733
Views
11
CrossRef citations to date
0
Altmetric
Review

Progress of Nanotechnology in Diabetic Retinopathy Treatment

&
Pages 1391-1403 | Published online: 24 Feb 2021

References

  • Lauri C, Glaudemans AWJM, Signore A. Leukocyte imaging of the diabetic foot. Curr Pharm Des. 2018;24(12):1270–1276. doi:10.2174/1381612824666180227094116
  • Lauri C, Tamminga M, Glaudemans AWJM, et al. Detection of osteomyelitis in the diabetic foot by imaging techniques: a systematic review and meta-analysis comparing MRI, white blood cell scintigraphy, and FDG-PET. Diabetes Care. 2017;40(8):1111–1120. doi:10.2337/dc17-0532
  • Chan KH, Lim J, Jee JE, Aw JH, Lee SS. Peptide-peptide co-assembly: a design strategy for functional detection of C-peptide, a biomarker of diabetic neuropathy. Int J Mol Sci. 2020;21(24):9671. doi:10.3390/ijms21249671
  • Kim SS, Song SH, Kim IJ, et al. Urinary cystatin C and tubular proteinuria predict progression of diabetic nephropathy. Diabetes Care. 2013;36(3):656–661. doi:10.2337/dc12-0849
  • Satirapoj B, Aramsaowapak K, Tangwonglert T, Supasyndh O. Novel tubular biomarkers predict renal progression in type 2 diabetes mellitus: a prospective cohort study. J Diabetes Res. 2016;2016:9. doi:10.1155/2016/3102962.3102962
  • Mishra J, Mori K, Ma Q, et al. Amelioration of ischemic acute renal injury by neutrophil gelatinase-associated lipocalin. J Am Soc Nephrol. 2004;15(12):3073–3082. doi:10.1097/01.ASN.0000145013.44578.45
  • Viau A, El Karoui K, Laouari D, et al. Lipocalin 2 is essential for chronic kidney disease progression in mice and humans. J Clin Invest. 2010;120(11):4065–4076. doi:10.1172/jci42004
  • Yang YH, He XJ, Chen SR, Wang L, Li EM, Xu LY. Changes of serum and urine neutrophil gelatinase-associated lipocalin in type-2 diabetic patients with nephropathy: one year observational follow-up study. Endocrine. 2009;36(1):45–51. doi:10.1007/s12020-009-9187-x
  • Satirapoj B, Wang Y, Chamberlin MP, et al. Periostin: novel tissue and urinary biomarker of progressive renal injury induces a coordinated mesenchymal phenotype in tubular cells. Nephrol Dial Transplant. 2012;27(7):2702–2711. doi:10.1093/ndt/gfr670
  • Wantanasiri P, Satirapoj B, Charoenpitakchai M, Aramwit P. Periostin: a novel tissue biomarker correlates with chronicity index and renal function in lupus nephritis patients. Lupus. 2015;24(8):835–845. doi:10.1177/0961203314566634
  • Satirapoj B. Tubulointerstitial biomarkers for diabetic nephropathy. J Diabetes Res. 2018;2018:2852398. doi:10.1155/2018/2852398
  • Wilkinson CP, Ferris FL, Klein RE; Global Diabetic Retinopathy Project Group. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology. 2003;110(9):1677–1682. doi:10.1016/S0161-6420(03)00475-5
  • Budzinskaya MV, Petrachkov DV, Savochkina OA, Arzhukhanov DD. K voprosu o klassifikatsii diabeticheskoĭ retinopatii [On classification of diabetic retinopathy]. Vestn Oftalmol. 2019;135:272–277. Russian. doi:10.17116/oftalma2019135052272.
  • Jiang Y. Effect of total retinal laser photocoagulation on diabetic retinopathy. Medical Equip. 2020;21:1002–2376.
  • Bi SS, Ping JH, Dai X. Progress in the treatment of diabetic retinopathy with retinal laser photocoagulation. J Heze Med Coll. 2020;123:72–75.
  • Kleinmann G, Hauser D, Schechtman E, Landa G, Bukelman A, Pollack A. Vitreous hemorrhage in diabetic eyes previously treated with panretinal photocoagulation. Int Ophthalmol. 2008;28(1):29–34. doi:10.1007/s10792-007-9106-1
  • Early Treatment Diabetic Retinopathy Study research group. Photocoagulation for diabetic macular edema. Early treatment diabetic retinopathy study report number 1. Arch Ophthalmol. 1985;103(12):1796–1806. doi:10.1001/archopht.1985.01050120030015.
  • Striph GG, Hart WM Jr, Olk RJ. Modified grid laser photocoagulation for diabetic macular edema. The effect on the central visual field. Ophthalmology. 1988;95(12):1673–1679. doi:10.1016/S0161-6420(88)32957-X
  • Sims LM, Stoessel K, Thompson JT, Hirsch J. Assessment of visual-field changes before and after focal photocoagulation for clinically significant diabetic macular edema. Ophthalmologica. 1990;200(3):133–141. doi:10.1159/000310094
  • Rohrschneider K, Bultmann S, Gluck R, Kruse FE, Fendrich T, Volcker HE. Scanning laser ophthalmoscope fundus perimetry before and after laser photocoagulation for clinically significant diabetic macular edema. Am J Ophthalmol. 2000;129(1):27–32. doi:10.1016/S0002-9394(99)00270-6
  • Lee HJ, Kang TS, Kwak BS, Jo YJ, Kim JY. Long-term effect of panretinal photocoagulation on spectral domain optical coherence tomography measurements in diabetic retinopathy. Curr Eye Res. 2017;42(8):1169–1173. doi:10.1080/02713683.2017.1280510
  • Seiberth V, Alexandridis E, Feng W. Function of the diabetic retina after panretinal argon laser coagulation. Graefes Arch Clin Exp Ophthalmol. 1987;225:385–390. doi:10.1007/BF02334163
  • Russell PW, Sekuler R, Fetkenhour C. Visual function after pan-retinal photocoagulation: a survey. Diabetes Care. 1985;8:57–63. doi:10.2337/diacare.8.1.57
  • Deschler EK, Sun JK, Silva PS. Side-effects and complications of laser treatment in diabetic retinal disease. Ophthalmol. 2014;29(5–6):290–300. doi:10.3109/08820538.2014.959198
  • Zhang ZH, Xu H, Mo XH. Comparison of two vitrectomy for proliferative diabetic retinopathy. Int J Ophthalmol. 2017;17(6):1174–1177.
  • Brănişteanu DC, Bilha A, Moraru A. Vitrectomy surgery of diabetic retinopathy complications. Rom J Ophthalmol. 2016;60(1):31–36.
  • Tuuminen R, Sahanne S, Haukka J, Loukovaara S. Improved outcome after primary vitrectomy in diabetic patients treated with statins. Eur J Ophthalmol. 2016;26(2):174–181. doi:10.5301/ejo.5000657
  • Yamada Y, Suzuma K, Ryu M, Tsuiki E, Fujikawa A, Kitaoka T. Systemic factors influence the prognosis of diabetic macular edema after pars plana vitrectomy with internal limiting membrane peeling. Curr Eye Res. 2013;38(12):1261–1265. doi:10.3109/02713683.2013.820327
  • Veritti D, Sarao V, Lanzetta P. A propensity-score matching comparison between 27-gauge and 25-gauge vitrectomy systems for the repair of primary rhegmatogenous retinal detachment. J Ophthalmol. 2019;2019:3120960. doi:10.1155/2019/3120960
  • Naruse Z, Shimada H, Mori R. Surgical outcomes of 27-gauge and 25-gauge vitrectomy day surgery for proliferative diabetic retinopathy. Int Ophthalmol. 2019;39(9):1973–1980. doi:10.1007/s10792-018-1030-z
  • Nathan DM, Genuth S, Lachin J, et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329(14):977–986. doi:10.1056/NEJM199309303291401
  • Lin WX, Zang J, Bao JL, Zhou LB, Zhu YD, Li Q. Compound Xueshuantong Capsule and Pancreatic Kikopeptidase in treatment of NPDR. Int J Ophthalmol. 2011;11:66–68.
  • Feng XF, Mai ZL, Huang BM, Han Q, Huang Q, Mai YX. Clinical analysis of insulin combined with calcium dobesilate in the treatment of early diabetic retinopathy. Mod Hosp. 2020;217:136–139.
  • Wang W, Lo ACY. Diabetic retinopathy: pathophysiology and treatments. Int J Mol Sci. 2018;19(6):1816. doi:10.3390/ijms19061816
  • Wroblewski JJ, Hu AY. Topical Squalamine 0.2% and Intravitreal Ranibizumab 0.5 mg as combination therapy for macular edema due to branch and central retinal vein occlusion: an Open-Label, randomized study. Ophthalmic Surg Lasers Imaging Retina. 2016;47(10):914–923. doi:10.3928/23258160-20161004-04
  • Campochiaro PA, Khanani A, Singer M, et al. Enhanced benefit in diabetic macular edema from AKB-9778 Tie2 activation combined with vascular endothelial growth factor suppression. Ophthalmology. 2016;123(8):1722–1730. doi:10.1016/j.ophtha.2016.04.025
  • Jonas JB. Intravitreal triamcinolone acetonide for diabetic retinopathy. Ophthalmol. 2007;39:96–110. doi:10.1159/000098502
  • Phillips K, Katz HR. A comparison of the efficacy of dexamethasone and loteprednol on endotoxin-induced uveitis in rodents following topical ocular administration. Invest Ophthalmol Vis Sci. 2005;46:983.
  • Qian Y, Wenting C, Huizi J, Donghui Y, Tianyi SH, Jing Y. Application and safety of polyethyleneimine-modified sodium fluorescein nanoparticles in fundus fluorescein angiography. New Dev Ophthalmol. 2020;293:10–15.
  • Vadanasundari V, Huang L, Zhang M, et al. Vanadium core–shell nanorods inspect metabolic changes of diabetic retinopathy. Adv Funct Mater. 2020.
  • Gao X, Li Y, Wang H, Li C, Ding J. Inhibition of HIF-1α decreases expression of pro-inflammatory IL-6 and TNF-α in diabetic retinopathy. Acta Ophthalmol. 2017;95(8):746–750. doi:10.1111/aos.13096
  • Gong Q, Xie J, Li Y, Liu Y, Su G. Enhanced ROBO4 is mediated by up-regulation of HIF-1α/SP1 or reduction in miR-125b-5p/miR-146a-5p in diabetic retinopathy. J Cell Mol Med. 2019;23(7):4723–4737. doi:10.1111/jcmm.14369
  • Iwase T, Fu J, Yoshida T, et al. Sustained delivery of a HIF-1 antagonist for ocular neovascularization. J Control Release. 2013;172(3):625–633. doi:10.1016/j.jconrel.2013.10.008
  • Badr GA, Tang J, Ismail-Beigi F, Kern TS. Diabetes downregulates GLUT1 expression in the retina and its microvessels but not in the cerebral cortex or its microvessels. Diabetes. 2000;49(6):1016–1021. doi:10.2337/diabetes.49.6.1016
  • Ulas M, Orhan C, Tuzcu M, et al. Anti-diabetic potential of chromium histidinate in diabetic retinopathy rats. BMC Complement Altern Med. 2015;15:16. doi:10.1186/s12906-015-0537-3
  • Gao X, Han B. Preparation and pharmacodynamics of nanoparticles for diabetic retinopathy. Jilin University; 2020.
  • Hao H, Cai J, Jiang L. Effect of nanoparticle-mediated triamcinolone acetonide delivery on the treatment of diabetic rat retinopathy. Pract Drugs Clin. 2019;4:359–363.
  • Lu Y, Zhou N, Huang X, et al. Effect of intravitreal injection of bevacizumab-chitosan nanoparticles on retina of diabetic rats. Int J Ophthalmol. 2014;7(1):1–7. doi:10.3980/j.issn.2222-3959.2014.01.01
  • Araújo J, Garcia ML, Mallandrich M, Souto EB, Calpena AC. Release profile and transscleral permeation of triamcinolone acetonide loaded nanostructured lipid carriers (TA-NLC): in vitro and ex vivo studies. Nanomedicine. 2012;8(6):1034–1041. doi:10.1016/j.nano.2011.10.015
  • Araújo J, Nikolic S, Egea MA, Souto EB, Garcia ML. Nanostructured lipid carriers for triamcinolone acetonide delivery to the posterior segment of the eye. Colloids Surf B Biointerfaces. 2011;88(1):150–157. doi:10.1016/j.colsurfb.2011.06.025
  • Gonzalez-Mira E, Egea MA, Souto EB, Calpena AC, García ML. Optimizing flurbiprofen-loaded NLC by central composite factorial design for ocular delivery. Nanotechnology. 2011;22(4):045101. doi:10.1088/0957-4484/22/4/045101
  • Gonzalez-Mira E, Egea MA, Garcia ML, Souto EB. Design and ocular tolerance of flurbiprofen loaded ultrasound-engineered NLC. Colloids Surf B Biointerfaces. 2010;81(2):412–421. doi:10.1016/j.colsurfb.2010.07.029
  • Souto EB, Doktorovova S, Gonzalez-Mira E, Egea MA, Garcia ML. Feasibility of lipid nanoparticles for ocular delivery of anti-inflammatory drugs. Curr Eye Res. 2010;35(7):537–552. doi:10.3109/02713681003760168
  • Araújo J, Gonzalez-Mira E, Egea MA, Garcia ML, Souto EB. Optimization and physicochemical characterization of a triamcinolone acetonide-loaded NLC for ocular antiangiogenic applications. Int J Pharm. 2010;393(1–2):167–175. doi:10.1016/j.ijpharm.2010.03.034
  • Zhu HM, Huang PC, Zhao TT, et al. In vitro genotoxicity of silver nanoparticles and titanium dioxide nanoparticles. Hereditary. 2020;42:56–64.
  • Piao MY, Zhao JW. Research progress of magnetic iron oxide nanoparticles in biomedical application. Huaihai Med. 2020;38:110–113.
  • Xu LS, Li WD, Shi Q. Synthesis of mulberry leaf extract mediated gold nanoparticles and their ameliorative effect on Aluminium intoxicated and diabetic retinopathy in rats during perinatal life. J Photochem Photobiol B. 2019;196:111502. doi:10.1016/j.jphotobiol.2019.04.011
  • Amadio M, Pascale A, Cupri S, et al. Nanosystems based on siRNA silencing HuR expression counteract diabetic retinopathy in rat. Pharmacol Res. 2016;111:713–720. doi:10.1016/j.phrs.2016.07.042
  • Zamani M, Shirinzadeh A, Aghajanzadeh M, Andalib S, Danafar H. In vivo study of mPEG-PCL as a nanocarriers for anti-inflammatory drug delivery of simvastatin. Pharm Dev Technol. 2019;24(6):663–670. doi:10.1080/10837450.2018.1556689
  • Amato R, Giannaccini M, Dal Monte M, et al. Association of the somatostatin analog octreotide with magnetic nanoparticles for intraocular delivery: a possible approach for the treatment of diabetic retinopathy. Front Bioeng Biotechnol. 2020;8:144. doi:10.3389/fbioe.2020.00144
  • Shoval A, Markus A, Zhou Z, et al. Anti-VEGF-aptamer modified C-Dots-A hybrid nanocomposite for topical treatment of ocular vascular disorders. Small. 2019;15(40):e1902776. doi:10.1002/smll.201902776
  • Kador PF, Wyman M, Oates PJ. Aldose reductase, ocular diabetic complications and the development of topical Kinostat. Prog Retin Eye Res. 2016;54:1–29. doi:10.1016/j.preteyeres.2016.04.006
  • Liu Z, Yu N, Holz FG, Yang F, Stanzel BV. Enhancement of retinal pigment epithelial culture characteristics and subretinal space tolerance of scaffolds with 200 nm fiber topography. Biomaterials. 2014;35(9):2837–2850. doi:10.1016/j.biomaterials.2013.12.069
  • Chang YC, Chen MH, Liao SY, et al. Multichanneled nerve guidance conduit with spatial gradients of neurotrophic factors and oriented nanotopography for repairing the peripheral nervous system. ACS Appl Mater Interfaces. 2017;9(43):37623–37636. doi:10.1021/acsami.7b12567
  • Yan L, Zhao B, Liu X, et al. Aligned nanofibers from polypyrrole/graphene as electrodes for regeneration of optic nerve via electrical stimulation. ACS Appl Mater Interfaces. 2016;8(11):6834–6840. doi:10.1021/acsami.5b12843
  • Jing Y, Moore LR, Williams PS, et al. Blood progenitor cell separation from clinical leukapheresis product by magnetic nanoparticle binding and magnetophoresis. Biotechnol Bioeng. 2007;96(6):1139–1154. doi:10.1002/bit.21202
  • Nadri S, Kazemi B, Eeslaminejad MB, et al. High yield of cells committed to the photoreceptor-like cells from conjunctiva mesenchymal stem cells on nanofibrous scaffolds. Mol Biol Rep. 2013;40:3883–3890. doi:10.1007/s11033-012-2360-y
  • Ebrahimi-Barough S, Hoveizi E, Javidan N, et al. Investigating the neuroglial differentiation effect of neuroblastoma conditioned medium in human endometrial stem cells cultured on 3D nanofibrous scaffold. J Biomed Mater Res A. 2015;103:2621–2627. doi:10.1002/jbm.a.35397
  • Froelich K, Pueschel RC, Birner M, et al. Optimization of fibrinogen isolation for manufacturing autologous fibrin glue for use as scaffold in tissue engineering. Artif Cells Blood Subst Biotech. 2010;38:143–149. doi:10.3109/10731191003680748
  • Soleimannejad M, Ebrahimi-Barough S, Soleimani M, et al. Fibrin gel as a scaffold for photoreceptor cells differentiation from conjunctiva mesenchymal stem cells in retina tissue engineering. Artif Cells Nanomed Biotechnol. 2018;46(4):805–814. doi:10.1080/21691401.2017.1345922
  • Li S, Huang L. In vivo gene transfer via intravenous administration of cationic lipid-protamine-DNA (LPD) complexes. Gene Ther. 1997;4(9):891–900. doi:10.1038/sj.gt.3300482
  • Li S, Rizzo MA, Bhattacharya S, Huang L. Characterization of cationic lipid-protamine-DNA (LPD) complexes for intravenous gene delivery. Gene Ther. 1998;5(7):930–937. doi:10.1038/sj.gt.3300683
  • Long J, Kim H, Kim D, Lee JB, Kim DH. A biomaterial approach to cell reprogramming and differentiation. J Mater Chem B. 2017;5(13):2375–2379. doi:10.1039/C6TB03130G
  • Cao B, Qiu P, Mao C. Mesoporous iron oxide nanoparticles prepared by polyacrylic acid etching and their application in gene delivery to mesenchymal stem cells. Microsc Res Tech. 2013;76(9):936–941. doi:10.1002/jemt.22251
  • Kutsuzawa K, Chowdhury EH, Nagaoka M, Maruyama K, Akiyama Y, Akaike T. Surface functionalization of inorganic nano-crystals with fibronectin and E-cadherin chimera synergistically accelerates trans-gene delivery into embryonic stem cells. Biochem Biophys Res Commun. 2006;350(3):514–520. doi:10.1016/j.bbrc.2006.09.081
  • Fangueiro JF, Andreani T, Egea MA, et al. Design of cationic lipid nanoparticles for ocular delivery: development, characterization and cytotoxicity. Int J Pharm. 2014;461(1–2):64–73. doi:10.1016/j.ijpharm.2013.11.025
  • Kompella UB, Amrite AC, Pacha Ravi R, Durazo SA. Nanomedicines for back of the eye drug delivery, gene delivery, and imaging. Prog Retin Eye Res. 2013;36:172–198. doi:10.1016/j.preteyeres.2013.04.001
  • Yang J, Cai L, Zhang S, Zhu X, Zhou P, Lu Y. Silica-based cerium (III) chloride nanoparticles prevent the fructose-induced glycation of α-crystallin and H₂O₂-induced oxidative stress in human lens epithelial cells. Arch Pharm Res. 2014;37(3):404–411. doi:10.1007/s12272-013-0195-2
  • Jo DH, Kim JH, Yu YS, Lee TG, Kim JH. Antiangiogenic effect of silicate nanoparticle on retinal neovascularization induced by vascular endothelial growth factor. Nanomedicine. 2012;8(5):784–791. doi:10.1016/j.nano.2011.09.003
  • Gurunathan S, Lee KJ, Kalishwaralal K, Sheikpranbabu S, Vaidyanathan R, Eom SH. Antiangiogenic properties of silver nanoparticles. Biomaterials. 2009;30(31):6341–6350. doi:10.1016/j.biomaterials.2009.08.008
  • Kim JH, Kim MH, Jo DH, Yu YS, Lee TG, Kim JH. The inhibition of retinal neovascularization by gold nanoparticles via suppression of VEGFR-2 activation. Biomaterials. 2011;32(7):1865–1871. doi:10.1016/j.biomaterials.2010.11.030
  • Varshochian R, Jeddi-Tehrani M, Mahmoudi AR, et al. The protective effect of albumin on bevacizumab activity and stability in PLGA nanoparticles intended for retinal and choroidal neovascularization treatments. Eur J Pharm Sci. 2013;50(3–4):341–352. doi:10.1016/j.ejps.2013.07.014
  • Bysell H, Månsson R, Hansson P, Malmsten M. Microgels and microcapsules in peptide and protein drug delivery. Adv Drug Deliv Rev. 2011;63(13):1172–1185. doi:10.1016/j.addr.2011.08.005
  • Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release. 2012;161(2):505–522. doi:10.1016/j.jconrel.2012.01.043
  • Pusparajah P, Lee LH, Abdul Kadir K. Molecular Markers of Diabetic Retinopathy: Potential Screening Tool of the Future? Front Physiol. 2016;7:200. doi:10.3389/fphys.2016.00200