193
Views
6
CrossRef citations to date
0
Altmetric
Original Research

Water-Soluble Carbon Dots in Cigarette Mainstream Smoke: Their Properties and the Behavioural, Neuroendocrinological, and Neurotransmitter Changes They Induce in Mice

, , , , , , ORCID Icon & show all
Pages 2203-2217 | Published online: 16 Mar 2021

References

  • World Health Organization (WHO), News release, Protocol to Eliminate Illicit Trade in Tobacco Products opened for signature. Available from: http://www.who.int/mediacentre/news/releases/2013/fctc20130110/en/. Accessed July 7, 2015.
  • Uchiyama S, Hayashida H, Izu R, Inaba Y, Nakagome H, Kunugita N. Determination of nicotine, tar, volatile organic compounds and carbonyls in mainstream cigarette smoke using a glass filter and a sorbent cartridge followed by the two-phase/one-pot elution method with carbon disulfide and methanol. J Chromatogr A. 2015;1426:48–55.
  • Baker RR. Pereira da Silva JR, Smith G. The effect of tobacco ingredients on smoke chemistry. Part I: flavourings and additives. Food Chem Toxicol. 2004;42(Suppl):S3–S37.
  • Thielen A, Klus H, Müller L. Tobacco smoke: unraveling a controversial subject. Exp Toxicol Pathol. 2008;60(2–3):141–156.
  • Benowitz NL. Pharmacology of nicotine: addiction, smoking-induced disease, and therapeutics. Annu Rev Pharmacol Toxicol. 2009;49:57–71.
  • Farris SG, Abrantes AM, Zvolensky MJ. Emotional distress and tobacco demand during the menstrual cycle in female smokers. Cogn Behav Ther. 2018;31:1–7.
  • Gaetano DC. Role of dopamine in the behavioural actions of nicotine related to addiction. Eur J Pharmacol. 2000;393(1–3):295–314.
  • Mishra V, Patil A, Thakur S, Kesharwani P. Carbon dots: emerging theranostic nanoarchitectures. Drug Discov Today. 2018;23(6):1219–1232.
  • Farshbaf M, Davaran S, Rahimi F, Annabi N, Salehi R, Akbarzadeh A. Carbon quantum dots: recent progresses on synthesis, surface modification and applications. Artif Cells Nanomed Biotechnol. 2018;46(7):1331–1348.
  • Li CL, Ou CM, Huang CC, et al. Carbon dots prepared from ginger exhibiting efficient inhibition of human hepatocellular carcinoma cells. J Mater Chem B. 2014;2(28):4564–4571.
  • Zhao Y, Zhang Y, Liu XM, et al. Novel carbon quantum dots from egg yolk oil and their haemostatic effects. Sci Rep. 2017;7(1):4452.
  • Zhang ML, Zhao Y, Cheng JJ, et al. Artif.Cells. Novel carbon dots derived from Schizonepetae Herba Carbonisata and investigation of their haemostatic efficacy. Nanomed Biotechnol. 2018;46(8):1562–1571.
  • Yan X, Zhao Y, Luo J, et al. Hemostatic bioactivity of novel Pollen Typhae Carbonisata-derived carbon quantum dots. J Nanobiotechnology. 2017;15(1):60.
  • Liu XM, Wang YZ, Yan X, et al. Novel Phellodendri Cortex (Huang Bo)-derived carbon dots and their hemostatic effect. Nanomedicine. 2018;13(4):391–405.
  • Wang YZ, Kong H, Liu XM, et al. Novel carbon dots derived from cirsii japonici herba carbonisata and their haemostatic effect. J Biomed Nanotechnol. 2018;14(9):1635–1644.
  • Sun ZW, Lu F, Cheng JJ, et al. Haemostatic bioactivity of novel Schizonepetae Spica Carbonisata-derived carbon dots via platelet counts elevation. Artif Cells NanomedBiotechnol. 2018;46(sup3):S308–S317.
  • Song YX, Lu F, Li H, et al. Degradable carbon dots from cigarette smoking with broad-spectrum antimicrobial activities against drug-resistant bacteria. ACS Appl Bio Mater. 2018;1(6):1871–1879.
  • Wang SN, Zhang Y, Kong H, et al. Antihyperuricemic and anti-gouty arthritis activities of Aurantii fructus immaturus carbonisata-derived carbon dots. Nanomedicine. 2019;14(22):2925–2939.
  • Lu F, Zhang Y, Cheng JJ, et al. Maltase and sucrase inhibitory activities and hypoglycemic effects of carbon dots derived from charred Fructus crataegi. Mater Res Express. 2019;6(12):125005.
  • Wang XK, Zhang Y, Zhang ML, et al. Novel carbon dots derived from puerariae lobatae radix and their anti-gout effects. Molecules. 2019;24:E4152.
  • Zhang ML, Cheng JJ, Sun ZW, et al. Protective effects of carbon dots derived from phellodendri chinensis cortex carbonisata against deinagkistrodon acutus venom-induced acute kidney injury. Nanoscale Res Lett. 2019;14(1):377.
  • Xue X, Yang JY, He Y, et al. Aggregated single-walled carbon nanotubes attenuate the behavioural and neurochemical effects of methamphetamine in mice. Nat Nanotechnol. 2016;11(7):613–620.
  • Fang J, Liu Y, Chen Y, Ouyang D, Yang G, Yu T. Graphene quantum dots-gated hollow mesoporous carbon nanoplatform for targeting drug delivery and synergistic chemo-photothermal therapy. Int J Nanomed. 2018;13:5991–6007.
  • Zhang F, Xiao CT, Li YF, et al. Gram-scale synthesis of blue-emitting CH(3)NH(3)PbBr(3) Quantum Dots Through Phase Transfer Strategy. Front Chem. 2018;6:444.
  • Dobhal G, Ayupova D, Laufersky G, Ayed Z, Nann T, Goreham RV. Cadmium-Free Quantum Dots as Fluorescent Labels for Exosomes. Sensors. 2018;18(10):pii: E3308.
  • Bai Y, Zhang B, Chen L, et al. Synthesis of polydopamine carbon dots for photothermal therapy. Nanoscale Res Lett. 2018;13(1):287.
  • Keinänen M, Oldham NJ, Baldwin IT. Rapid HPLC screening of jasmonate-induced increases in tobacco alkaloids, phenolics, and diterpene glycosides in Nicotiana attenuata. J Agric Food Chem. 2001;49(8):3553–3558.
  • Hu SL, Niu KY, Sun J, Yang J, Zhao NQ, Du XW. One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. J Mater Chem. 2009;19:484–488.
  • Li C, Zhang P, Hao Y, He D, Shen Y, Lu R. Expression and significance of quantum dots in RAW 264.7 macrophages. Oncol Lett. 2018;16(5):5997–6002.
  • Misik J, Pavlikova R, Cabal J, Kuca K. Acute toxicity of some nerve agents and pesticides in rats. Drug Chem Toxicol. 2015;38(1):32–36.
  • Liu J, Lv YW. Anti-Anxiety Effect of (-)-Syringaresnol-4-O-β-d-apiofuranosyl-(1→2)-β-d-glucopyranoside from Albizzia julibrissin Durazz (Leguminosae). Molecules. 2017;22:8.
  • Santos P, Herrmann AP, Benvenutti R, et al. Anxiolytic properties of N-acetylcysteine in mice. Behav Brain Res. 2017;317:461–469.
  • Bourlinos AB, Georgakilas V, Zboril R, et al. Pyrolytic formation and photoluminescence properties of a new layered carbonaceous material with graphite oxide-mimicking characteristics. Carbon. 2009;47(2):519–526.
  • Sachdev A, Gopinath P. Green synthesis of multifunctional carbon dots from coriander leaves and their potential application as antioxidants, sensors and bioimaging agents. Analyst. 2015;140(12):4260–4269.
  • Fang YX, Guo SJ, Li D, et al. Easy synthesis and imaging applications of cross-linked green fluorescent hollow carbon nanoparticles. ACS Nano. 2012;6(1):400–409.
  • Zhu C, Yang SW, Wang G, et al. A new mild, clean and high-efficient method for preparation of graphene quantum dots without by-products. J Mater Chem B. 2015;3(34):6871–6876.
  • Chiu SH, Gedda G, Girma WM. Rapid fabrication of carbon quantum dots as multifunctional nanovehicles for dual-modal targeted imaging and chemotherapy. Acta Biomater. 2016;46:151–164.
  • Moniuszko G, Skoneczny M, Zientara-Rytter K, et al. LSU-like protein couples sulphur-deficiency response with ethylene signalling pathway. J. Exp Bot. 2013;64(16):5173–5182.
  • Sabet MS, Zamani K, Lohrasebi T, Malboobi MA, Valizadeh M. Functional assessment of an overexpressed arabidopsis purple acid phosphatase gene (AtPAP26) in Tobacco Plants. Iran J Biotechnol. 2018;16(1):e2024.
  • Zhao SY, Liu J, Li CX, et al. Tunable Ternary (N, P, B)-Doped porous nanocarbons and their catalytic properties for oxygen reduction reaction. ACS Appl Mater Inter. 2014;6(24):22297–22304.
  • Sun D, Ban R, Zhang PH, Wu GH, Zhang JR, Zhu JJ. Hair fiber as a precursor for synthesizing of sulfur- and nitrogen-co-doped carbon dots with tunable luminescence properties. Carbon. 2013;64(Complete):424–434.
  • Ahmad N, Ahmad R, Al-layly A, et al. Ultra-high-performance liquid chromatography-based identification and quantification of thymoquinone in Nigella sativa extract from different geographical regions. Pharmacogn Mag. 2018;14(57):471–480.
  • Bamburowicz-Klimkowska M, Poplawska M, Grudzinski IP. Nanocomposites as biomolecules delivery agents in nanomedicine. J.Nanobiotechnology. 2019;17(1):48.
  • Ahmad N. Rasagiline-encapsulated chitosan-coated PLGA nanoparticles targeted to the brain in the treatment of parkinson’s disease. J Liq Chromatogr R T. 2017;40(13):677–690.
  • Jaleel JA, Pramod K. Artful and multifaceted applications of carbon dot in biomedicine. J Control Release. 2018;269:302–321.
  • Tan MQ, Zhang LX, Tang R, et al. Enhanced photoluminescence and characterization of multicolor carbon dots using plant soot as a carbon source. Talanta. 2013;115(Complete):950–956.
  • Hsu PC, Shih ZY, Lee CH, Chang HT. Synthesis and analytical applications of photoluminescent carbon nanodots. Green Chem. 2012;14(4):917–920.
  • Ray SC. Fluorescent carbon nanoparticles: synthesis, characterization, and bioimaging application. J Phys Chem C. 2009;113(43):18546–18551.
  • Benowitz NL, Pipe A, West R, et al. Cardiovascular safety of varenicline, bupropion, and nicotine patch in smokers: a randomized clinical trial. JAMA Intern Med. 2018;178(5):622–631.
  • Schroeder MJ, Hoffman AC. Electronic cigarettes and nicotine clinical pharmacology. Tob Control. 2014;Suppl 2:ii30.
  • Smith TT, Rupprecht LE, Sved AF, Donny EC. Characterizing the relationship between increases in the cost of nicotine and decreases in nicotine content in adult male rats: implications for tobacco regulation. Psychopharmacology. 2016;233(23–24):3953–3964.
  • Riviere JE. Pharmacokinetics of nanomaterials: an overview of carbon nanotubes, fullerenes and quantum dots. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009;1(1):26–34.
  • Zhao Y, Zhang Y, Qin G, et al. In vivo biodistribution and behavior of CdTe/ZnS quantum dots. Int J Nanomedicine. 2017;12:1927–1939.
  • Silva MI, de Aquino Neto MR, Teixeira Neto PF, Moura BA. do Amaral JF, de Sousa DP, Vasconcelos SM, de Sousa FC. Central nervous system activity of acute administration of isopulegol in mice. Pharmacol Biochem Behav. 2007;88(2):141–147.
  • Na X, Zhang L, Wang H, Tan M. Adverse effect assessment of fluorescent carbon dots in cigarette smoke. Nanoimpact. 2020;19:100241.
  • Nishioka Y, Oyagi A, Tsuruma K, Shimazawa M, Ishibashi T, Hara H. The antianxiety-like effect of astaxanthin extracted from Paracoccus carotinifaciens. Biofactors. 2011;37(1):25–30.
  • Nikolaus S, Antke C, Beu M. striatal dopamine and midbrain serotonin as the key players in compulsive and anxiety disorders–results from in vivo imaging studies. Rev Neurosci. 2010;21(2):119–139.
  • Maron E, Nutt D. Biological markers of generalized anxiety disorder. Dialogues Clin Neurosci. 2017;19(2):147–158.
  • Kent JM, Mathew SJ, Gorman JM. Molecular targets in the treatment of anxiety. Biol Psychiatry. 2002;52(10):1008–1030.