164
Views
1
CrossRef citations to date
0
Altmetric
Original Research

A Novel Para-Amino Salicylic Acid Magnesium Layered Hydroxide Nanocomposite Anti-Tuberculosis Drug Delivery System with Enhanced in vitro Therapeutic and Anti-Inflammatory Properties

, ORCID Icon, ORCID Icon, , , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 7035-7050 | Published online: 15 Oct 2021

References

  • World Health Organization. Global Tuberculosis Report 2020. Geneva: World Health Organization; 2020.
  • Hafkin J, Hittel N, Martin A, Gupta R. Early outcomes in MDR-TB and XDR-TB patients treated with delamanid under compassionate use. Eur Respir J. 2017;50(1):1700311. doi:10.1183/13993003.00311-2017
  • Press W. Treatment of Tuberculosis Guidelines. 4th ed. WHO/HTM/TB/2009.420. 20 Avenue Appia, 1211 Geneva 27, Switzerland: World Health Organization; 2010.
  • Liu CH, Liu H, Ge B. Innate immunity in tuberculosis: host defense vs pathogen evasion. Cell Mol Immunol. 2017;14(12):963–975. doi:10.1038/cmi.2017.88
  • Baguma R, Mbandi SK, Rodo MJ, et al. Inflammatory determinants of differential tuberculosis risk in pre-adolescent children and young adults. Front Immunol. 2021;12:639965. doi:10.3389/fimmu.2021.639965
  • Hayford FEA, Dolman RC, Blaauw R, et al. The effects of anti-inflammatory agents as host-directed adjunct treatment of tuberculosis in humans: a systematic review and meta-analysis. Respir Res. 2020;21(1):223. doi:10.1186/s12931-020-01488-9
  • Toossi Z. The inflammatory response in Mycobacterium tuberculosis infection. Arch Immunol Ther Exp (Warsz). 2000;48(6):513–519.
  • Tomić M, Micov A, Pecikoza U, Stepanović-Petrović R. Chapter 1 - clinical uses of nonsteroidal anti-inflammatory drugs (NSAIDs) and potential benefits of NSAIDs modified-release preparations. In: Čalija B, editor. Microsized and Nanosized Carriers for Nonsteroidal Anti-Inflammatory Drugs. Boston: Academic Press; 2017:1–29.
  • Krajišnik D, Čalija B, Cekić N. Chapter 2 - polymeric microparticles and inorganic micro/nanoparticulate drug carriers: an overview and pharmaceutical application. In: Čalija B, editor. Microsized and Nanosized Carriers for Nonsteroidal Anti-Inflammatory Drugs. Boston: Academic Press; 2017:31–67.
  • Saifullah B. Inorganic nanolayers: structure, preparation, and biomedical applications. Int J Nanomedicine. 2015;10:24.
  • Yan L, Gonca S, Zhu G, Zhang W, Chen X. Layered double hydroxide nanostructures and nanocomposites for biomedical applications. J Mater Chem B. 2019;7(37):5583–5601. doi:10.1039/C9TB01312A
  • Wijitwongwan RP, Intasa-ard S, Ogawa M. Preparation of layered double hydroxides toward precisely designed hierarchical organization. ChemEngineering. 2019;3(3):22. doi:10.3390/chemengineering3030068
  • Laipan M, Yu J, Zhu R, et al. Functionalized layered double hydroxides for innovative applications. Mater Horiz. 2020;7(3):715–745.
  • Liu JC, Qi B, Song YF. Engineering polyoxometalate-intercalated layered double hydroxides for catalytic applications. Dalton Trans. 2020;49(13):3934–3941.
  • Bullo Saifullah PA. Development of a biocompatible nanodelivery system for tuberculosis drugs based on isoniazid-Mg/Al layered double hydroxide. Int J Nanomedicine. 2014;9:14.
  • Yazdani P, Mansouri E, Eyvazi S, et al. Layered double hydroxide nanoparticles as an appealing nanoparticle in gene/plasmid and drug delivery system in C2C12 myoblast cells. Artif Cells, Nanomed Biotechnol. 2019;47(1):436–442. doi:10.1080/21691401.2018.1559182
  • Abo El-Reesh GY, Farghali AA, Taha M, Mahmoud RK. Novel synthesis of Ni/Fe layered double hydroxides using urea and glycerol and their enhanced adsorption behavior for Cr(VI) removal. Sci Rep. 2020;10(1):587. doi:10.1038/s41598-020-57519-4
  • Bohn T. Magnesium Absorption in Humans. Germany: University Frankfurt; 2003.
  • Wester PO, Dyckner T. The importance of the magnesium ion. Magnesium deficiency symptomatology and occurrence. Acta Med Scand Suppl. 1998;661:2.
  • Brady H. Magnesium: the forgotten cation. Ir Med J. 1982;80:4.
  • Severino P, Netti L, Mariani MV, Maraone A. Prevention of cardiovascular disease: screening for magnesium deficiency. Cardiol Res Pract. 2019;2019:10. doi:10.1155/2019/4874921
  • Figueiredo MP, Cunha VRR, Leroux F, et al. Iron-based layered double hydroxide implants: potential drug delivery carriers with tissue biointegration promotion and blood microcirculation preservation. ACS Omega. 2018;3(12):18263–18274. doi:10.1021/acsomega.8b02532
  • Mansouri E, Tarhriz V, Yousefi V, Dilmaghani A. Intercalation and release of an anti-inflammatory drug into designed three-dimensionally layered double hydroxide nanostructure via calcination–reconstruction route. Adsorption. 2020;26(6):835–842. doi:10.1007/s10450-020-00217-4
  • Rabiee N, Bagherzadeh M, Ghadiri AM, Salehi G, Fatahi Y, Dinarvand R. ZnAl nano layered double hydroxides for dual functional CRISPR/Cas9 delivery and enhanced green fluorescence protein biosensor. Sci Rep. 2020;10(1):20672. doi:10.1038/s41598-020-77809-1
  • Yousefi V, Tarhriz V, Eyvazi S, Dilmaghani A. Synthesis and application of magnetic@layered double hydroxide as an anti-inflammatory drugs nanocarrier. J Nanobiotechnology. 2020;18(1):155. doi:10.1186/s12951-020-00718-y
  • Saifullah B, Arulselvan P, El Zowalaty ME, et al. Development of a highly biocompatible antituberculosis nanodelivery formulation based on para-aminosalicylic acid—zinc layered hydroxide nanocomposites. Sci World J. 2014;2014:401460. doi:10.1155/2014/401460
  • Saifullah B, Hussein MZ, Hussein-Al-Ali SH, Arulselvan P, Fakurazi S. Antituberculosis nanodelivery system with controlled-release properties based on para-amino salicylate-zinc aluminum-layered double-hydroxide nanocomposites. Drug Des Devel Ther. 2013;7:1365–1375.
  • Tucker KL, Hannan MT, Chen H, Cupples LA, Wilson PWF, Kiel DP. Potassium, magnesium, and fruit and vegetable intakes are associated with greater bone mineral density in elderly men and women. Am J Clin Nutr. 1999;69(4):727–736. doi:10.1093/ajcn/69.4.727
  • Cavani F, Trifirò F, Vaccari A. Hydrotalcite-type anionic clays: preparation, properties and applications. Catal Today. 1991;11(2):173–301. doi:10.1016/0920-5861(91)80068-K
  • Rives V. Layered Double Hydroxides: Present and Future. Nova Science Pub Inc; 2001.
  • Salak ANV, Lukienko DEL, Shapovalov IM, et al. High-power ultrasonic synthesis and magnetic-field-assisted arrangement of nanosized crystallites of cobalt-containing layered double hydroxides. ChemEngineering MDPI. 2019;3(3):62.
  • Saifullah B, Hussein MZ. Inorganic nanolayers: structure, preparation, and biomedical applications. Int J Nanomedicine. 2015;10:5609–5633.
  • Labille JGA, Bonasera A, Prestopino G. Layered double hydroxides: a toolbox for chemistry and biology. Crystals. 2019;9(7):361. doi:10.3390/cryst9070361
  • Cao Z, Li B, Sun L, Li L, Xu ZP, Gu Z. Targeted drug delivery: 2D layered double hydroxide nanoparticles: recent progress toward preclinical/clinical nanomedicine (small methods 2/2020). Small Methods. 2020;4(2):2070008. doi:10.1002/smtd.202070008
  • Boman G. Serum concentration and half-life of rifampicin after simultaneous oral administration of aminosalicylic acid or isoniazid. Eur J Clin Pharmacol. 1974;7(3):217–225. doi:10.1007/BF00560384
  • Traini D, Young PM. Drug delivery for tuberculosis: is inhaled therapy the key to success? Ther Deliv. 2017;8(10):819–821. doi:10.4155/tde-2017-0050
  • Goyal AK, Garg T, Bhandari S, Rath G. Chapter 22 - advancement in pulmonary drug delivery systems for treatment of tuberculosis. In: Andronescu E, Grumezescu AM, editors. Nanostructures for Drug Delivery. Elsevier; 2017:669–695.
  • Sharma R, Kaur A, Sharma AK, Dilbaghi N. Nano-based anti-tubercular drug delivery and therapeutic interventions in tuberculosis. Curr Drug Targets. 2017;18(1):72–86. doi:10.2174/1389450116666150804110238
  • El Zowalaty ME, Al Ali SHH, Husseiny MI, Geilich BM, Webster TJ, Hussein MZ. The ability of streptomycin-loaded chitosan-coated magnetic nanocomposites to possess antimicrobial and antituberculosis activities. Int J Nanomedicine. 2015;10:3269. doi:10.2147/IJN.S74469
  • Hakkimane SS, Shenoy VP, Gaonkar SL, Bairy I, Guru BRJ. Antimycobacterial susceptibility evaluation of rifampicin and isoniazid benz-hydrazone in biodegradable polymeric nanoparticles against Mycobacterium tuberculosis H37Rv strain. Int J Nanomedicine. 2018;13:4303. doi:10.2147/IJN.S163925
  • Walters SB, Hanna BA. Testing of susceptibility of Mycobacterium tuberculosis to isoniazid and rifampin by mycobacterium growth indicator tube method. J Clin Microbiol. 1996;34(6):1565–1567. doi:10.1128/jcm.34.6.1565-1567.1996
  • Tsiaggali M, Andreadou E, Hatzidimitriou A, Pantazaki A, Aslanidis PJ. Copper (I) halide complexes of N-methylbenzothiazole-2-thione: synthesis, structure, luminescence, antibacterial activity and interaction with DNA. J Inorg Biochem. 2013;121:121–128. doi:10.1016/j.jinorgbio.2013.01.001
  • Usman MS, El Zowalaty ME, Shameli K, Zainuddin N, Salama M, Ibrahim NAJ. Synthesis, characterization, and antimicrobial properties of copper nanoparticles. Int J Nanomedicine. 2013;8:4467.
  • Williams DN, Ehrman SH, Holoman TRPJ. Evaluation of the microbial growth response to inorganic nanoparticles. J Nanobiotechnology. 2006;4(1):3. doi:10.1186/1477-3155-4-3
  • Phumpatrakom P, Ariyakriangkai W, Srisuwan T, Louwakul P. In vitro cytotoxicity of some hemostatic agents used in apicoectomy to human periodontal ligament and bone cells. Saudi Endod J. 2020;10(1):21–27.
  • Sasaki T, Tamaki J, Nishizawa K, et al. Evaluation of cell viability and metabolic activity of a 3D cultured human epidermal model using a dynamic autoradiographic technique with a PET radiopharmaceutical. Sci Rep. 2019;9(1):10685. doi:10.1038/s41598-019-47153-0
  • He W, Frost MC. Direct measurement of actual levels of nitric oxide (NO) in cell culture conditions using soluble NO donors. Redox Biol. 2016;9:1–14. doi:10.1016/j.redox.2016.05.002
  • Wang X, Pang H, Chen W, Lin Y, Ning G. Controllable fabrication of high purity Mg(OH)2 nanoneedles via direct transformation of natural brucite. Mater Lett. 2014;120:69–72. doi:10.1016/j.matlet.2014.01.034
  • Maa X, Maa H, Jianga X, Jianga Z. Preparation of magnesium hydroxide nanoflowers from boron mud via anti-drop precipitation method. Mater Res Bull. 2014;56:6.
  • Saifullah B, Hussein MZ, Hussein-Al-Ali SH, Arulselvan P, Fakurazi S. Sustained release formulation of an anti-tuberculosis drug based on para-amino salicylic acid-zinc layered hydroxide nanocomposite. Chem Cent J. 2013;7(1):72. doi:10.1186/1752-153X-7-72
  • Akkaya Y, Infrared AS. Raman spectra, ab initio calculations vibrational assignment of 4-aminosalicylic acid. Vib Spectrosc. 2006;42(22):10. doi:10.1016/j.vibspec.2006.05.011
  • Panicker CY, John VH. FT-IR, FT-Raman and FT-SERS spectra of 4-aminosalicylic acid sodium salt dihydrate. Spectrochim Acta A Mol Biomol Spectrosc. 2001;58(2):7.
  • Rabha A, Singh A, Grover S, Kumari A, Pandey B, Grover A. Structural basis for isoniazid resistance in KatG double mutants of Mycobacterium tuberculosis. Microb Pathog. 2019;129:152–160. doi:10.1016/j.micpath.2019.02.003
  • Heraldy E, Triyono T, Wijaya K, Santosa SJ. Mg/Al hydrotalcite-like synthesized from brine water for eosin yellow removal. Indo J Chem. 2011;11(2):6.
  • Wu L, Yu L, Xiao X, et al. Recent advances in self-supported layered double hydroxides for oxygen evolution reaction. Research. 2020;2020:17. doi:10.34133/2020/3976278
  • Gunasekaran S, Sailatha E, Seshadri S, Kumaresan S. FTIR and FT Raman spectra and molecular structural conformation of isoniazid. Indian J Pure Appl Phys. 2009;47:7.
  • Hong L, Zheng JW. HPLC analysis of para-aminosalicylic acid and its metabolite in plasma, cerebrospinal fluid and brain tissues.. J Pharm Biomed Anal. 2011;54(5):9. doi:10.1016/j.jpba.2010.11.031
  • Saifullah B, El Zowalaty ME, Arulselvan P, et al. Synthesis, characterization, and efficacy of antituberculosis isoniazid zinc aluminum-layered double hydroxide based nanocomposites. Int J Nanomedicine. 2016;11:3225–3237. doi:10.2147/IJN.S102406
  • Malaguarnera L. Influence of resveratrol on the immune response. Nutrients. 2019;11(5):946. doi:10.3390/nu11050946
  • Schwager J, Richard N, Widmer F, Raederstorff D. Resveratrol distinctively modulates the inflammatory profiles of immune and endothelial cells. BMC Complement Altern Med. 2017;17(1):17–1823. doi:10.1186/s12906-017-1823-z
  • van Loo G, Sze M, Bougarne N, et al. Antiinflammatory properties of a plant-derived nonsteroidal, dissociated glucocorticoid receptor modulator in experimental autoimmune encephalomyelitis. J Mol Endocrinol. 2010;24(2):310–322. doi:10.1210/me.2009-0236
  • Soonthornsit N, Pitaksutheepong C, Hemstapat W, Utaisincharoen P, Pitaksuteepong T. In vitro anti-inflammatory activity of Morus alba l. stem extract in LPS-stimulated RAW 264.7 cells. Evid Based Complement Alternat Med. 2017;2017:8. doi:10.1155/2017/3928956
  • Chen L, Deng H, Cui H, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2017;9(6):7204–7218. doi:10.18632/oncotarget.23208
  • Gonçalves JM, Martins PR, Angnes L, Araki K. Recent advances in ternary layered double hydroxide electrocatalysts for the oxygen evolution reaction. New J Chem. 2020;44(24):9981–9997. doi:10.1039/D0NJ00021C
  • Saifullah B, Chrzastek A, Maitra A, et al. Novel anti-tuberculosis nanodelivery formulation of ethambutol with graphene oxide. Molecules. 2017;22(10):1560. doi:10.3390/molecules22101560
  • Choi G, Rejinold NS, Piao H, Choy J-H. Inorganic–inorganic nanohybrids for drug delivery, imaging and photo-therapy: recent developments and future scope. Chem Sci. 2021;12(14):5044–5063. doi:10.1039/D0SC06724E
  • Wu Y, Pang H, Liu Y, et al. Environmental remediation of heavy metal ions by novel-nanomaterials: a review. Environ Pollut. 2019;246:608–620. doi:10.1016/j.envpol.2018.12.076
  • Nabipour H, Jafari SH, Naderikalali E, Mozafari M. Mefenamic acid-layered zinc hydroxide nanohybrids: a new platform to elaborate drug delivery systems. J Inorg Organomet Polym Mater. 2018. doi:10.1007/s10904-018-0998-1
  • Hashim N, Sharif SNM, Muda Z, et al. Preparation of zinc layered hydroxide-ferulate and coated zinc layered hydroxide-ferulate nanocomposites for controlled release of ferulic acid. Mater Res Innov. 2019;23(4):233–245. doi:10.1080/14328917.2018.1444696