137
Views
1
CrossRef citations to date
0
Altmetric
Original Research

The Influence of Silver Nanoparticles Against Toxic Effects of Philodryas olfersii Venom

, , , , , , ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 3555-3564 | Published online: 25 May 2021

References

  • World Health Organization. Health topics: snakebite. Available from: https://www.who.int/snakebites/en/. Accessed April 23, 2020..
  • O’Brien J, Lee SH, Gutiérrez JM, Shea KJ. Engineered nanoparticles bind elapid snake venom toxins and inhibit venom-induced dermonecrosis. PLoS Negl Trop Dis. 2018;12(10):e0006736. doi:10.1371/journal.pntd.0006736
  • ScienceDaily. Nanoparticles to treat snakebites. ScienceDaily; 2018 October 4. Available from: www.sciencedaily.com/releases/2018/10/181004143920.htm. Accessed April 23, 2020.
  • WHO launches global strategy for prevention and control of snakebite envenoming. WHO Departmental News. 2019 May 23. Available from: https://www.who.int/news-room/detail/23-05-2019-who-launches-global-strategy-for-prevention-and-control-of-snanebite-envenoming. Accessed May 23, 2020.
  • Williams DJ, Faiz MA, Abela-Ridder B, et al. Strategy for a globally coordinated response to a priority neglected tropical disease: snakebite envenoming. PLoS Negl Trop Dis. 2019;13(2):e0007059. doi:10.1371/journal.pntd.0007059
  • Biswas A, Gomes A, Sengupta J, et al. Nanoparticle-conjugated animal venom-toxins and their possible therapeutic potential. J Venom Res. 2012;3:15–21.
  • Hingane VC, Pangam D, Dongre PM. Inhibition of crude viper venom action by silver nanoparticles: a biophysical and biochemical study. Biophys Physicobiol. 2018;15:204–213. doi:10.2142/biophysico.15.0_204
  • Soares K, Gláucia-Silva F, Daniele-Silva A, et al. Antivenom production against Bothrops jararaca and Bothrops erythromelas snake venoms using cross-linked chitosan nanoparticles as an immunoadjuvant. Toxins (Basel). 2018;10(4):158. doi:10.3390/toxins10040158
  • Oliveira ICF, de Paula MO, Lastra HCB, et al. Activity of silver nanoparticles on prokaryotic cells and Bothrops jararacussu snake venom. Drug Chem Toxicol. 2019;42(1):60–64. doi:10.1080/01480545.2018.1478850
  • Saha K, Ghosh S, Ghosh S, Dasgupta SC, Gomes A, Gomes A. Neutralization of Naja kaouthia venom induced toxicity and stress response by Vitex negundo-gold nanoparticle (VN-GNP) in experimental animal model. J Toxins. 2015;2(1):8.
  • Chakrabartty S, Alam MI, Bhagat S, et al. Inhibition of snake venom induced sterile inflammation and PLA2 activity by titanium dioxide nanoparticles in experimental animals. Sci Rep. 2019;9(1):11175. doi:10.1038/s41598-019-47557-y
  • Mohammadpourdounighi N, Behfar A, Ezabadi A, Zolfagharian H, Heydari M. Preparation of chitosan nanoparticles containing Naja naja oxiana snake venom. Nanomedicine. 2010;6(1):137–143. doi:10.1016/j.nano.2009.06.002
  • de Carvalho MA, Nogueira FN. Serpentes da área urbana de Cuiabá, Mato Grosso: aspectos ecológicos e acidentes ofídicos associados [Snakes from the urban area of Cuiabá, Mato Grosso: ecological aspects and associated snakebites]. Cad Saude Publica. 1998;14(4):753–763.
  • de Araújo ME, Dos Santos AC. Cases of human envenoming caused by Philodryas olfersii and Philodryas patagoniensis (Serpentes: Colubridae). Rev Soc Bras Med Trop. 1997;30(6):517–519. doi:10.1590/S0037-86821997000600013
  • Rocha MM, Paixão-Cavalcante D, Tambourgi DV, Furtado MF. Duvernoy’s gland secretion of Philodryas olfersii and Philodryas patagoniensis (Colubridae): neutralization of local and systemic effects by commercial bothropic antivenom (Bothrops genus). Toxicon. 2006;47(1):95–103. doi:10.1016/j.toxicon.2005.10.005
  • Rocha MMT, Furtado MFD. Analysis of biological activities from Philodryas olfersii (Lichtenstein) and P. patagoniensis (Girard) venoms (Serpents, Colubridae). Rev Bras Zool. 2007;24(2):410–418. doi:10.1590/S0101-81752007000200019
  • Ribeiro LA, Puorto G, Jorge MT. Bites by the colubrid snake Philodryas olfersii: a clinical and epidemiological study of 43 cases. Toxicon. 1999;37(6):943–948. doi:10.1016/S0041-0101(98)00191-3
  • Correia JM, Santana Neto PL, Pinho MS, Silva JA, Amorim ML, Escobar JA. Poisoning due to Philodryas olfersii (Lichtenstein, 1823) attended at Restauração Hospital in Recife, State of Pernambuco, Brazil: case report. Rev Soc Bras Med Trop. 2010;43(3):336–338. doi:10.1590/S0037-86822010000300025
  • Silveira PV, Nishioka SA. Non-venomous snake bite and snake bite without envenoming in a Brazilian teaching hospital. Analysis of 91 cases. Rev Inst Med Trop Sao Paulo. 1992;34(6):499–503. doi:10.1590/S0036-46651992000600002
  • Assakura MT, Salomão MG, Puorto G, Mandelbaum FR. Hemorrhagic, fibrinogenolytic and edema-forming activities of the venom of the colubrid snake Philodryas olfersii (green snake). Toxicon. 1992;30(4):427–438. doi:10.1016/0041-0101(92)90539-H
  • Acosta de Pérez O, Leiva de Vila L, Peichoto ME, et al. Edematogenic and myotoxic activities of the Duvernoy’s gland secretion of Philodryas olfersii from the north-east region of Argentina. Biocell. 2003;27(3):363–370. doi:10.32604/biocell.2003.27.363
  • Rodríguez-Acosta A, Lemoine K, Navarrete L, Girón ME, Aguilar I. Experimental ophitoxemia produced by the opisthoglyphous lora snake (Philodryas olfersii) venom. Rev Soc Bras Med Trop. 2006;39(2):193–197. doi:10.1590/S0037-86822006000200012
  • Oliveira JS, Sant’Anna LB, Oliveira Junior MC, et al. Local and hematological alterations induced by Philodryas olfersii snake venom in mice. Toxicon. 2017;132:9–17. doi:10.1016/j.toxicon.2017.03.013
  • Prado-Franceschi J, Hyslop S, Cogo JC, et al. The effects of Duvernoy’s gland secretion from the xenodontine colubrid Philodryas olfersii on striated muscle and the neuromuscular junction: partial characterization of a neuromuscular fraction. Toxicon. 1996;34(4):459–466. doi:10.1016/0041-0101(95)00146-8
  • Collaço RC, Cogo JC, Rodrigues-Simioni L, Rocha T, Oshima-Franco Y, Randazzo-Moura P. Protection by Mikania laevigata (guaco) extract against the toxicity of Philodryas olfersii snake venom. Toxicon. 2012;60(4):614–622. doi:10.1016/j.toxicon.2012.05.014
  • Hauzman E, Bonci DM, Grotzner SR, et al. Comparative study of photoreceptor and retinal ganglion cell topography and spatial resolving power in Dipsadidae snakes. Brain Behav Evol. 2014;84(3):197–213. doi:10.1159/000365275
  • Alves TFR, Das Neves Lopes FCC, Rebelo MA, et al. Crystalline ethylene oxide and propylene oxide triblock copolymer solid dispersion enhance solubility, stability and promoting time-controllable release of curcumin. Recent Pat Drug Deliv Formul. 2018;12(1):65–74. doi:10.2174/1872211312666180118104920
  • Rachmawati H, Al Shaal L, Müller RH, Keck CM. Development of curcumin nanocrystal: physical aspects. J Pharm Sci. 2013;102(1):204–214. doi:10.1002/jps.23335
  • Dos Santos CA, Seckler MM, Ingle A, Rai M. Comparative antibacterial activity of silver nanoparticles synthesised by biological and chemical routes with pluronic F68 as a stabilising agent. IET Nanobiotechnol. 2016;10(4):200–205. doi:10.1049/iet-nbt.2015.0055
  • Alves TF, Chaud MV, Grotto D, et al. Association of silver nanoparticles and curcumin solid dispersion: antimicrobial and antioxidant properties. AAPS PharmSciTech. 2018;19(1):225–231. doi:10.1208/s12249-017-0832-z
  • National Research Council of the National Academies. Guide for the Care and Use of Laboratory Animals. 8th ed. Washington DC: National Academies Press.; 2011. Available from https://grants.nih.gov/grants/olaw/Guide-for-the-Care-and-use-of-laboratory-animals.pdf. Accessed September 14, 2019.
  • Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 2010;8(6):e1000412. doi:10.1371/journal.pbio.1000412
  • Brain SD, Williams TJ. Inflammatory oedema induced by synergism between calcitonin gene-related peptide (CGRP) and mediators of increased vascular permeability. Br J Pharmacol. 1985;86(4):855–860. doi:10.1111/j.1476-5381.1985.tb11107.x
  • Ginsborg BL, Warriner J. The isolated chick biventer cervicis nerve-muscle preparation. Br J Pharmacol Chemother. 1960;15(3):410–411. doi:10.1111/j.1476-5381.1960.tb01264.x
  • Tribuiani N, Tavares MO, Santana MN, et al. Neutralising ability of Terminalia fagifolia extract (Combretaceae) against the in vitro neuromuscular effects of Bothrops jararacussu venom. Nat Prod Res. 2017;31(23):2783–2787. doi:10.1080/14786419.2017.1292506
  • Chang CC, Tang SS. Differentiation between intrinsic and extrinsic acetylcholine receptors of the chick biventer cervicis muscle. Naunyn Schmiedebergs Arch Pharmacol. 1974;282(4):379–388. doi:10.1007/BF00500986
  • Wick MJ, Harral JW, Loomis ZL, Dempsey EC. An optimized Evans Blue Protocol to assess vascular leak in the mouse. J Vis Exp. 2018;139:57037. doi:10.3791/57037
  • Nakamura Y, Sasaki T, Mochizuki C, et al. Snake venom rhodocytin induces plasma extravasation via toxin-mediated interactions between platelets and mast cells. Sci Rep. 2019;9(1):15958. doi:10.1038/s41598-019-52449-2
  • Tsai M, Starkl P, Marichal T, Galli SJ. Testing the ‘toxin hypothesis of allergy’: mast cells, IgE, and innate and acquired immune responses to venoms. Curr Opin Immunol. 2015;36:80–87. doi:10.1016/j.coi.2015.07.001
  • Cordani M, Somoza Á. Targeting autophagy using metallic nanoparticles: a promising strategy for cancer treatment. Cell Mol Life Sci. 2019;76(7):1215–1242. doi:10.1007/s00018-018-2973-y
  • Cisterna BA, Vargas AA, Puebla C, et al. Active acetylcholine receptors prevent the atrophy of skeletal muscles and favor reinnervation. Nat Commun. 2020;11(1):1073. doi:10.1038/s41467-019-14063-8
  • Assakura MT, Reichl AP, Mandelbaum FR. Isolation and characterization of five fibrin(ogen)olytic enzymes from the venom of Philodryas olfersii (green snake). Toxicon. 1994;32(7):819–831. doi:10.1016/0041-0101(94)90007-8
  • Ching AT, Rocha MMT, Paes Leme AF, et al. Some aspects of the venom proteome of the Colubridae snake Philodryas olfersii revealed from a Duvernoy’s (venom) gland transcriptome. FEBS Lett. 2006;580(18):4417–4422. doi:10.1016/j.febslet.2006.07.010
  • Sales PB, Santoro ML. Nucleotidase and DNase activities in Brazilian snake venoms. Comp Biochem Physiol C Toxicol Pharmacol. 2008;174(1):85–95. doi:10.1016/j.cbpc.2007.08.003
  • Ginsborg BL. Spontaneous activity in muscle fibres of the chick. J Physiol. (Lond). 1960;150(3):707–717. doi:10.1113/jphysiol.1960.sp006413
  • Ginsborg BL. Some properties of avian skeletal muscle fibres with multiple neuromuscular junctions. J Physiol. (Lond). 1960;154(3):581–598. doi:10.1113/jphysiol.1960.sp006597
  • Shieh BH, Pezzementi L, Schmidt J. Extracellular potassium and the regulation of acetylcholine receptor synthesis in embryonic chick muscle cells. Brain Res. 1983;263(2):259–265. doi:10.1016/0006-8993(83)90318-9
  • Fernandez S, Hodgson W, Chaisakul J, et al. In vitro toxic effects of puff adder (Bitis arietans) venom, and their neutralization by antivenom. Toxins (Basel). 2014;6(5):1586–1597. doi:10.3390/toxins6051586
  • Prado-Franceschi J, Hyslop S, Cogo JC, et al. Characterization of a myotoxin from the Duvernoy’s gland secretion of the xenodontine colubrid Philodryas olfersii (green snake): effects on striated muscle and the neuromuscular junction. Toxicon. 1998;36(10):1407–1421. doi:10.1016/S0041-0101(98)00075-0
  • Schezaro-Ramos R, Collaço RC, Cogo JC, et al. Cordia salicifolia and Lafoensia pacari plant extracts against the local effects of Bothrops jararacussu and Philodryas olfersii snake venoms. J Venom Res. 2020;10:32–37.
  • Peichoto ME, Leiva LC, Guaimás Moya LE, Rey L, Acosta O. Duvernoy’s gland secretion of Philodryas patagoniensis from the northeast of Argentina: its effects on blood coagulation. Toxicon. 2005;45(4):527–534. doi:10.1016/j.toxicon.2004.12.016
  • Dos Santos CA, Rai M, de Oliveira Júnior JM, et al.Curcuminand Related Antioxidants: Applications to Tissue Pathology. Pathology. 1st ed. Elsevier. Vol. 1; 2020:197–204.
  • Yamamoto H, Hanada K, Kawasaki K, Nishijima M. Inhibitory effect on curcumin on mammalian phospholipase D activity. FEBS Lett. 1997;417(2):196–198. doi:10.1016/S0014-5793(97)01280-5
  • Hong J, Bose M, Ju J, et al. Modulation of arachidonic acid metabolism by curcumin and related -diketone derivatives: effects on cytosolic phospholipase A2, cyclooxygenases and 5-lipoxygenase. Carcinogenesis. 2004;25(9):1671–1679. doi:10.1093/carcin/bgh165
  • Lin SS, Lai KC, Hsu SC, et al. Curcumin inhibits the migration and invasion of human A549 lung cancer cells through the inhibition of matrix metalloproteinase-2 and −9 and Vascular Endothelial Growth Factor (VEGF). Cancer Lett. 2009;285(2):127–133. doi:10.1016/j.canlet.2009.04.037
  • Lin JK, Chen YC, Huang YT, Lin-Shiau SY. Suppression of protein kinase C and nuclear oncogene expression as possible molecular mechanisms of cancer chemoprevention by apigenin and curcumin. J Cell Biochem. 1997;Suppl.28–29:39–48.
  • Ghosh S, Gomes A. Russell’s viper (Daboia russelli russelli) venom toxicity neutralizing efficacy of curcumin-gold nanoparticle (C-GNP) in experimental animal model. J Toxins. 2016;3(2):6.