su C-Y, Hong C-S, Ho H-O, Sheu M-T. Development and characterization of self-assembling lecithin-based mixed polymeric micelles containing quercetin in cancer treatment and an in vivo pharmacokinetic study.. Int J Nanomedicine. 2016;11:1557–1566. doi:10.2147/IJN.S103681
  • Chen L-C, Chen Y-C, Su C-Y, Wong W-P, Sheu M-T, Ho H-O. Development and Characterization of Lecithin-based Self-assembling Mixed Polymeric Micellar (saMPMs) Drug Delivery Systems for Curcumin. Sci Rep. 2016;6(1):37122. doi:10.1038/srep37122
  • Yang K-Y, Lin L-C, Tseng T-Y, Wang S-C, Tsai T-H. Oral bioavailability of curcumin in rat and the herbal analysis from Curcuma longa by LC–MS/MS. J Chromatogr B Anal Technol Biomed Life Sci. 2007;853(1–2):183–189. doi:10.1016/j.jchromb.2007.03.010
  • Zhao L, Shi Y, Zou S, Sun M, Lil L, Zhai ZG. Formulation and in vitro Evaluation of Quercetin Loaded Polymeric Micelles Composed of Pluronic P123 and D-a-Tocopheryl Polyethylene Glycol Succinate. J Biomed Nanotechnol. 2011;7(3):358–365. doi:10.1166/jbn.2011.1298
  • Sheng Y-L, Xu J-H, Shi C-H, et al. UPLC-MS/MS-ESI assay for simultaneous determination of magnolol and honokiol in rat plasma: application to pharmacokinetic study after administration emulsion of the isomer. J Ethnopharmacol. 2014;155(3):1568–1574. doi:10.1016/j.jep.2014.07.052
  • Chang C-E, Hsieh C-M, Huang S-C, Su C-Y, Sheu M-T, Ho H-O. Lecithin-Stabilized Polymeric Micelles (LsbPMs) for Delivering Quercetin: pharmacokinetic Studies and Therapeutic Effects of Quercetin Alone and in Combination with Doxorubicin. Sci Rep. 2018;8(1):17640. doi:10.1038/s41598-018-36162-0
  • Su C-Y, Liu -J-J, Ho Y-S, et al. Development and characterization of docetaxel-loaded lecithin-stabilized micellar drug delivery system (L sb MDDs) for improving the therapeutic efficacy and reducing systemic toxicity. Eur J Pharm Biopharm. 2018;123:9–19. doi:10.1016/j.ejpb.2017.11.006
  • Xu Q, Yi L-T, Pan Y, et al. Antidepressant-like effects of the mixture of honokiol and magnolol from the barks of Magnolia officinalis in stressed rodents. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32(3):715–725. doi:10.1016/j.pnpbp.2007.11.020
  • Han H-K, Van Anh LT. Modulation of P-glycoprotein expression by honokiol, magnolol and 4-O-methylhonokiol, the bioactive components of Magnolia officinalis.. Anticancer Res. 2012;32(10):4445–4452.
  • Abdelbary GA, Tadros MI. Brain targeting of olanzapine via intranasal delivery of core–shell difunctional block copolymer mixed nanomicellar carriers: in vitro characterization, ex vivo estimation of nasal toxicity and in vivo biodistribution studies. Int J Pharm. 2013;452(1–2):300–310. doi:10.1016/j.ijpharm.2013.04.084
  • Pepić I, Lovrić J, Hafner A, Filipović-Grčić J. Powder form and stability of Pluronic mixed micelle dispersions for drug delivery applications. Drug Dev Ind Pharm. 2014;40(7):944–951. doi:10.3109/03639045.2013.791831
  • Zhao Y, Li Y, Ge J, Li N, Li L-B. Pluronic-poly (acrylic acid)-cysteine/Pluronic L121 mixed micelles improve the oral bioavailability of paclitaxel. Drug Dev Ind Pharm. 2014;40(11):1483–1493. doi:10.3109/03639045.2013.829487
  • Lee ES, Oh YT, Youn YS, et al. Binary mixing of micelles using Pluronics for a nano-sized drug delivery system. Colloids Surf B Biointerfaces. 2011;82(1):190–195. doi:10.1016/j.colsurfb.2010.08.033
  • Alkan‐Onyuksel H, Ramakrishnan S, Chai H-B, Pezzuto JM. A mixed micellar formulation suitable for the parenteral administration of taxol. Pharm Res. 1994;11(2):206–212. doi:10.1023/A:1018943021705
  • Rex S, Zuckermann MJ, Lafleur M, Silvius JR. Experimental and Monte Carlo simulation studies of the thermodynamics of polyethyleneglycol chains grafted to lipid bilayers. Biophys J. 1998;75(6):2900–2914. doi:10.1016/S0006-3495(98)77732-X
  • Tsai T-H, Chou C-J, Cheng F-C, Chen C-F. Pharmacokinetics of honokiol after intravenous administration in rats assessed using high performance liquid chromatography. Journal of Chromatography B: Biomedical Sciences and Applications. 1994;655(1):41–45. doi:10.1016/0378-4347(94)00031-X
  • Tsai TH, Chou CJ, Chen CF. Disposition of magnolol after intravenous bolus and infusion in rabbits.. Drug Metab Dispos. 1994;22(4):518–521.
  • Azhar Shekoufeh Bahari L, Hamishehkar H. The Impact of Variables on Particle Size of Solid Lipid Nanoparticles and Nanostructured Lipid Carriers; A Comparative Literature Review. Adv Pharm Bull. 2016;6(2):143–151. doi:10.15171/apb.2016.021
  • Danaei M, Dehghankhold M, Ataei S, et al. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics. 2018;10(2):2. doi:10.3390/pharmaceutics10020057
  • Liu Y, Wang D, Yang G, Shi Q, Feng F. Comparative pharmacokinetics and brain distribution of magnolol and honokiol after oral administration of Magnolia officinalis cortex extract and its compatibility with other herbal medicines in Zhi-Zi-Hou-Po Decoction to rats. Biomed Chromatogr. 2016;30(3):369–375. doi:10.1002/bmc.3557
  • Xu F, Liu Y, Zhang Z, Song R, Dong H, Tian Y. Rapid simultaneous quantification of five active constituents in rat plasma by high-performance liquid chromatography/tandem mass spectrometry after oral administration of Da-Cheng-Qi decoction. J Pharm Biomed Anal. 2008;47(3):586–595. doi:10.1016/j.jpba.2008.02.005
  • Hattori M, Endo Y, Takebe S, Kobashi K, Fukasaku N, Namba T. Metabolism of magnolol from Magnoliae Cortex. II. Absorption, metabolism and excretion of (ring-14C)magnolol in rats.. Chem Pharm Bull (Tokyo). 1986;34(1):158–167. doi:10.1248/cpb.34.158
  • Wilson FA. Intestinal transport of bile acids.. Am J Physiol. 1981;241(2):G83–G92. doi:10.1152/ajpgi.1981.241.2.G83
  • Sallee VL, Dietschy JM. Determinants of intestinal mucosal uptake of short- and medium-chain fatty acids and alcohols. J Lipid Res. 1973;14(4):475–484. doi:10.1016/S0022-2275(20)36881-4
  • Li X, Yuan Q, Huang Y, Zhou Y, Liu Y. Development of silymarin self-microemulsifying drug delivery system with enhanced oral bioavailability. AAPS PharmSciTech. 2010;11(2):672–678. doi:10.1208/s12249-010-9432-x
  • Wu W, Wang Y, Que L. Enhanced bioavailability of silymarin by self-microemulsifying drug delivery system. Eur J Pharm Biopharm. 2006;63(3):288–294. doi:10.1016/j.ejpb.2005.12.005