410
Views
14
CrossRef citations to date
0
Altmetric
Original Research

Genetically Engineered Bacterial Protein Nanoparticles for Targeted Cancer Therapy

, , , , , , , , , , & show all
Pages 105-117 | Published online: 08 Jan 2021

References

  • Cai Y, Liang P, Tang Q, et al. Diketopyrrolopyrrole-Triphenylamine Organic Nanoparticles as Multifunctional Reagents for Photoacoustic Imaging-Guided Photodynamic/Photothermal Synergistic Tumor Therapy. ACS Nano. 2017;11(1):1054–1063. doi:10.1021/acsnano.6b07927
  • Zhou S, Gravekamp C, Bermudes D, Liu K. Tumour-targeting bacteria engineered to fight cancer. Nat Rev Cancer. 2018;18(12):727–743. doi:10.1038/s41568-018-0070-z
  • Zhang C, Sun W, Wang Y, et al. Gd-/CuS-Loaded Functional Nanogels for MR/PA Imaging-Guided Tumor-Targeted Photothermal Therapy. ACS Appl Mater Interfaces. 2020;12(8):9107–9117. doi:10.1021/acsami.9b23413
  • Zhou Y, Hu Y, Sun W, et al. Polyaniline-loaded γ-polyglutamic acid nanogels as a platform for photoacoustic imaging-guided tumor photothermal therapy. Nanoscale. 2017;9(34):12746–12754. doi:10.1039/c7nr04241h
  • Cheng C, Chen W, Zhang L, Wu H, Zink J, Responsive Mesoporous A. Silica Nanoparticle Platform for Magnetic Resonance Imaging-Guided High-Intensity Focused Ultrasound-Stimulated Cargo Delivery with Controllable Location, Time, and Dose. J Am Chem Soc. 2019;141(44):17670–17684. doi:10.1021/jacs.9b07591
  • Kang Y, Kim J, Park J, et al. Tumor vasodilation by N-Heterocyclic carbene-based nitric oxide delivery triggered by high-intensity focused ultrasound and enhanced drug homing to tumor sites for anti-cancer therapy. Biomaterials. 2019;217:119297. doi:10.1016/j.biomaterials.2019.119297
  • Wang Z, Qiao R, Tang N, et al. Active targeting theranostic iron oxide nanoparticles for MRI and magnetic resonance-guided focused ultrasound ablation of lung cancer. Biomaterials. 2017;127:25–35. doi:10.1016/j.biomaterials.2017.02.037
  • Liang X, Gao J, Jiang L, et al. Nanohybrid liposomal cerasomes with good physiological stability and rapid temperature responsiveness for high intensity focused ultrasound triggered local chemotherapy of cancer. ACS Nano. 2015;9(2):1280–1293. doi:10.1021/nn507482w
  • Yildirim A, Chattaraj R, Blum N, Goldscheitter G, Goodwin A. Stable Encapsulation of Air in Mesoporous Silica Nanoparticles: fluorocarbon-Free Nanoscale Ultrasound Contrast Agents. Adv Healthcare Mater. 2016;5(11):1290–1298. doi:10.1002/adhm.201600030
  • Wang S, Zhao J, Hu F, et al. Phase-changeable and bubble-releasing implants for highly efficient HIFU-responsive tumor surgery and chemotherapy. J Mater Chem B. 2016;4(46):7368–7378. doi:10.1039/c6tb01861k
  • Liu T, Zhang N, Wang Z, et al. Endogenous Catalytic Generation of O Bubbles for In Situ Ultrasound-Guided High Intensity Focused Ultrasound Ablation. ACS Nano. 2017;11(9):9093–9102. doi:10.1021/acsnano.7b03772
  • You Y, Wang Z, Ran H, et al. Nanoparticle-enhanced synergistic HIFU ablation and transarterial chemoembolization for efficient cancer therapy. Nanoscale. 2016;8(7):4324–4339. doi:10.1039/c5nr08292g
  • Moncion A, Harmon J, Li Y, et al. Spatiotemporally-controlled transgene expression in hydroxyapatite-fibrin composite scaffolds using high intensity focused ultrasound. Biomaterials. 2019;194:14–24. doi:10.1016/j.biomaterials.2018.12.011
  • Duong M, Qin Y, You S, Min J. Bacteria-cancer interactions: bacteria-based cancer therapy. Exp Mol Med. 2019;51(12):1–15. doi:10.1038/s12276-019-0297-0
  • Kaimala S, Al-Sbiei A, Cabral-Marques O, Fernandez-Cabezudo M, Attenuated A-RB. Bacteria as Immunotherapeutic Tools for Cancer Treatment. Front Oncol. 2018;8:136. doi:10.3389/fonc.2018.00136
  • Sedighi M, Zahedi Bialvaei A, Hamblin M, et al. Therapeutic bacteria to combat cancer; current advances, challenges, and opportunities. Cancer Med. 2019;8(6):3167–3181. doi:10.1002/cam4.2148
  • Yoo J, Irvine D, Discher D, Mitragotri S. Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat Rev Drug Discov. 2011;10(7):521–535. doi:10.1038/nrd3499
  • Sivan A, Corrales L, Hubert N, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science. 2015;350(6264):1084–1089. doi:10.1126/science.aac4255
  • Yazawa K, Fujimori M, Nakamura T, et al. Bifidobacterium longum as a delivery system for gene therapy of chemically induced rat mammary tumors. Breast Cancer Res Treat. 2001;66(2):165–170. doi:10.1023/a:1010644217648
  • Danino T, Lo J, Prindle A, Hasty J, Bhatia S. In Vivo Gene Expression Dynamics of Tumor-Targeted Bacteria. ACS Synth Biol. 2012;1(10):465–470. doi:10.1021/sb3000639
  • Guo Y, Chen Y, Liu X, Min J, Tan W, Zheng J. Targeted cancer immunotherapy with genetically engineered oncolytic Salmonella typhimurium. Cancer Lett. 2020;469:102–110. doi:10.1016/j.canlet.2019.10.033
  • Chen W, Wang Y, Qin M, et al. Bacteria-Driven Hypoxia Targeting for Combined Biotherapy and Photothermal Therapy. ACS Nano. 2018;12(6):5995–6005. doi:10.1021/acsnano.8b02235
  • Min J, Kim H, Park J, et al. Noninvasive real-time imaging of tumors and metastases using tumor-targeting light-emitting Escherichia coli. Mol Imaging Biol. 2008;10(1):54–61. doi:10.1007/s11307-007-0120-5
  • Zheng D, Chen Y, Li Z, et al. Optically-controlled bacterial metabolite for cancer therapy. Nat Commun. 2018;9(1):1680. doi:10.1038/s41467-018-03233-9
  • Yu YA, Shabahang S, Timiryasova TM, et al. Visualization of tumors and metastases in live animals with bacteria and vaccinia virus encoding light-emitting proteins. Nat Biotechnol. 2004;22(3):313–320. doi:10.1038/nbt937
  • Kim S, Castro F, Paterson Y, Gravekamp C. High efficacy of a Listeria-based vaccine against metastatic breast cancer reveals a dual mode of action. Cancer Res. 2009;69(14):5860–5866. doi:10.1158/0008-5472.can-08-4855
  • Chagnon A, Hudon C, McSween G, Vinet G, Fredette V. Cytotoxicity and reduction of animal cell growth by Clostridium M-55 spores and their extracts. Cancer. 1972;29(2):431–434. doi:10.1002/1097-0142(197202)29:2<431::AID-CNCR2820290226>3.0.CO;2-Z
  • Shinnoh M, Horinaka M, Yasuda T, et al. Clostridium butyricum MIYAIRI 588 shows antitumor effects by enhancing the release of TRAIL from neutrophils through MMP-8. Int J Oncol. 2013;42(3):903–911. doi:10.3892/ijo.2013.1790
  • Yu X, Lin C, Yu J, Qi Q, Wang Q. Bioengineered Escherichia coli Nissle 1917 for tumour-targeting therapy. Microb Biotechnol. 2020;13(3):629–636. doi:10.1111/1751-7915.13523
  • Luo Y, Xu D, Gao X, et al. Nanoparticles conjugated with bacteria targeting tumors for precision imaging and therapy. Biochem Biophys Res Commun. 2019;514(4):1147–1153. doi:10.1016/j.bbrc.2019.05.074
  • Chen C, Wang Y, Tang Y, et al. Bifidobacterium-mediated high-intensity focused ultrasound for solid tumor therapy: comparison of two nanoparticle delivery methods. Int j Hyperther. 2020;37(1):870–878. doi:10.1080/02656736.2020.1791365
  • Xu D, Zou W, Luo Y, et al. Feasibility between Bifidobacteria Targeting and Changes in the Acoustic Environment of tumor Tissue for Synergistic HIFU. Sci Rep. 2020;10(1):7772. doi:10.1038/s41598-020-64661-6
  • Wang Y, Chen C, Luo Y, et al. Experimental Study of Tumor Therapy Mediated by Multimodal Imaging Based on a Biological Targeting Synergistic Agent. Int J Nanomedicine. 2020;15:1871–1888. doi:10.2147/ijn.s238398
  • Gao X, Zou W, Jiang B, et al. Experimental Study of Retention on the Combination of Bifidobacterium with High-Intensity Focused Ultrasound (HIFU) Synergistic Substance in Tumor Tissues. Sci Rep. 2019;9:1.
  • Bourdeau R, Lee-Gosselin A, Lakshmanan A, et al. Acoustic reporter genes for noninvasive imaging of microorganisms in mammalian hosts. Nature. 2018;553(7686):86–90. doi:10.1038/nature25021
  • Shapiro M, Goodwill P, Neogy A, et al. Biogenic gas nanostructures as ultrasonic molecular reporters. Nat Nanotechnol. 2014;9(4):311–316. doi:10.1038/nnano.2014.32
  • Szablowski J, Bar-Zion A, Achieving Spatial SM. Molecular Specificity with Ultrasound-Targeted Biomolecular Nanotherapeutics. Acc Chem Res. 2019;52(9):2427–2434. doi:10.1021/acs.accounts.9b00277
  • Maresca D, Lakshmanan A, Lee-Gosselin A, et al. Nonlinear ultrasound imaging of nanoscale acoustic biomolecules. Appl Phys Lett. 2017;110(7):073704. doi:10.1063/1.4976105
  • Lakshmanan A, Lu G, Farhadi A, et al. Preparation of biogenic gas vesicle nanostructures for use as contrast agents for ultrasound and MRI. Nat Protoc. 2017;12(10):2050–2080. doi:10.1038/nprot.2017.081
  • Lakshmanan A, Jin Z, Nety S, et al. Acoustic biosensors for ultrasound imaging of enzyme activity. Nat Chem Biol. 2020;16(9):988–996. doi:10.1038/s41589-020-0591-0
  • Ling B, Lee J, Maresca D, et al. Biomolecular Ultrasound Imaging of Phagolysosomal Function. ACS Nano. 2020;14(9):12210–12221. doi:10.1021/acsnano.0c05912
  • Bar-Zion A, Nourmahnad A, Mittelstein DR, et al. Acoustically Detonated Biomolecules for Genetically Encodable Inertial Cavitation. bioRxiv. 2019:620567. doi:10.1101/620567.
  • Forbes N. Engineering the perfect (bacterial) cancer therapy. Nat Rev Cancer. 2010;10(11):785–794. doi:10.1038/nrc2934
  • Ho C, Tan H, Chua K, et al. Engineered commensal microbes for diet-mediated colorectal-cancer chemoprevention. Nat Biomed Eng. 2018;2(1):27–37. doi:10.1038/s41551-017-0181-y
  • Jiang S, Phan T, Nam T, et al. Inhibition of Tumor Growth and Metastasis by a Combination of Escherichia coli –mediated Cytolytic Therapy and Radiotherapy. Mol Ther. 2010;18(3):635–642. doi:10.1038/mt.2009.295
  • Zhang Y, Zhang Y, Xia L, et al. Escherichia coli Nissle 1917 targets and restrains mouse B16 melanoma and 4T1 breast tumors through expression of azurin protein. Appl Environ Microbiol. 2012;78(21):7603–7610. doi:10.1128/aem.01390-12
  • Zhang H, Man J, Liang B, et al. Tumor-targeted delivery of biologically active TRAIL protein. Cancer Gene Ther. 2010;17(5):334–343. doi:10.1038/cgt.2009.76
  • Sznol M, Lin SL, Bermudes D, Zheng L, King I. Use of preferentially replicating bacteria for the treatment of cancer. J Clin Invest. 2000;105(8):1027–1030.
  • Min J, Nguyen V, Kim H, Hong Y, Choy H. Quantitative bioluminescence imaging of tumor-targeting bacteria in living animals. Nat Protoc. 2008;3(4):629–636. doi:10.1038/nprot.2008.32
  • Kasinskas RW, Forbes NS. Salmonella typhimurium lacking ribose chemoreceptors localize in tumor quiescence and induce apoptosis. Cancer Res. 2007;67(7):3201–3209.
  • Zhang Y, Zhang Y, Xia L, et al. Escherichia coli Nissle 1917 targets and restrains mouse B16 melanoma and 4T1 breast tumors through expression of azurin protein. Appl Environ Microbiol. 2012;78(21):7603.
  • Ling B, Lee J, Maresca D, et al. Biomolecular Ultrasound Imaging of Phagolysosomal Function. ACS Nano. 2020;14(9):12210–12221. doi:10.1021/acsnano.0c05912
  • Lakshmanan A, Jin Z, Nety SP, Sawyer DP, Shapiro MG. Acoustic biosensors for ultrasound imaging of enzyme activity. Nat Chem Biol. 2020;16(9):1–9.
  • Ma X, Yao M, Shi J, et al. High Intensity Focused Ultrasound-Responsive and Ultrastable Cerasomal Perfluorocarbon Nanodroplets for Alleviating Tumor Multidrug Resistance and Epithelial-Mesenchymal Transition. ACS Nano. 2020. doi:10.1021/acsnano.0c07287