856
Views
34
CrossRef citations to date
0
Altmetric
Review

Nanomaterials-Upconverted Hydroxyapatite for Bone Tissue Engineering and a Platform for Drug Delivery

, ORCID Icon &
Pages 6477-6496 | Published online: 21 Sep 2021

References

  • Abasalizadeh F, Moghaddam SV, Alizadeh E, et al. Alginate-based hydrogels as drug delivery vehicles in cancer treatment and their applications in wound dressing and 3D bioprinting. J Biol Eng. 2020;14(1):1–22.
  • Ai F, Chen L, Yan J, et al. Hydroxyapatite scaffolds containing copper for bone tissue engineering. J Solgel Sci Technol. 2020;95(1):1–40. doi:10.1007/s10971-020-05285-0
  • Albahy GS, Abbas YM, Hezma AM, et al. Preparation of porous n-HAp scaffold enforced with MWCNTs as vehicle for local drug delivery of ciprofloxacin. J Text Color Polymer Sci. 2020;17(1):77–85.
  • Alorku K, Manoj M, Yuan A. A plant-mediated synthesis of nanostructured hydroxyapatite for biomedical applications: a review. RSC Adv. 2020;10:40923–40939. doi:10.1039/D0RA08529D
  • Bari A, Bloise N, Fiorilli S, et al. Copper-containing mesoporous bioactive glass nanoparticles as multifunctional agent for bone regeneration. Acta Biomaterialia. 2017;55:493–504. doi:10.1016/j.actbio.2017.04.012
  • Benedini L, Laiuppa J, Santillán G, et al. Antibacterial alginate/nano-hydroxyapatite composites for bone tissue engineering: assessment of their bioactivity, biocompatibility and antibacterial activity. Mater Sci Eng C. 2020;115:111101. doi:10.1016/j.msec.2020.111101
  • Bermúdez-Reyes B, Del Refugio Lara-Banda M, Reyes-Zarate E, et al. Effect on growth and osteoblast mineralization of hydroxyapatite-zirconia (HA-ZrO2) obtained by a new low temperature system. Biomed Mater. 2018;13(3):035001. doi:10.1088/1748-605X/aaa3a4
  • Bhowmick A, Lal S, Pramanik N, et al. Organically modified clay supported chitosan/hydroxyapatite-zinc oxide nanocomposites with enhanced mechanical and biological properties for the application in bone tissue engineering. Int J Biol Macromol. 2018;106:11–19. doi:10.1016/j.ijbiomac.2017.07.168
  • Canillas M, Rivero R, Garcia-Carrodeguas R, et al. Processing of hydroxyapatite obtained by combustion synthesis. Boletin De La Sociedad Espanola DeCerámica y Vidrio. 2017;56(5):1–6.
  • Cao X, Wang J, Liu M, et al. Chitosan-collagen/organomontmorillonite scaffold for bone tissue engineering. Front Mater Sci. 2015;9(4):405–412. doi:10.1007/s11706-015-0317-5
  • Cardozo VF, Oliveira AG, Nishio EK, et al. Antibacterial activity of extracellular compounds produced by a Pseudomonas strain against methicillin-resistant Staphylococcus aureus (MRSA) strains. Ann Clin Microbiol Antimicrob. 2013;12(1):1–8. doi:10.1186/1476-0711-12-12
  • Cestari F, Agostinacchio F, Galotta A, et al. Nano-hydroxyapatite derived from biogenic and bioinspired calcium carbonates: synthesis and in vitro bioactivity. Nanomaterials. 2021;11(2):1–14. doi:10.3390/nano11020264
  • Ceylan M, Akdas S, Yazihan N. Is zinc an important trace element on bone-related diseases and complications? A meta-analysis and systematic review from serum level, dietary intake, and supplementation aspects. Biol Trace Elem Res. 2021;199(2):535–549. doi:10.1007/s12011-020-02193-w
  • Changchun Z, Yujiang F, Boqing Z, et al., inventor; UNIV Sichuan., assignee. Degradable controllable bone tissue engineering scaffold based on 3D printing and preparation method thereof. China patent CN 109260525. 2019 Jan 25.
  • Chasapis C, Ntoupa P, Spiliopoulou C, et al. Recent aspects of the effects of zinc on human health. Arch Toxicol. 2020;94(5):1443–1460. doi:10.1007/s00204-020-02702-9
  • Chen L, Xiaoning H, Jinjie S, Yaping P, Lin L, Shiwen Y, inventor; Hospital of Stomatology China Medical Univ., assignee. Preparation method of composite bone tissue engineering stent material. China patent CN 109758609. 2019 May 17.
  • Chen Y, Han P, Vandi LJ, et al. A biocompatible thermoset polymer binder for direct ink writing of porous titanium scaffolds for bone tissue engineering. Mater Sci Eng C. 2019;25:160–165. doi:10.1016/j.msec.2018.10.033
  • Chlanda A, Heljak M, Górecka Z, et al. Nanohydroxyapatite adhesion to low temperature plasma modified surface of 3D-printed bone tissue engineering scaffolds - qualitative and quantitative study. Surf Coat Tech. 2019;375:637–644.
  • Cho SJ, Uddin MJ, Alaboina P, et al. Chapter three - review of nanotechnology for cathode materials in batteries. In: Rodriguez-Martinez LM, Omar N, editors. Emerging Nanotechnology in Rechargeable Energy Storage Systems. Amsterdam: Elsevier; 2017:83–129.
  • Chunlei H, Libing Z, Yeshun Z, inventor; Hospital Of Gannan Medical Univ; Shenzhen Beian Gene Bio Tech Co LTD., assignee. Sericin/nano-hydroxyapatite tissue engineering bone graft as well as preparation method and application thereof. China patent CN 110665055. 2020 Jan 10.
  • Crémet L, Broquet A, Brulin B, et al. Pathogenic potential of Escherichia coli clinical strains from orthopedic implant infections towards human osteoblastic cells. Pathog Dis. 2015;73(8):ftv065. doi:10.1093/femspd/ftv065
  • Dehghanghadikolaei A, Fotovvati B. Coating techniques for functional enhancement of metal implants for bone replacement: a review. Materials. 2019;12(11):1–23. doi:10.3390/ma12111795
  • Di H, Jingjing D, Yan W, et al., inventor; Univ Taiyuan Technology., assignee. Preparation method for nano hydroxyapatite/cyclodextrin-based polyurethane composite porous bone tissue engineering bracket material. China patent CN 107982578. 2018 May 04.
  • Dinda S, Bhagavatam A, Alrehaili H, et al. Mechanochemical synthesis of nanocrystalline hydroxyapatite from Ca(H2PO4)2.H2O, CaO, Ca(OH)2, and P2O5 mixtures. Nanomaterials. 2020;10:2232. doi:10.3390/nano10112232
  • Dini I. Spices and herbs as therapeutic foods. In: Holban AM, Grumezescu AM, editors. Food Quality: Balancing Health and Disease. United States: Academic Press; 2018:433–469.
  • Sami El-banna F, Mahfouz ME, Leporatti S, El-Kemary M, A. N. Hanafy N. Chitosan as a natural copolymer with unique properties for the development of hydrogels. Appl Sci. 2019;9(11):2193. doi:10.3390/app9112193
  • Fengcang M, Ping L, Xinkuan L, et al., inventor; Univ Shanghai Science & Tech., assignee. Bone tissue engineering timbering material and preparation method thereof. China patent CN 106421894. 2017 Feb 10.
  • Fernandes MH, Alves MM, Cebotarenco M, et al. Citrate zinc hydroxyapatite nanorods with enhanced cytocompatibility and osteogenesis for bone regeneration. Mater Sci Eng C. 2020;115:111147. doi:10.1016/j.msec.2020.111147
  • Filho PM, Barreto MA, Medrado AR, et al. Biological principles of nanostructured hydroxyapatite associated with metals: a literature review. Insight Biomed. 2019;4(3):1–10.
  • Garvie RC, Nicholson PS. Structure and thermomechanical properties of partially stabilized zirconia in the CaO‐ZrO2 system. J Am Ceram Soc. 1972;55(3):152–157. doi:10.1111/j.1151-2916.1972.tb11241.x
  • George A, Antoni D, Raj A, et al. Temperature effect on CuO nanoparticles: antimicrobial activity towards bacterial strains. Surf Interfaces. 2020;21:100761. doi:10.1016/j.surfin.2020.100761
  • Gibson IR. 1.3.4A Natural and synthetic hydroxyapatite. In: Wagner WR, Sakiyama-Elbert SE, Zhang G, editors. Biomaterials Science. 4th ed. United Kingdom: Academic Press; 2021:307–317.
  • Gomes DS, Santos AMC, Neves GA, et al. A brief review on hydroxyapatite production and use in biomedicine. Ceramica. 2019;65:282–302. doi:10.1590/0366-69132019653742706
  • Grass G, Rensing C, Solioz M. Metallic copper as an antimicrobial surface. Appl Environ Microbiol. 2011;77(5):1541–1547. doi:10.1128/AEM.02766-10
  • Guo C, Li L, Li S, et al. Preparation, characterization, bioactivity and degradation behavior: in vitro of copper-doped calcium polyphosphate as a candidate material for bone tissue engineering. RSC Adv. 2017;7(67):42614–42626. doi:10.1039/C7RA06159E
  • Habibah TU, Amlani DV, Brizuela M. Hydroxyapatite dental material. In: Stat Pearls [Internet]. StatPerals Publishing; 2020. Available from: https://pubmed.ncbi.nlm.nih.gov/30020686/. Accessed August 31, 2021.
  • Huang M, Ye K, Hu T, et al. Silver nanoparticles attenuate the antimicrobial activity of the innate immune system by inhibiting neutrophil-mediated phagocytosis and reactive oxygen species production. Int J Nanomedicine. 2021;16:1345–1360. doi:10.2147/IJN.S292482
  • Hung YH, Bush AI, Cherny RA. Copper in the brain and Alzheimer’s disease. J Biol Inorg Chem. 2010;15(1):61–76.
  • Javadinejad HR, Ebrahimi-Kahrizsangi R. Thermal and kinetic study of hydroxyapatite formation by solid-state reaction. Int J Chem Kinet. 2020;53:583–595. doi:10.1002/kin.21467
  • Jensen LK, Koch J, Aalbæk B, et al. Early implant-associated osteomyelitis results in a peri-implanted bacterial reservoir. Apmis. 2017;125(1):38–45. doi:10.1111/apm.12597
  • Jesus C, Perera C, Guadalupe M, et al. Characterization and hemocompatibility assessment of porous composite scaffolds with a biomimetic human clavicle macrostructure. Health Technol (Berl). 2020;10:423–428. doi:10.1007/s12553-019-00374-9
  • Jian L, Ben B, Xingguo C, Jeffrey NB, Xiao-Dong C, inventor; Southwest Res Inst., assignee. Fabrication of bone regeneration scaffolds and bone filler material using a perfusion flow system. United State patent US 2015343117. 2015 Dec 03.
  • Jingbo Y, Zhen H, inventor; Univ Shanghai., assignee. Chitosan-based bionic bone tissue engineering scaffold and production method thereof. China patent CN 106512099. 2017 Mar 22.
  • Kakakhel M, Wu F, Sajjad W, et al. Long-term exposure to high-concentration silver nanoparticles induced toxicity, fatality, bioaccumulation and histological alteration in fish (Cyprinus carpio). Environ Sci Eur. 2021;33(14):1–11. doi:10.1186/s12302-021-00453-7
  • Kalaiselvi V, Mathammal R, Vijayakumar S, et al. Microwave assisted green synthesis of hydroxyapatite nanorods using Moringa oleifera flower extract and its antimicrobial applications. Int J Vet Sci Med. 2018;6(2):286–295. doi:10.1016/j.ijvsm.2018.08.003
  • Kalbarczyk M, Szczes A, Sternik D. The preparation of calcium phosphate adsorbent from natural calcium resource and its application for copper ion removal. Environ Sci Pollut Res. 2021;28:1725–1733. doi:10.1007/s11356-020-10585-7
  • Kang L, Xianglin Z, inventor; Univ Huazhong Science & Tech Ezhou Ind Tech Res Inst; Univ Huazhong Science Tech., assignee. Method for manufacturing three-dimensional bone tissue engineering bracket through extruding deposited 3D printing. China patent CN 108297396. 2018 Jul 20.
  • Kavasi R, Coelho C, Platania V, et al. In vitro biocompatibility assessment of nano-hydroxyapatite. Nanomaterials. 2021;11(5):1–155. doi:10.3390/nano11051152
  • Kaviya M, Ramakrishnan P, Mohamed SB, et al. Synthesis and characterization of nano-hydroxyapatite/graphene oxide composite materials for medical implant coating applications. Mater Today: Proc. 2020;36(2):1–4.
  • Khan MUA, Abdul RSI, Mehboob H, et al. Synthesis and characterization of silver-coated polymeric scaffolds for bone tissue engineering: antibacterial and in vitro evaluation of cytotoxicity and biocompatibility. ACS Omega. 2021;6(6):4335–4346. doi:10.1021/acsomega.0c05596
  • Kia AG, Ganjloo A. A short extraction time of polysaccharides from fenugreek (trigonella foencem graecum) seed using continuous ultrasound acoustic cavitation: process optimization, characterization and biological activities. Food Bioproc Tech. 2018;11:2204–2216. doi:10.1007/s11947-018-2178-2
  • Kim HL, Jung GY, Yoon JH, et al. Preparation and characterization of nano-sized hydroxyapatite/alginate/chitosan composite scaffolds for bone tissue engineering. Mater Sci Eng C. 2015;54:20–25. doi:10.1016/j.msec.2015.04.033
  • Kim TR, Kim MS, Goh TS, et al. Evaluation of structural and mechanical properties of porous artificial bone scaffolds fabricated via advanced TBA-based freeze-gel casting technique. Appl Sci. 2019;9(9):1–17.
  • Ktari N, Trabelsi I, Bardaa S, et al. Antioxidant and hemolytic activities, and effects in rat cutaneous wound healing of a novel polysaccharide from fenugreek (Trigonella foenum-graecum) seeds. Int J Biol Macromol. 2017;95:625–634. doi:10.1016/j.ijbiomac.2016.11.091
  • Kumar R, Bagri P, Bajpai AK, et al. Nano-silver hydroxyapatite based antibacterial 3D scaffolds of gelatin/alginate/poly (vinyl alcohol) for bone tissue engineering applications. Colloids Surf B Biointerfaces. 2019;177(2):211–218. doi:10.1016/j.colsurfb.2019.01.064
  • Lai W, Chen C, Ren X, et al. Hydrothermal fabrication of porous hollow hydroxyapatite microspheres for a drug delivery system. Mater Sci Eng C. 2016;62:166–172. doi:10.1016/j.msec.2016.01.055
  • Lamkhao S, Phaya M, Jansakun C, et al. Synthesis of hydroxyapatite with antibacterial properties using a microwave-assisted combustion method. Sci Rep. 2019;9:4019. doi:10.1038/s41598-019-40488-8
  • Leigue L, Montiani-Ferreira BA, Moore BA. Antimicrobial susceptibility and minimal inhibitory concentration of Pseudomonas aeruginosa isolated from septic ocular surface disease in different animal species. Open Vet J. 2016;6(3):215–222. doi:10.4314/ovj.v6i3.9
  • Lew KS, Othman R, Ishikawa K, et al. Macroporous bioceramics: a remarkable material for bone regeneration. J Biomater Appl. 2012;27(3):345–358. doi:59
  • Li G, Niu W. Chapter 1: challenges toward musculoskeletal injuries and diseases. In: Razavi M, editor. Nanoengineering in Musculoskeletal Regeneration. San Diego, United States: Academic Press; 2020:1–41.
  • Li Z, Yubao L, Aiping Y, et al. Preparation and in vitro investigation of chitosan/nano-hydroxyapatite composite used as bone substitute materials. J Mater Sci Mater Med. 2005;16:213–219.
  • Li Z, Ramay HR, Hauch KD, et al. Chitosan – alginate hybrid scaffolds for bone tissue engineering. Biomaterials. 2005;26:3919–3928. doi:10.1016/j.biomaterials.2004.09.062
  • Liang W, Runjun S, Chengkun L, Zhaohuan Z, Xue M, Jie D, inventor; Univ Xian Polytechnic., assignee. 3D bioprinting silk fibroin based tissue engineering scaffold and preparation method and application thereof. China patent CN 110639060. 2020 Mar 03.
  • Liu M, Wu C, Zhou C. Chitosan–halloysite nanotubes nanocomposite scaffolds for tissue engineering. J Mater Chem B. 2013;1:2078–2089. doi:10.1039/c3tb20084a
  • Lotsari A, Rajasekharan A, Halvarsson M, et al. Transformation of amorphous calcium phosphate to bone-like apatite. Nat Commun. 2018;9(1):1–11. doi:10.1038/s41467-018-06570-x
  • Lou T, Wang X, Yan X, et al. Fabrication and biocompatibility of poly(l-lactic acid) and chitosan composite scaffolds with hierarchical microstructures. Mater Sci Eng C. 2016;64:341–345. doi:10.1016/j.msec.2016.03.107
  • Lutzweiler G, Halili AN, Vrana NE. The overview of porous, bioactive scaffold as instructive biomaterials for tissue regeneration and their clinical translation. Pharmaceutics. 2020;12(7):1–29. doi:10.3390/pharmaceutics12070602
  • Lyons MK, Kalani M, Neal MT, et al. Surgical management of thoracic osteomyelitis due to Escherichia Coli sepsis. Case Rep Orthop. 2020;2020: Article ID 8847504. doi:10.1155/2020/8847504
  • Maertens RL, Matroule J, Houdt RV. Characteristics of the copper-induced viable-but-non culturable state. World J Microbiol Biotechnol. 2021;37(37):1–9. doi:10.1007/s11274-021-03006-5
  • Manicone PF, Rossi P, Raffaelli L. An overview of zirconia ceramics: basic properties and clinical applications. J Dent. 2007;35(11):819–826. doi:10.1016/j.jdent.2007.07.008
  • Ming D, Pujie S, Cuiping Y, Meng L, Fengjiao F, Di W, inventor; Univ Dalian Polytechnic., assignee. Preparation method of novel biomaterial based on lactoferrin activity. China patent CN 107158477. 2017 Sept 15.
  • Mirjalili F, Navabazam A, Samanizadeh N. Preparation of hydroxyapatite nanoparticles from natural teeth. Russ J Nondestruct Test. 2021;57:152–162. doi:10.1134/S1061830921020091
  • Morgan EF, Gerstenfeld LC. Chapter 2- The bone organ system: form and function. In: Dempster DW, Cauley JA, Bouxsein ML, editors. Marcus and Feldman’s Osteoporosis. 5th ed. United States: Academic Press; 2021:15–32.
  • Morgan EF, Unnikrisnan GU, Hussein AI. Bone mechanical properties in healthy and diseased states. Annu Rev Biomed Eng. 2018;20:119–143. doi:10.1146/annurev-bioeng-062117-121139
  • Mousa M, Evans ND, Oreffo ROC, et al. Clay nanoparticles for regenerative medicine and biomaterial design: a review of clay bioactivity. Biomaterials. 2018;59:204–214. doi:10.1016/j.biomaterials.2017.12.024
  • Nam PT, Thom NT, Phuong NT, et al. Synthesis, characterization and antimicrobial activity of copper doped hydroxyapatite. Vietnam J Chem. 2018;56(6):672–678. doi:10.1002/vjch.201800068
  • Nawang R, Hussein MZ, Matori KA, et al. Physicochemical properties of hydroxyapatite/montmorillonite nanocomposite prepared by powder sintering. Results Phys. 2019;15:102540. doi:10.1016/j.rinp.2019.102540
  • Nazeer MA, Yilgör E, Yilgör I. Intercalated chitosan/hydroxyapatite nanocomposites: promising materials for bone tissue engineering applications. Carbohydr Polym. 2017;175:38–46. doi:10.1016/j.carbpol.2017.07.054
  • Nichol T, Callaghan J, Townsend R. The antimicrobial activity and biocompatibility of a controlled gentamicin-releasing single-layer sol-gel coating on hydroxyapatite-coated titanium. Bone Joint J. 2021;103B(3):522–529. doi:10.1302/0301-620X.103B3.BJJ-2020-0347.R1
  • O’Connor JP, Kanjilal D, Teitelbaum M. Zinc as a therapeutic agent in bone regeneration. Materials. 2020;13(10):1–22. doi:10.3390/ma13102211
  • Ofudje EA, Adeogun AI, Idowu MA, et al. Synthesis and characterization of Zn-doped hydroxyapatite: scaffold application, antibacterial and bioactivity studies. Heliyon. 2019;5(5):e01716. doi:10.1016/j.heliyon.2019.e01716
  • Paschalis EP, Dempster DW, Gamsjaeger S, et al. Mineral and organic matrix composition at bone forming surfaces in postmenopausal women with osteoporosis treated with either teriparatide or zoledronic acid. Bone. 2021;145:115848. doi:10.1016/j.bone.2021.115848
  • Nas P, Abdul RH, Noh H, et al. Synthesis method of hydroxyapatite: a review. Mater Today: Proc. 2019;29:233–239.
  • Qais FA, Shafiq A, Khan HM, et al. Antibacterial effect of silver nanoparticles synthesized using Murraya koenigii (L.) against multidrug-resistant pathogens. Bioinorg Chem Appl. 2019;2019: Article ID 4649506. doi:10.1155/2019/4649506
  • Qi S, He J, Zheng H, et al. Zinc supplementation increased bone mineral density, improves bone histomorphology, and prevents bone loss in diabetic rat. Biol Trace Elem Res. 2020;194(2):493–501. doi:10.1007/s12011-019-01810-7
  • Qing C, Pengfei W, Zuoying Y, Xiaoping Y, Danni H, inventor; Univ Beijing Chem Tech., assignee. Porous microsphere cell scaffold with double functions of inhibiting bacteria and promoting bone formation and preparation method thereof. China patent CN 108339152. 2018 July 31.
  • Ratnayake JTB, Mucalo M, Dias GJ. Substituted hydroxyapatites for bone regeneration: a review of current trends. J Biomed Mater Res B Appl Biomater. 2017;105(5):1285–1299. doi:10.1002/jbm.b.33651
  • Reza G, Hasan M, Soltaniniya M, Massoumi B. In vitro evaluation of sustained ciprofloxacin release from κ-carrageenan-crosslinked chitosan/hydroxyapatite hydrogel nanocomposites. Int J Biol Macromol. 2019;126:443–453. doi:10.1016/j.ijbiomac.2018.12.240
  • Rodríguez-Vázquez M, Vega-Ruiz B, Ramos-Zúñiga R, et al. Chitosan and its potential use as a scaffold for tissue engineering in regenerative medicine. Biomed Res Int. 2015;2015: Article ID 821279. doi:10.1155/2015/821279
  • Rodríguez J, Mandalunis PM. A review of metal exposure and its effects on bone health. J Toxicol. 2018;2018: Article ID 4854152. doi:10.1155/2018/4854152
  • Sahithi K, Swetha M, Prabaharan M, et al. Synthesis and characterization of nanoscale-hydroxyapatite-copper for antimicrobial activity towards bone tissue engineering applications. J Biomed Nanotechnol. 2010;6(4):333–339. doi:10.1166/jbn.2010.1138
  • Salhotra A, Shah HN, Levi B, et al. Mechanisms of bone development and repair. Nat Rev Mol Cell Biol. 2020;21(11):696–711. doi:10.1038/s41580-020-00279-w
  • Salleh A, Naomi R, Utami N, et al. The potential of silver nanoparticles for antiviral and antibacterial applications: a mechanism of action. Nanomaterials. 2020;10(8):1566. doi:10.3390/nano10081566
  • Sato C, Yamazaki D, Sato M, et al. Calcium phosphate mineralization in bone tissues directly observed in aqueous liquid by atmospheric SEM (ASEM) without staining: microfluidics crystallization chamber and immuno-EM. Sci Rep. 2019;9:1–13. doi:10.1038/s41598-019-43608-6
  • Shariatinia Z. Pharmaceutical applications of chitosan. Adv Colloid Interface Sci. 2019;263:131–194. doi:10.1016/j.cis.2018.11.008
  • Siddiqi KS, Ur Rahman A, Husen A. Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Res Lett. 2018;13(1):1–3. doi:10.1186/s11671-018-2532-3
  • Sirousazar M. Mechanism of gentamicin sulphate release in nanocomposite hydrogel drug delivery systems. J Drug Deliv Sci Technol. 2013;23(6):619–621. doi:10.1016/S1773-2247(13)50094-3
  • Siswanto S, Hikmawati D, Kulsum U, et al. Biocompatibility and osteoconductivity of scaffold porous composite collagen-hydroxyapatite based coral for bone regeneration. Open Chem. 2020;18(1):584–590. doi:10.1515/chem-2020-0080
  • Soliman ASM, Fahad AL, Antonio P, Bahabri FS, inventor; Univ King Abdulaziz., assignee. Bone graft with a tannin-hydroxyapatite scaffold and stem cells for bone engineering. United State patent US 20180071433. 2018 Mar 15.
  • Sossa PAF, Giraldo BS, Garcia BCG, et al. Comparative study between natural and synthetic hydroxyapatite: structural, morphological and bioactivity properties. Revista Materia. 2018;23(4):1–17. doi:10.1590/s1517-707620180004.0551
  • Stanić V, Dimitrijević S, Antić-Stanković J, et al. Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders. Appl Surf Sci. 2010;256(20):6083–6089. doi:10.1016/j.apsusc.2010.03.124
  • Stracquadanio S, Musso N, Costantino A, et al. Staphylococcus aureus internalization in osteoblast cells: mechanisms, interactions and biochemical processes. What did we learn from experimental models? Pathogens. 2021;10(2):1–24. doi:10.3390/pathogens10020239
  • Tang S, Tian B, Ke QF, et al. Gentamicin-loaded carbonated hydroxyapatite coatings with hierarchically porous structures: drug delivery properties, bactericidal properties and biocompatibility. RSC Adv. 2014;40(78):41500–41509. doi:10.1039/C4RA05493H
  • Teng S, Shi J, Peng B, et al. (2006). The effect of alginate addition on the structure and morphology of hydroxyapatite/gelatin nanocomposites. Compos Sci Technol. 2006;66(11–12):1532–1538. doi:10.1016/j.compscitech.2005.11.021
  • Tran TT, Hamid ZA, Cheong KY. A review of mechanical properties of scaffold in tissue engineering: aloe vera composites. J Phys Conf Ser. 2018;1082:012080.
  • Uddin F. Montmorillonite: an introduction to properties and utilization. In: Zoveidavianpoor M, editor. Current Topics in the Utilization of Clay in Industrial and Medical Applications. London, UK: Intech Open; 2018:3–24.
  • Varadavenkatesan T, Vinayagam R, Pai S, et al. Synthesis, biological and environmental applications of hydroxyapatite and its composites with organic and inorganic coatings. Prog Org Coat. 2021;151:85–88. doi:10.1016/j.porgcoat.2020.106056
  • Vega-Vásquez P, Mosier NS, Irudayaraj J. Nanoscale drug delivery systems: from medicine to agriculture. Front Bioeng Biotechnol. 2020;8:1–16. doi:10.3389/fbioe.2020.00079
  • Venkatasubbu GD, Ramasamy S, Ramakrishnan V, et al. Hydroxyapatite-alginate nanocomposite as drug delivery matrix for sustained release of ciprofloxacin. J Biomed Nanotechnol. 2011;7(6):59–67. doi:10.1166/jbn.2011.1350
  • Wang C, Huang W, Zhou Y, et al. 3D printing of bone tissue engineering scaffolds. Bioact Mater. 2020;5(1):82–91. doi:10.1016/j.bioactmat.2020.01.004
  • Weaver L, Michels HT, Keevil CW. Survival of clostridium difficile on copper and steel: futuristic options for hospital hygiene. J Hosp Infect. 2008;68(2):145–151. doi:10.1016/j.jhin.2007.11.011
  • Wei S, Ma J, Xu L, et al. Biodegradable materials for bone defect repair. Mil Med Res. 2020;7(54):1–25.
  • Xiliang C, Da N, Qinghua C, Jingjing X, inventor; Univ Kunming Science & Tech., assignee. Method for preparing bone tissue engineering scaffold material. China patent CN 105963789. 2016 Sept 28.
  • Xin Z, Yuhe Y, inventor; Shenzhen Research Institute The Hong Kong Polytechnic Univ., assignee. Light curing composite for bone tissue engineering and bone tissue engineering bracket based on light curing composite. China patent CN 110898257. 2020 Mar 24.
  • Xing W, Ni L, Huo P, et al. Applied surface science preparation high photocatalytic activity of CdS/halloysite nanotubes (HNTs) nanocomposites with hydrothermal method. Appl Surf Sci. 2012;59:698–704. doi:10.1016/j.apsusc.2012.07.102
  • Yelten-yilmaz A, Yilmaz S. Wet chemical precipitation synthesis of hydroxyapatite (HA) powders. Ceram Int. 2018;44(8):9703–9710. doi:10.1016/j.ceramint.2018.02.201
  • Yu F, Jiebing Z, Anchun M, inventor; Univ Sichuan., assignee. Application of MXene, bone tissue regeneration guiding material and preparation method thereof. China patent CN 109589450. 2019 Apr 09.
  • Zhang H, Cheng J, Ao Q. Preparation of alginate-based biomaterials and their applications in biomedicine. Mar Drugs. 2021;19(5):264. doi:10.3390/md19050264
  • Zhang J, Huang D, Liu S, et al. Zirconia toughened hydroxyapatite biocomposite formed by a DLP 3D printing process for potential bone tissue engineering. Mater Sci Eng C. 2019;105:110054. doi:10.1016/j.msec.2019.110054
  • Zheng J, Wu F, Li H, et al. Preparation of bioactive hydroxyapatite @ halloysite and its effect on MC3T3-E1 osteogenic differentiation of chitosan film. Mater Sci Eng C. 2019;105:110072. doi:10.1016/j.msec.2019.110072
  • Zhu Y, Zhu R, Ma J, et al. In vitro cell proliferation evaluation of porous nano-zirconia scaffolds with different porosity for bone tissue engineering. Biomed Mater. 2015;10(5):55009. doi:10.1088/1748-6041/10/5/055009
  • Zia I, Mirza S, Jolly R, et al. Trigonella foenum graecum seed polysaccharide coupled nano hydroxyapatite-chitosan: a ternary nanocomposite for bone tissue engineering. Int J Biol Macromol. 2019;124:88–101. doi:59