94
Views
4
CrossRef citations to date
0
Altmetric
Original Research

Rapid Quantum Dot Nanobead-mAb Probe-Based Immunochromatographic Assay for Antibody Monitoring of Trichinella spiralis Infection

ORCID Icon, , , , , , , & show all
Pages 2477-2486 | Published online: 29 Mar 2021

References

  • Begeman IJ, Lykins J, Zhou Y, et al. Point-of-care testing for Toxoplasma gondii IgG/IgM using Toxoplasma ICT IgG-IgM test with sera from the United States and implications for developing countries. PLoS Negl Trop Dis. 2017;11(6):e5670. doi:10.1371/journal.pntd.0005670
  • Chen Z, Zhang Z, Zhai X, et al. Rapid and sensitive detection of anti-SARS-CoV-2 IgG using lanthanide-doped nanoparticles-based lateral flow immunoassay. Anal Chem. 2020;92(10):7226–7231. doi:10.1021/acs.analchem.0c00784
  • Cruz HM, de Paula VS, Cruz JCM, et al. Evaluation of accuracy of hepatitis B virus antigen and antibody detection and relationship between epidemiological factors using dried blood spot. J Virol Methods. 2020;277:113798. doi:10.1016/j.jviromet.2019.113798
  • Tu C, Crameri G, Kong X, et al. Antibodies to SARS coronavirus in civets. Emerg Infect Dis. 2004;10(12):2244–2248. doi:10.3201/eid1012.040520
  • Xiao K, Zhai J, Feng Y, et al. Isolation of SARS-CoV-2-related coronavirus from Malayan pangolins. Nature. 2020;583(7815):286–289. doi:10.1038/s41586-020-2313-x
  • Periolo OH, Seki C, Grigera PR, et al. Large-scale use of liquid-phase blocking sandwich ELISA for the evaluation of protective immunity against aphthovirus in cattle vaccinated with oil-adjuvanted vaccines in Argentina. Vaccine. 1993;11(7):754–760. doi:10.1016/0264-410X(93)90261-U
  • Wang Q, Ju H, Li Y, et al. Development and evaluation of a competitive ELISA using a monoclonal antibody for antibody detection after goose parvovirus virus-like particles (VLPs) and vaccine immunization in goose sera. J Virol Methods. 2014;209:69–75. doi:10.1016/j.jviromet.2014.08.021
  • Beck C, Lowenski S, Durand B, et al. Improved reliability of serological tools for the diagnosis of West Nile fever in horses within Europe. PLoS Negl Trop Dis. 2017;11(9):e5936. doi:10.1371/journal.pntd.0005936
  • Moreno A, Lelli D, Lavazza A, et al. MAb-based competitive ELISA for the detection of antibodies against influenza D virus. Transbound Emerg Dis. 2018;66:268–276. doi:10.1111/tbed.13012
  • Oem JK, Chang BS, Joo HD, et al. Development of an epitope-blocking-enzyme-linked immunosorbent assay to differentiate between animals infected with and vaccinated against foot-and-mouth disease virus. J Virol Methods. 2007;142(1–2):174–181. doi:10.1016/j.jviromet.2007.01.025
  • Uttenthal Å, Parida S, Rasmussen TB, et al. Strategies for differentiating infection in vaccinated animals (DIVA) for foot-and-mouth disease, classical swine fever and avian influenza. Expert Rev Vaccines. 2014;9(1):73–87. doi:10.1586/erv.09.130
  • Gnjatovic M, Gruden-Movsesijan A, Miladinovic-Tasic N, et al. A competitive enzyme-linked immunosorbent assay for rapid detection of antibodies against Trichinella spiralis and T. britovi– one test for humans and swine. J Helminthol. 2017;93(1):33–41. doi:10.1017/S0022149X17001092
  • Gómez-Morales MA, Ludovisi A, Amati M, et al. Validation of an enzyme-linked immunosorbent assay for diagnosis of human trichinellosis. Clin Vaccine Immunol. 2008;15(11):1723–1729. doi:10.1128/CVI.00257-08
  • Javadi Mamaghani A, Fathollahi A, Spotin A, et al. Candidate antigenic epitopes for vaccination and diagnosis strategies of Toxoplasma gondii infection: a review. Microb Pathog. 2019;137:103788. doi:10.1016/j.micpath.2019.103788
  • Parolo C, Merkoci A. Paper-based nanobiosensors for diagnostics. Chem Soc Rev. 2013;42(2):450–457. doi:10.1039/c2cs35255a
  • Yeo S, Cuc BT, Kim S, et al. Rapid detection of avian influenza A virus by immunochromatographic test using a novel fluorescent dye. Biosens Bioelectron. 2017;94:677–685. doi:10.1016/j.bios.2017.03.068
  • Fu BQ, Li WH, Gai WY, et al. Detection of anti-Trichinella antibodies in serum of experimentally-infected swine by immunochromatographic strip. Vet Parasitol. 2013;194(2–4):125–127. doi:10.1016/j.vetpar.2013.01.036
  • Zhang G, Guo J, Wang X, et al. Development and evaluation of an immunochromatographic strip for trichinellosis detection. Vet Parasitol. 2006;137(3–4):286–293. doi:10.1016/j.vetpar.2006.01.026
  • Singh AV, Maharjan RS, Kanase A, et al. Machine-learning-based approach to decode the influence of nanomaterial properties on their interaction with cells. ACS Appl Mater Interfaces. 2021;13(1):1943–1955. doi:10.1021/acsami.0c18470
  • Singh AV, Ansari M, Rosenkranz D, et al. Artificial intelligence and machine learning in computational nanotoxicology: unlocking and empowering nanomedicine. Adv Healthc Mater. 2020;9(17):e1901862. doi:10.1002/adhm.201901862
  • Duan H, Huang X, Shao Y, et al. Size-dependent immunochromatographic assay with quantum dot nanobeads for sensitive and quantitative detection of ochratoxin A in corn. Anal Chem. 2017;89(13):7062–7068. doi:10.1021/acs.analchem.7b00869
  • Rong Z, Wang Q, Sun N, et al. Smartphone-based fluorescent lateral flow immunoassay platform for highly sensitive point-of-care detection of Zika virus nonstructural protein 1. Anal Chim Acta. 2019;1055:140–147. doi:10.1016/j.aca.2018.12.043
  • Wu Q, Wu P, Duan H, et al. Quantum dot bead-based immunochromatographic assay for the quantitative detection of triazophos. Food Agr Immunol. 2019;30(1):955–967. doi:10.1080/09540105.2019.1649638
  • Murrell KD, Pozio E. Worldwide occurrence and impact of human Trichinellosis, 1986–2009. Emerg Infect Dis. 2011;17(12):2194–2202. doi:10.3201/eid1712.110896
  • Bruschi F, Gómez-Morales MA, Hill DE. International commission on Trichinellosis: recommendations on the use of serological tests for the detection of Trichinella infection in animals and humans. Food Waterborne Parasitol. 2019;14:e32. doi:10.1016/j.fawpar.2018.e00032
  • Gamble HR, Rapić D, Marinculić A, Murrell KD. Evaluation of excretory-secretory antigens for the serodiagnosis of swine trichinellosis. Vet Parasitol. 1988;30(2):131–137. doi:10.1016/0304-4017(88)90160-4
  • Gamble HR, Pozio E, Bruschi F, et al. International commission on trichinellosis: recommendations on the use of serological tests for the detection of Trichinella infection in animals and man. Parasite. 2004;11(1):3–13. doi:10.1051/parasite/20041113
  • Liu Y, Liu X, Li Y, et al. Evaluation of a cystatin-like protein of Trichinella spiralis for serodiagnosis and identification of immunodominant epitopes using monoclonal antibodies. Vet Parasitol. 2020:109127. doi:10.1016/j.vetpar.2020.109127.
  • Cooper HM, Paterson Y. Purification of immunoglobulin G fraction from antiserum, ascites fluid, or hybridoma supernatant. Curr Protoc Mol Biol. 2001;50:t11–t14. doi:10.1002/0471142727.mb1114s50
  • Gajadhar AA, Noeckler K, Boireau P, et al. International commission on Trichinellosis: recommendations for quality assurance in digestion testing programs for Trichinella. Food Waterborne Parasitol. 2019;16:e59. doi:10.1016/j.fawpar.2019.e00059
  • Singh AV. Commentary on “Peptide-Conjugated nanoparticles as targeted anti-angiogenesis therapeutic and diagnostic in cancer” by Shaker A. Mousa, Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, United States - Peptide-Conjugated Nanoparticles for Multimodal Nanomedicine. Curr Med Chem. 2020;27(17):2927–2928. doi:10.2174/092986732717200604120627
  • Li Y, Zhou Y, Chen X, Huang X, Xiong Y. Comparison of three sample addition methods in competitive and sandwich colloidal gold immunochromatographic assay. Anal Chim Acta. 2020;1094:90–98. doi:10.1016/j.aca.2019.09.079
  • Mackay DK, Bulut AN, Rendle T, Davidson F, Ferris NP. A solid-phase competition ELISA for measuring antibody to foot-and-mouth disease virus. J Virol Methods. 2001;97(1–2):33–48. doi:10.1016/s0166-0934(01)00333-0
  • Paiba GA, Anderson J, Paton DJ, et al. Validation of a foot-and-mouth disease antibody screening solid-phase competition ELISA (SPCE). J Virol Methods. 2004;115(2):145–158. doi:10.1016/j.jviromet.2003.09.016