181
Views
8
CrossRef citations to date
0
Altmetric
Review

The Opportunities and Challenges of Silica Nanomaterial for Atherosclerosis

, , , , &
Pages 701-714 | Published online: 28 Jan 2021

References

  • Roth GA, Johnson C, Abajobir A, et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol. 2017;70(1):1–25. doi:10.1016/j.jacc.2017.04.052
  • Peng R, Ji H, Jin L, et al. Macrophage-based therapies for atherosclerosis management. J Immunol Res. 2020;2020:8131754. doi:10.1155/2020/8131754
  • Petersen LK, York AW, Lewis DR, et al. Amphiphilic nanoparticles repress macrophage atherogenesis: novel core/shell designs for scavenger receptor targeting and down-regulation. Mol Pharm. 2014;11(8):2815–2824. doi:10.1021/mp500188g
  • Wang Y, Zhang K, Qin X, et al. Biomimetic nanotherapies: red blood cell based core-shell structured nanocomplexes for atherosclerosis management. Adv Sci (Weinh). 2019;6(12):1900172. doi:10.1002/advs.201900172
  • Hu T, Yang J, Cui K, et al. Controlled slow-release drug-eluting stents for the prevention of coronary restenosis: recent progress and future prospects. ACS Appl Mater Interfaces. 2015;7(22):11695–11712. doi:10.1021/acsami.5b01993
  • Khan R, Spagnoli V, Tardif JC, et al. Novel anti-inflammatory therapies for the treatment of atherosclerosis. Atherosclerosis. 2015;240(2):497–509. doi:10.1016/j.atherosclerosis.2015.04.783
  • Lan H, Wang Y, Yin T, et al. Progress and prospects of endothelial progenitor cell therapy in coronary stent implantation. J Biomed Mater Res B Appl Biomater. 2016;104(6):1237–1247. doi:10.1002/jbm.b.33398
  • Shi J, Votruba AR, Farokhzad OC, et al. Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett. 2010;10(9):3223–3230. doi:10.1021/nl102184c
  • Shimizu K, Takeuchi Y, Otsuka K, et al. Development of tissue factor-targeted liposomes for effective drug delivery to stroma-rich tumors. J Control Release. 2020;323:519–529. doi:10.1016/j.jconrel.2020.04.043
  • Huang M, Pu Y, Peng Y, et al. Biotin and glucose dual-targeting, ligand-modified liposomes promote breast tumor-specific drug delivery. Bioorg Med Chem Lett. 2020;30(12):127151. doi:10.1016/j.bmcl.2020.127151
  • Kumar B, Pandey M, Pottoo FH, et al. Liposomes: novel drug delivery approach for targeting Parkinson’s disease. Curr Pharm Des. 2020;26(37):4721–4737. doi:10.2174/1381612826666200128145124
  • Zappavigna S, Abate M, Cossu AM, et al. Urotensin-II-targeted liposomes as a new drug delivery system towards prostate and colon cancer cells. J Oncol. 2019;2019:9293560. doi:10.1155/2019/9293560
  • Hu J, Zhuang W, Ma B, et al. Redox-responsive biomimetic polymeric micelle for simultaneous anticancer drug delivery and aggregation-induced emission active imaging. Bioconjug Chem. 2018;29(6):1897–1910. doi:10.1021/acs.bioconjchem.8b00119
  • Sun C, Liang Y, Hao N, et al. A ROS-responsive polymeric micelle with a π-conjugated thioketal moiety for enhanced drug loading and efficient drug delivery. Org Biomol Chem. 2017;15(43):9176–9185. doi:10.1039/c7ob01975k
  • Triolo D, Craparo EF, Porsio B, et al. Polymeric drug delivery micelle-like nanocarriers for pulmonary administration of beclomethasone dipropionate. Colloids Surf B Biointerfaces. 2017;151:206–214. doi:10.1016/j.colsurfb.2016.11.025
  • Xia H, Zhao Y, Tong R. Ultrasound-mediated polymeric micelle drug delivery. Adv Exp Med Biol. 2016;880:365–384. doi:10.1007/978-3-319-22536-4_20
  • Sulaiman GM, Waheeb HM, Jabir MS, et al. Hesperidin loaded on gold nanoparticles as a drug delivery system for a successful biocompatible, anti-cancer, anti-inflammatory and phagocytosis inducer model. Sci Rep. 2020;10(1):9362. doi:10.1038/s41598-020-66419-6
  • Yücel O, Şengelen A, Emik S, et al. Folic acid-modified methotrexate-conjugated gold nanoparticles as nano-sized trojans for drug delivery to folate receptor-positive cancer cells. Nanotechnology. 2020;31(35):355101. doi:10.1088/1361-6528/ab9395
  • Mahalunkar S, Yadav AS, Gorain M, et al. Functional design of pH-responsive folate-targeted polymer-coated gold nanoparticles for drug delivery and in vivo therapy in breast cancer. Int J Nanomedicine. 2019;14:8285–8302. doi:10.2147/IJN.S215142
  • Hu Y, Niemeyer CM. Designer DNA-silica/carbon nanotube nanocomposites for traceable and targeted drug delivery. J Mater Chem B Mater Biol Med. 2020;8(11):2250–2255. doi:10.1039/c9tb02861g
  • Moradnia H, Raissi H, Shahabi M. The performance of the single-walled carbon nanotube covalently modified with polyethylene glycol to delivery of Gemcitabine anticancer drug in the aqueous environment. J Biomol Struct Dyn. 2020;1–8. doi:10.1080/07391102.2020.1719204
  • Maleki R, Afrouzi HH, Hosseini M, et al. Molecular dynamics simulation of Doxorubicin loading with N-isopropyl acrylamide carbon nanotube in a drug delivery system. Comput Methods Programs Biomed. 2020;184:105303. doi:10.1016/j.cmpb.2019.105303
  • Rakhshaei R, Namazi H, Hamishehkar H, et al. Graphene quantum dot cross-linked carboxymethyl cellulose nanocomposite hydrogel for pH-sensitive oral anticancer drug delivery with potential bioimaging properties. Int J Biol Macromol. 2020;150:1121–1129. doi:10.1016/j.ijbiomac.2019.10.118
  • Gui W, Zhang J, Chen X, et al. N-Doped graphene quantum dot@mesoporous silica nanoparticles modified with hyaluronic acid for fluorescent imaging of tumor cells and drug delivery. Mikrochim Acta. 2017;185(1):66. doi:10.1007/s00604-017-2598-0
  • Javanbakht S, Namazi H. Doxorubicin loaded carboxymethyl cellulose/graphene quantum dot nanocomposite hydrogel films as a potential anticancer drug delivery system. Mater Sci Eng C Mater Biol Appl. 2018;87:50–59. doi:10.1016/j.msec.2018.02.010
  • Ayyanaar S, Balachandran C, Bhaskar RC, et al. ROS-responsive chitosan coated magnetic iron oxide nanoparticles as potential vehicles for targeted drug delivery in cancer therapy. Int J Nanomedicine. 2020;15:3333–3346. doi:10.2147/IJN.S249240
  • Nguyen MP, Thuy VTT, Kim D. Integration of iron oxide nanoparticles and polyaspartamide biopolymer for MRI image contrast enhancement and an efficient drug-delivery system in cancer therapy. Nanotechnology. 2020;31(33):335712. doi:10.1088/1361-6528/ab8f49
  • Alyassin Y, Sayed EG, Mehta P, et al. Application of mesoporous silica nanoparticles as drug delivery carriers for chemotherapeutic agents. Drug Discov Today. 2020;25(8):1513–1520. doi:10.1016/j.drudis.2020.06.006
  • AbouAitah K, Hassan HA, Swiderska-Sroda A, et al. Targeted nano-drug delivery of colchicine against colon cancer cells by means of mesoporous silica nanoparticles. Cancers (Basel). 2020;12(1):144. doi:10.3390/cancers12010144
  • Watermann A, Brieger J. Mesoporous silica nanoparticles as drug delivery vehicles in cancer. Nanomaterials (Basel). 2017;7(7). doi:10.3390/nano7070189
  • Zhou Y, Quan G, Wu Q, et al. Mesoporous silica nanoparticles for drug and gene delivery. Acta Pharm Sin B. 2018;8(2):165–177. doi:10.1016/j.apsb.2018.01.007
  • Iturrioz-Rodríguez N, Correa-Duarte MA, Fanarraga ML. Controlled drug delivery systems for cancer based on mesoporous silica nanoparticles. Int J Nanomedicine. 2019;14:3389–3401. doi:10.2147/IJN.S198848
  • Kesse S, Boakye-Yiadom KO, Ochete BO, et al. Mesoporous silica nanomaterials: versatile nanocarriers for cancer theranostics and drug and gene delivery. Pharmaceutics. 2019;11(2):77. doi:10.3390/pharmaceutics11020077
  • Zhang W, Liu M, Liu A, et al. Advances in functionalized mesoporous silica nanoparticles for tumor targeted drug delivery and theranostics. Curr Pharm Des. 2017;23(23):3367–3382. doi:10.2174/1381612822666161025153619
  • Kresge C, Leonowicz ME, Roth WJ, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature. 1992;359:710–712. doi:10.1038/359710a0
  • Summerlin N, Qu Z, Pujara N, et al. Colloidal mesoporous silica nanoparticles enhance the biological activity of resveratrol. Colloids Surf B Biointerfaces. 2016;144:1–7. doi:10.1016/j.colsurfb.2016.03.076
  • Lin C, Zhu W, Li J, et al. An efficient route to rapidly access silica materials with differently ordered mesostructures through counteranion exchange. Chemistry. 2013;19(31):10146–10149. doi:10.1002/chem.201300597
  • Saikia D, Deka JR, Wu CE, et al. pH responsive selective protein adsorption by carboxylic acid functionalized large pore mesoporous silica nanoparticles SBA-1. Mater Sci Eng C Mater Biol Appl. 2019;94:344–356. doi:10.1016/j.msec.2018.09.043
  • Zhao D, Feng J, Huo Q, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science. 1998;279(5350):548–552. doi:10.1126/science.279.5350.548
  • Rivera-Muñoz EM, Huirache-Acuña R. Sol gel-derived SBA-16 mesoporous material. Int J Mol Sci. 2010;11(9):3069–3086. doi:10.3390/ijms11093069
  • Jadhav NV, Vavia PR. Dodecylamine template-based hexagonal mesoporous silica (HMS) as a carrier for improved oral delivery of fenofibrate. AAPS PharmSciTech. 2017;18(7):2764–2773. doi:10.1208/s12249-017-0761-x
  • Mellinas C, Ramos M, Grau-Atienza A, et al. Biodegradable Poly(ε-Caprolactone) active films loaded with MSU-X mesoporous silica for the release of α-Tocopherol. Polymers (Basel). 2020;12(1):137. doi:10.3390/polym12010137
  • Stöber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci. 1968;26:62–69. doi:10.1016/0021-9797(68)90272-5
  • Li Z, Zhang Y, Feng N. Mesoporous silica nanoparticles: synthesis, classification, drug loading, pharmacokinetics, biocompatibility, and application in drug delivery. Expert Opin Drug Deliv. 2019;16(3):219–237. doi:10.1080/17425247.2019.1575806
  • Narayan R, Nayak UY, Raichur AM, et al. Mesoporous silica nanoparticles: a comprehensive review on synthesis and recent advances. Pharmaceutics. 2018;10(3):118–166. doi:10.3390/pharmaceutics10030118
  • Yi Z, Dumee LF, Garvey CJ, et al. A new insight into growth mechanism and kinetics of mesoporous silica nanoparticles by in situ small angle X-ray scattering. Langmuir. 2015;31(30):8478–8487. doi:10.1021/acs.langmuir.5b01637
  • Hollamby MJ, Borisova D, Brown P, et al. Growth of mesoporous silica nanoparticles monitored by time-resolved small-angle neutron scattering. Langmuir. 2012;28(9):4425–4433. doi:10.1021/la203097x
  • Yamamoto E, Shimojima A, Wada H, et al. Mesoporous silica nanoparticles with dispersibility in organic solvents and their versatile surface modification. Langmuir. 2020;36(20):5571–5578. doi:10.1021/acs.langmuir.0c00729
  • Mehmood Y, Khan IU, Shahzad Y, et al. Amino-decorated mesoporous silica nanoparticles for controlled sofosbuvir delivery. Eur J Pharm Sci. 2020;143:105184. doi:10.1016/j.ejps.2019.105184
  • He Y, Luo L, Liang S, et al. Amino-functionalized mesoporous silica nanoparticles as efficient carriers for anticancer drug delivery. J Biomater Appl. 2017;32(4):524–532. doi:10.1177/0885328217724638
  • Wang B, Zhang K, Wang J, et al. Poly(amidoamine)-modified mesoporous silica nanoparticles as a mucoadhesive drug delivery system for potential bladder cancer therapy. Colloids Surf B Biointerfaces. 2020;189:110832. doi:10.1016/j.colsurfb.2020.110832
  • Choi E, Kim S. Surface pH buffering to promote degradation of mesoporous silica nanoparticles under a physiological condition. J Colloid Interface Sci. 2019;533:463–470. doi:10.1016/j.jcis.2018.08.088
  • He K, Li J, Shen Y, et al. pH-Responsive polyelectrolyte coated gadolinium oxide-doped mesoporous silica nanoparticles (Gd2O3@MSNs) for synergistic drug delivery and magnetic resonance imaging enhancement. J Mater Chem B Mater Biol Med. 2019;7(43):6840–6854. doi:10.1039/c9tb01654f
  • Shah PV, Rajput SJ. Facile synthesis of chitosan capped mesoporous silica nanoparticles: a pH responsive smart delivery platform for raloxifene hydrochloride. AAPS PharmSciTech. 2018;19(3):1344–1357. doi:10.1208/s12249-017-0949-0
  • Chen C, Sun W, Wang X, et al. pH-responsive nanoreservoirs based on hyaluronic acid end-capped mesoporous silica nanoparticles for targeted drug delivery. Int J Biol Macromol. 2018;111:1106–1115. doi:10.1016/j.ijbiomac.2018.01.093
  • Mishra S, Hook JM, Nebhani L. Priming the pores of mesoporous silica nanoparticles with an in-built RAFT agent for anchoring a thermally responsive polymer. Microporous Mesoporous Mater. 2019;277:60–69. doi:10.1016/j.micromeso.2018.10.012
  • Liu J, Li Y, Zhao M, et al. Redox-responsive hollow mesoporous silica nanoparticles constructed via host-guest interactions for controllable drug release. J Biomater Sci Polym Ed. 2020;31(4):472–490. doi:10.1080/09205063.2019.1700601
  • Yang Y, Lin Y, Di D, et al. Gold nanoparticle-gated mesoporous silica as redox-triggered drug delivery for chemo-photothermal synergistic therapy. J Colloid Interface Sci. 2017;508:323–331. doi:10.1016/j.jcis.2017.08.050
  • Chen X, Sun H, Hu J, et al. Transferrin gated mesoporous silica nanoparticles for redox-responsive and targeted drug delivery. Colloids Surf B Biointerfaces. 2017;152:77–84. doi:10.1016/j.colsurfb.2017.01.010
  • Chen L, Zhou X, Nie W, et al. Multifunctional redox-responsive mesoporous silica nanoparticles for efficient targeting drug delivery and magnetic resonance imaging. ACS Appl Mater Interfaces. 2016;8(49):33829–33841. doi:10.1021/acsami.6b11802
  • Kumar B, Kulanthaive S, Mondal A, et al. Mesoporous silica nanoparticle based enzyme responsive system for colon specific drug delivery through guar gum capping. Colloids Surf B Biointerfaces. 2017;150:352–361. doi:10.1016/j.colsurfb.2016.10.049
  • Liu Y, Ding X, Li J, et al. Enzyme responsive drug delivery system based on mesoporous silica nanoparticles for tumor therapy in vivo. Nanotechnology. 2015;26(14):145102. doi:10.1088/0957-4484/26/14/145102
  • Guisasola E, Asín L, Beola L, et al. Beyond traditional hyperthermia: in vivo cancer treatment with magnetic-responsive mesoporous silica nanocarriers. ACS Appl Mater Interfaces. 2018;10(15):12518–12525. doi:10.1021/acsami.8b02398
  • Li E, Yang Y, Hao G, et al. Multifunctional magnetic mesoporous silica nanoagents for in vivo enzyme-responsive drug delivery and MR imaging. Nanotheranostics. 2018;2(3):233–242. doi:10.7150/ntno.25565
  • Yu X, Zhu Y. Preparation of magnetic mesoporous silica nanoparticles as a multifunctional platform for potential drug delivery and hyperthermia. Sci Technol Adv Mater. 2016;17(1):229–238. doi:10.1080/14686996.2016.1178055
  • Li X, Xie C, Xia H, et al. pH and ultrasound dual-responsive polydopamine-coated mesoporous silica nanoparticles for controlled drug delivery. Langmuir. 2018;34(34):9974–9981. doi:10.1021/acs.langmuir.8b01091
  • Wang W, Wang Y, Wang Y, et al. Redox/pH dual stimuli-responsive ZnO QDs-gated mesoporous silica nanoparticles as carriers in cancer therapy. IET Nanobiotechnol. 2019;13(6):640–649. doi:10.1049/iet-nbt.2019.0031
  • Vallet-Regi M, Rámila A, Del Real RP, et al. A new property of MCM-41:drugdelivery system. Chem Mater. 2001;13(2):308–311. doi:10.1021/cm0011559
  • Lu J, Liong M, Li Z, et al. Biocompatibility, biodistribution, and drug delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small. 2010;6(16):1794–1805. doi:10.1002/smll.201000538
  • Wu M, Li X, Guo Q, et al. Magnetic mesoporous silica nanoparticles-aided dual MR/NIRF imaging to identify macrophage enrichment in atherosclerotic plaques. Nanomedicine. 2020;32:102330. doi:10.1016/j.nano.2020.102330
  • Huang Y, Li T, Gao W, et al. Platelet-derived nanomotor coated balloon for atherosclerosis combination therapy. J Mater Chem B Mater Biol Med. 2020;8(26):5765–5775. doi:10.1039/d0tb00789g
  • Xu W, Zhang S, Zhou Q, et al. VHPKQHR peptide modified magnetic mesoporous nanoparticles for MRI detection of atherosclerosis lesions. Artif Cells Nanomed Biotechnol. 2019;47(1):2440–2448. doi:10.1080/21691401.2019.1626411
  • Wang L, Feng M, Li Y, et al. Fabrication of superparamagnetic nano-silica@ quercetin-encapsulated PLGA nanocomposite: potential application for cardiovascular diseases. J Photochem Photobiol B. 2019;196:111508. doi:10.1016/j.jphotobiol.2019.05.005
  • Jeong HJ, Yoo RJ, Kim JK, et al. Macrophage cell tracking PET imaging using mesoporous silica nanoparticles via in vivo bioorthog onal F-18 labeling. Biomaterials. 2019;199:32–39. doi:10.1016/j.biomaterials.2019.01.043
  • Ji R, Li X, Zhou C, et al. Identifying macrophage enrichment in atherosclerotic plaques by targeting dual-modal US imaging/MRI based on biodegradable Fe-doped hollow silica nanospheres conjugated with anti-CD68 antibody. Nanoscale. 2018;10(43):20246–20255. doi:10.1039/c8nr04703k
  • Zhang J, Nie S, Martinez-Zaguilan R, et al. Formulation, characteristics and antiatherogenic bioactivities of CD36-targeted epigallocatechin gallate (EGCG)-loaded nanoparticles. J Nutr Biochem. 2016;30:14–23. doi:10.1016/j.jnutbio.2015.11.001
  • Robbins CS, Hilgendorf I, Weber GF, et al. Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nat Med. 2013;19(9):1166–1172. doi:10.1038/nm.3258
  • Tabas I. Macrophage death and defective inflammation resolution in atherosclerosis. Nat Rev Immunol. 2010;10(1):36–46. doi:10.1038/nri2675
  • Liu X, Sun J. Endothelial cells dysfunction induced by silica nanoparticles through oxidative stress via JNK/P53 and NF-kappaB pathways. Biomaterials. 2010;31(32):8198–8209. doi:10.1016/j.biomaterials.2010.07.069
  • Liu X, Xue Y, Ding T, et al. Enhancement of proinflammatory and procoagulant responses to silica particles by monocyte-endothelial cell interactions. Part Fibre Toxicol. 2012;9:36. doi:10.1186/1743-8977-9-36
  • Guo C, Xia Y, Niu P, et al. Silica nanoparticles induce oxidative stress, inflammation, and endothelial dysfunction in vitro via activation of the MAPK/Nrf2 pathway and nuclear factor-κB signaling. Int J Nanomedicine. 2015:1463–1477. doi:10.2147/IJN.S76114.
  • Petrick L, Rosenblat M, Paland N, et al. Silicon dioxide nanoparticles increase macrophage atherogenicity: stimulation of cellular cytotoxicity, oxidative stress, and triglycerides accumulation. Environ Toxicol. 2016;31(6):713–723. doi:10.1002/tox.22084
  • Guo C, Ma R, Liu X, et al. Silica nanoparticles promote oxLDL-induced macrophage lipid accumulation and apoptosis via endoplasmic reticulum stress signaling. Sci Total Environ. 2018;631–632:570–579. doi:10.1016/j.scitotenv.2018.02.312
  • Yang L, Zang G, Li J, et al. Cell-derived biomimetic nanoparticles as a novel drug delivery system for atherosclerosis: predecessors and perspectives. Regen Biomater. 2020;7(4):349–358. doi:10.1093/rb/rbaa019
  • Xuan MJ, Shao JX, Zhao J, et al. Red blood cell membranes cloaked magnetic mesoporous silica nanoparticles applied for cancer therapy. Angew Chem Int Ed Engl. 2018;57(21):6049–6053. doi:10.1002/anie.201712996
  • Xuan MJ, Shao JX, Dai LR, et al. Macrophage cell membrane camoufl aged mesoporous silica nanocapsules for in vivo cancer therapy. Adv Healthc Mater. 2015;4(11):1645–1652. doi:10.1002/adhm.201500129
  • Kankala RK, Han YH, Na J, et al. Nanoarchitectured structure and surface biofunctionality of mesoporous silica nanoparticles. Adv Mater. 2020;32(23). doi:10.1002/adma.201907035
  • Wang Y, Zhang K, Li TH, et al. Macrophage membrane functionalized biomimetic nanoparticles for targeted anti-atherosclerosis applications. Theranostics. 2021;11(1):164–180. doi:10.7150/thno.47841
  • Song Y, Huang Z, Liu X, et al. Platelet membrane-coated nanoparticle-mediated targeting delivery of Rapamycin blocks atherosclerotic plaque development and stabilizes plaque in apolipoprotein E-deficient (ApoE-/-) mice. Nanomedicine. 2019;15(1):13–24. doi:10.1016/j.nano.2018.08.002