102
Views
0
CrossRef citations to date
0
Altmetric
Original Research

The Effect of Chemical Structure of OEG Ligand Shells with Quaternary Ammonium Moiety on the Colloidal Stabilization, Cellular Uptake and Photothermal Stability of Gold Nanorods

, , , ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & show all
Pages 3407-3427 | Published online: 18 May 2021

References

  • Huang X, El-Sayed MA. Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J Adv Res. 2010;1:13–28. doi:10.1016/j.jare.2010.02.002
  • Elahi N, Kamali M, Baghersad MH. Recent biomedical applications of gold nanoparticles: a review. Talanta. 2018;184:537–556. doi:10.1016/j.talanta.2018.02.088
  • Bodelon G, Costas C, Perez-Juste J, Pastoriza-Santos I, Liz-Marzan LM. Gold nanoparticles for regulation of cell function and behavior. Nano Today. 2017;13:40–60. doi:10.1016/j.nantod.2016.12.014
  • Tong L, Wei Q, Wei A, Cheng JX. Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects. Photochem Photobiol. 2009;85:21–32. doi:10.1111/j.1751-1097.2008.00507.x
  • Cao J, Sun T, Grattan KTV. Gold nanorod-based localized surface plasmon resonance biosensors: a review. Sens Actuators B Chem. 2014;195:332–351. doi:10.1016/j.snb.2014.01.056
  • Murphy CJ, Gole AM, Hunyadi SE, et al. Chemical sensing and imaging with metallic nanorods. Chem Commun. 2008:544–557. doi:10.1039/B711069C
  • Baffou G, Quidant R. Thermo-plasmonics: using metallic nanostructures as nano-sources of heat. Laser Photon Rev. 2013;7:171–187. doi:10.1002/lpor.201200003
  • Huang X, Jain PK, El-Sayed IH, El-Sayed MA. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci. 2008;23:217–228. doi:10.1007/s10103-007-0470-x
  • Pissuwan D, Niidome T, Cortie MB. The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J Control Release. 2011;149:65–71. doi:10.1016/j.jconrel.2009.12.006
  • Boulais E, Lachaine R, Hatef A, Meunier M. Plasmonics for pulsed-laser cell nanosurgery: fundamentals and applications. J Photochem Photobiol C. 2013;17:26–49. doi:10.1016/j.jphotochemrev.2013.06.001
  • Rastinehad AR, Anastos H, Wajswol E, et al. Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study. Proc Natl Acad Sci. 2019;116:18590–18596. doi:10.1073/pnas.1906929116
  • Karakoti AS, Das S, Thevuthasan S, Seal S. PEGylated inorganic nanoparticles. Angew Chem Int Ed Engl. 2011;50:1980–1994. doi:10.1002/anie.201002969
  • Jokerst JV, Lobovkina T, Zare RN, Gambhir SS. Nanoparticle PEGylation for imaging and therapy. Nanomedicine. 2011;6:715–728. doi:10.2217/nnm.11.19
  • Pelaz B, Del Pino P, Maffre P, et al. Surface functionalization of nanoparticles with polyethylene glycol: effects on protein adsorption and cellular uptake. ACS Nano. 2015;9:6996–7008. doi:10.1021/acsnano.5b01326
  • Larson TA, Joshi PP, Sokolov K. Preventing protein adsorption and macrophage uptake of gold nanoparticles via a hydrophobic shield. ACS Nano. 2012;6:9182–9190. doi:10.1021/nn3035155
  • Alcantar NA, Aydil ES, Israelachvili JN. Polyethylene glycol-coated biocompatible surfaces. J Biomed Mater Res. 2000;51:343–351. doi:10.1002/1097-4636(20000905)51:3<343::AID-JBM7>3.0.CO;2-D
  • Bagley AF, Hill S, Rogers GS, Bhatia SN. Plasmonic photothermal heating of intraperitoneal tumors through the use of an implanted near-infrared source. ACS Nano. 2013;7:8089–8097. doi:10.1021/nn4033757
  • Zhang X, Servos MR, Liu J. Ultrahigh nanoparticle stability against salt, pH, and solvent with retained surface accessibility via depletion stabilization. J Am Chem Soc. 2012;134:9910–9913. doi:10.1021/ja303787e
  • Tirosh O, Barenholz Y, Katzhendler J, Priev A. Hydration of polyethylene glycol-grafted liposomes. Biophys J. 1998;74:1371–1379. doi:10.1016/S0006-3495(98)77849-X
  • Branca C, Magazù S, Maisano G, Migliardo F, Migliardo P, Romeo G. Hydration study of PEG/water mixtures by quasi elastic light scattering, acoustic and rheological measurements. J Phys Chem B. 2002;106:10272–10276. doi:10.1021/jp014345v
  • Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev. 2016;99:28–51. doi:10.1016/j.addr.2015.09.012
  • Hamidi M, Azadi A, Rafiei P. Pharmacokinetic Consequences of Pegylation. Drug Deliv. 2006;13:399–409. doi:10.1080/10717540600814402
  • Cho EC, Xie J, Wurm PA, Xia Y. Understanding the role of surface charges in cellular adsorption versus internalization by selectively removing gold nanoparticles on the cell surface with a I2/KI etchant. Nano Lett. 2009;9:1080–1084. doi:10.1021/nl803487r
  • Arvizo RR, Miranda OR, Thompson MA, et al. Effect of nanoparticle surface charge at the plasma membrane and beyond. Nano Lett. 2010;10:2543–2548. doi:10.1021/nl101140t
  • Zhang Y, Pan H, Zhang P, et al. Functionalized quantum dots induce proinflammatory responses in vitro: the role of terminal functional group-associated endocytic pathways. Nanoscale. 2013;5:5919–5929. doi:10.1039/c3nr01653f
  • Arnida J-AMM, Janát-Amsbury MM, Ray A, Peterson CM, Ghandehari H. Geometry and surface characteristics of gold nanoparticles influence their biodistribution and uptake by macrophages. Eur J Pharm Biopharm. 2011;77:417–423. doi:10.1016/j.ejpb.2010.11.010
  • Zhang YN, Poon W, Tavares AJ, McGilvray ID, Chan WCW. Nanoparticle-liver interactions: cellular uptake and hepatobiliary elimination. J Control Release. 2016;240:332–348. doi:10.1016/j.jconrel.2016.01.020
  • Sandhu KK, McIntosh CM, Simard JM, Smith SW, Rotello VM. Gold nanoparticle-mediated transfection of mammalian cells. Bioconjug Chem. 2002;13:3–6. doi:10.1021/bc015545c
  • Niidome T, Nakashima K, Takahashi H, Niidome Y. Preparation of primary amine-modified gold nanoparticles and their transfection ability into cultivated cells. Chem Commun. 2004;1978–1979. doi:10.1039/b406189f
  • Gao Z, Zhang L, Hu J, Sun Y. Mesenchymal stem cells: a potential targeted-delivery vehicle for anti-cancer drug, loaded nanoparticles. Nanomedicine. 2013;9:174–184. doi:10.1016/j.nano.2012.06.003
  • Kang S, Bhang SH, Hwang S, et al. Mesenchymal stem cells aggregate and deliver gold nanoparticles to tumors for photothermal therapy. ACS Nano. 2015;9:9678–9690. doi:10.1021/acsnano.5b02207
  • Mooney R, Roma L, Zhao D, et al. Neural stem cell-mediated intratumoral delivery of gold nanorods improves photothermal therapy. ACS Nano. 2014;8:12450–12460. doi:10.1021/nn505147w
  • Link S, Burda C, Mohamed MB, Nikoobakht B, El-Sayed MA. Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence. J Phys Chem A. 1999;103:1165–1170. doi:10.1021/jp983141k
  • González-Rubio G, Guerrero-Martínez A, Liz-Marzán LM. Reshaping, fragmentation, and assembly of gold nanoparticles assisted by pulse lasers. Acc Chem Res. 2016;49:678–686. doi:10.1021/acs.accounts.6b00041
  • Lapotko D. Plasmonic nanoparticle-generated photothermal bubbles and their biomedical applications. Nanomedicine. 2009;4:813–845. doi:10.2217/nnm.09.59
  • Lukianova-Hleb EY, Hanna EY, Hafner JH, Lapotko DO. Tunable plasmonic nanobubbles for cell theranostics. Nanotechnology. 2010;21:85102. doi:10.1088/0957-4484/21/8/085102
  • Letfullin RR, Joenathan C, George TF, Zharov VP. Laser-induced explosion of gold nanoparticles: potential role for nanophotothermolysis of cancer. Nanomedicine. 2006;1:473–480. doi:10.2217/17435889.1.4.473
  • Hartland GV. Optical studies of dynamics in noble metal nanostructures. Chem Rev. 2011;111:3858–3887.
  • Stocker KM, Gezelter JD. Simulations of heat conduction at thiolate-capped gold surfaces: the role of chain length and solvent penetration. J Phys Chem C. 2013;117(15):7605–7612. doi:10.1021/jp312734f
  • Huang J, Park J, Wang W, Murphy CJ, Cahill DG. Ultrafast thermal analysis of surface functionalized gold nanorods in aqueous solution. ACS Nano. 2013;7:589–597. doi:10.1021/nn304738u
  • Soussi J, Volz S, Palpant B, Chalopin Y. A detailed microscopic study of the heat transfer at a water gold interface coated with a polymer. Appl Phys Lett. 2015;106:093113. doi:10.1063/1.4913905
  • Horiguchi Y, Honda K, Kato Y, Nakashima N, Niidome Y. Photothermal reshaping of gold nanorods depends on the passivating layers of the nanorod surfaces. Langmuir. 2008;24:12026–12031. doi:10.1021/la800811j
  • Alper J, Hamad-Schifferli K. Effect of ligands on thermal dissipation from gold nanorods. Langmuir. 2010;26:3786–3789. doi:10.1021/la904855s
  • Wu X, Ni Y, Zhu J, et al. Thermal transport across surfactant layers on gold nanorods in aqueous solution. ACS Appl Mater Interfaces. 2016;8:10581–10589. doi:10.1021/acsami.5b12163
  • Centi S, Cavigli L, Borri C, et al. Small thiols stabilize the shape of gold nanorods. J Phys Chem C. 2020;124:11132–11140. doi:10.1021/acs.jpcc.0c00737
  • Salajkova S, Sramek M, Malinak D, et al. Highly hydrophilic cationic gold nanorods stabilized by novel quaternary ammonium surfactant with negligible cytotoxicity. J Biophoton. 2019;12:e201900024. doi:10.1002/jbio.201900024
  • Vigderman L, Manna P, Zubarev ER. Quantitative replacement of cetyl trimethylammonium bromide by cationic thiol ligands on the surface of gold nanorods and their extremely large uptake by cancer cells. Angew Chem Int Ed Engl. 2012;51:636–641. doi:10.1002/anie.201107304
  • Zarska M, Novotny F, Havel F, et al. A two-step mechanism of cellular uptake of cationic gold nanoparticles modified by (16-mercaptohexadecyl)trimethylammonium bromide (MTAB). Bioconjug Chem. 2016;27:2558–2574. doi:10.1021/acs.bioconjchem.6b00491
  • Benkova M, Soukup O, Prchal L, et al. Synthesis, antimicrobial effect and lipophilicity-activity dependence of three series of dichained N-alkylammonium salts. ChemistrySelect. 2019;4:12076–12084. doi:10.1002/slct.201902357
  • Nikoobakht B, El-Sayed MA. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater. 2003;15:1957–1962. doi:10.1021/cm020732l
  • Busbee BD, Obare SO, Murphy CJ. An improved synthesis of high-aspect-ratio gold nanorods. Adv Mater. 2003;15:414–416. doi:10.1002/adma.200390095
  • Edgar JA, McDonagh AM, Cortie MB. Formation of gold nanorods by a stochastic “popcorn” mechanism. ACS Nano. 2012;6:1116–1125. doi:10.1021/nn203586j
  • Elzey S, Tsai DH, Rabb SA, Yu LL, Winchester MR, Hackley VA. Quantification of ligand packing density on gold nanoparticles using ICP-OES. Anal Bioanal Chem. 2012;403:145–149. doi:10.1007/s00216-012-5830-0
  • Hinterwirth H, Kappel S, Waitz T, Prohaska T, Lindner W, Lammerhofer M. Quantifying thiol ligand density of self-assembled monolayers on gold nanoparticles by inductively coupled plasma-mass spectrometry. ACS Nano. 2013;7:1129–1136. doi:10.1021/nn306024a
  • Verma A, Stellacci F. Effect of surface properties on nanoparticle-cell interactions. Small. 2010;6:12–21. doi:10.1002/smll.200901158
  • Chompoosor A, Saha K, Ghosh PS, et al. The role of surface functionality on acute cytotoxicity, ROS generation and DNA damage by cationic gold nanoparticles. Small. 2010;6:2246–2249. doi:10.1002/smll.201000463
  • Zhang J, Mou L, Jiang X. Surface chemistry of gold nanoparticles for health-related applications. Chem Sci. 2020;11:923–936. doi:10.1039/C9SC06497D
  • Liu X, Testa B, Fahr A. Lipophilicity and its relationship with passive drug permeation. Pharm Res. 2011;28:962–977. doi:10.1007/s11095-010-0303-7
  • Ungell AL, Nylander S, Bergstrand S, Sjoberg A, Lennernas H. Membrane transport of drugs in different regions of the intestinal tract of the rat. J Pharm Sci. 1998;87:360–366. doi:10.1021/js970218s
  • Goodwin JT, Conradi RA, Ho NF, Burton PS. Physicochemical determinants of passive membrane permeability: role of solute hydrogen-bonding potential and volume. J Med Chem. 2001;44:3721–3729. doi:10.1021/jm010253i
  • Soukup O, Dolezal R, Malinak D, et al. Synthesis, antimicrobial evaluation and molecular modeling of 5-hydroxyisoquinolinium salt series; the effect of the hydroxyl moiety. Bioorg Med Chem. 2016;24:841–848. doi:10.1016/j.bmc.2016.01.006
  • Soukup O, Benkova M, Dolezal R, et al. The wide-spectrum antimicrobial effect of novel N-alkyl monoquaternary ammonium salts and their mixtures; the QSAR study against bacteria. Eur J Med Chem. 2020;206:112584. doi:10.1016/j.ejmech.2020.112584
  • Dolezal R, Soukup O, Malinak D, et al. Towards understanding the mechanism of action of antibacterial N-alkyl-3-hydroxypyridinium salts: biological activities, molecular modeling and QSAR studies. Eur J Med Chem. 2016;121:699–711. doi:10.1016/j.ejmech.2016.05.058
  • Gessner A, Lieske A, Paulke B, Muller R. Influence of surface charge density on protein adsorption on polymeric nanoparticles: analysis by two-dimensional electrophoresis. Eur J Pharm Biopharm. 2002;54:165–170. doi:10.1016/S0939-6411(02)00081-4
  • Elci SG, Jiang Y, Yan B, et al. Surface charge controls the suborgan biodistributions of gold nanoparticles. ACS Nano. 2016;10:5536–5542. doi:10.1021/acsnano.6b02086
  • Zarska M, Sramek M, Novotny F, et al. Biological safety and tissue distribution of (16-mercaptohexadecyl)trimethylammonium bromide-modified cationic gold nanorods. Biomaterials. 2018;154:275–290. doi:10.1016/j.biomaterials.2017.10.044
  • Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63. doi:10.1016/0022-1759(83)90303-4
  • Malinak D, Dolezal R, Marek J, et al. 6-Hydroxyquinolinium salts differing in the length of alkyl side-chain: synthesis and antimicrobial activity. Bioorg Med Chem Lett. 2014;24:5238–5241. doi:10.1016/j.bmcl.2014.09.060
  • Alkilany AM, Thompson LB, Boulos SP, Sisco PN, Murphy CJ. Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Adv Drug Deliv Rev. 2011;64:190–199. doi:10.1016/j.addr.2011.03.005
  • Novotný F. ParticleRecognition, a mathematica GUI interface for analysis of complex shaped nanoparticles in micrographs. Comput Phys Commun. 2017;214:98–104. doi:10.1016/j.cpc.2016.10.007
  • Chon JWM, Bullen C, Zijlstra P, Gu M. Spectral encoding on gold nanorods doped in a silica sol–gel matrix and its application to high-density optical data storage. Adv Funct Mater. 2007;17:875–880. doi:10.1002/adfm.200600565
  • Anselmo AC, Mitragotri S. Nanoparticles in the clinic. Bioeng Transl Med. 2016;1:10–29. doi:10.1002/btm2.10003
  • Pramod K, Indrajit R. Applications of gold nanoparticles in clinical medicine. Int J Pharm Pharm Sci. 2016;8:9–16.
  • Libutti SK, Paciotti GF, Byrnes AA, et al. Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine. Clin Cancer Res. 2010;16:6139–6149. doi:10.1158/1078-0432.CCR-10-0978
  • Gandra N, Portz C, Nergiz SZ, Fales A, Vo-Dinh T, Singamaneni S. Inherently stealthy and highly tumor-selective gold nanoraspberries for photothermal cancer therapy. Sci Rep. 2015;5:10311. doi:10.1038/srep10311
  • Catone D, Ciavardini A, Di Mario L, et al. Plasmon controlled shaping of metal nanoparticle aggregates by femtosecond laser-induced melting. J Phys Chem Lett. 2018;9:5002–5008. doi:10.1021/acs.jpclett.8b02117
  • Johnson PS, Goel M, Abbott NL, Himpsel FJ. Helical versus all-trans conformations of oligo(ethylene glycol)-terminated alkanethiol self-assembled monolayers. Langmuir. 2014;30:10263–10269. doi:10.1021/la500978s
  • Zorn S, Martin N, Gerlach A, Schreiber F. Real-time PMIRRAS studies of in situ growth of C11Eg6OMe on gold and immersion effects. Phys Chem Chem Phys. 2010;12:8985–8990. doi:10.1039/b923691k
  • Schulz F, Vossmeyer T, Bastus NG, Weller H. Effect of the spacer structure on the stability of gold nanoparticles functionalized with monodentate thiolated poly(ethylene glycol) ligands. Langmuir. 2013;29:9897–9908. doi:10.1021/la401956c
  • Schulz F, Dahl GT, Besztejan S, et al. Ligand layer engineering to control stability and interfacial properties of nanoparticles. Langmuir. 2016;32:7897–7907. doi:10.1021/acs.langmuir.6b01704
  • Inkpen MS, Liu ZF, Li H, Campos LM, Neaton JB, Venkataraman L. Non-chemisorbed gold–sulfur binding prevails in self-assembled monolayers. Nat Chem. 2019;11:351–358. doi:10.1038/s41557-019-0216-y
  • Pacchioni G. A not-so-strong bond. Nat Rev Mater. 2019;4:226. doi:10.1038/s41578-019-0094-3
  • Galati E, Tao H, Rossner C, Zhulina EB, Kumacheva E. Morphological transitions in patchy nanoparticles. ACS Nano. 2020;14:4577–4584. doi:10.1021/acsnano.0c00108
  • Wijaya A, Schaffer SB, Pallares IG, Hamad-Schifferli K. Selective release of multiple DNA oligonucleotides from gold nanorods. ACS Nano. 2009;3:80–86. doi:10.1021/nn800702n
  • Braun GB, Pallaoro A, Wu G, et al. Laser-activated gene silencing via gold nanoshell-siRNA conjugates. ACS Nano. 2009;3:2007–2015. doi:10.1021/nn900469q
  • Inacio AS, Costa GN, Domingues NS, et al. Mitochondrial dysfunction is the focus of quaternary ammonium surfactant toxicity to mammalian epithelial cells. Antimicrob Agents Chemother. 2013;57:2631–2639. doi:10.1128/AAC.02437-12
  • Nagamune H, Maeda T, Ohkura K, Yamamoto K, Nakajima M, Kourai H. Evaluation of the cytotoxic effects of bis-quaternary ammonium antimicrobial reagents on human cells. Toxicol in Vitro. 2000;14:139–147. doi:10.1016/S0887-2333(00)00003-5
  • Kheir MM, Wang Y, Hua L, et al. Acute toxicity of berberine and its correlation with the blood concentration in mice. Food Chem Toxicol. 2010;48:1105–1110. doi:10.1016/j.fct.2010.01.033
  • Ohnuma A, Yoshida T, Tajima H, et al. Didecyldimethylammonium chloride induces pulmonary inflammation and fibrosis in mice. Exp Toxicol Pathol. 2010;62:643–651. doi:10.1016/j.etp.2009.08.007
  • Zhang S, Ding S, Yu J, Chen X, Lei Q, Fang W. Antibacterial activity, in vitro cytotoxicity, and cell cycle arrest of gemini quaternary ammonium surfactants. Langmuir. 2015;31:12161–12169. doi:10.1021/acs.langmuir.5b01430
  • Docherty KM, Kulpa JCF. Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids. Green Chem. 2005;7:185–189. doi:10.1039/b419172b
  • Moore TL, Rodriguez-Lorenzo L, Hirsch V, et al. Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chem Soc Rev. 2015;44:6287–6305. doi:10.1039/C4CS00487F
  • Muller KH, Motskin M, Philpott AJ, et al. The effect of particle agglomeration on the formation of a surface-connected compartment induced by hydroxyapatite nanoparticles in human monocyte-derived macrophages. Biomaterials. 2014;35:1074–1088. doi:10.1016/j.biomaterials.2013.10.041
  • Liu X, Huang N, Li H, Jin Q, Ji J. Surface and size effects on cell interaction of gold nanoparticles with both phagocytic and nonphagocytic cells. Langmuir. 2013;29:9138–9148. doi:10.1021/la401556k
  • Pamies R, Cifre JGH, Espín VF, Collado-González M, Fgd B, de la Torre JG. Aggregation behaviour of gold nanoparticles in saline aqueous media. J Nanopart Res. 2014;16:2376. doi:10.1007/s11051-014-2376-4
  • Tsai DH, Davila-Morris M, DelRio FW, Guha S, Zachariah MR, Hackley VA. Quantitative determination of competitive molecular adsorption on gold nanoparticles using attenuated total reflectance-Fourier transform infrared spectroscopy. Langmuir. 2011;27:9302–9313. doi:10.1021/la2005425
  • Heinz H, Pramanik C, Heinz O, et al. Nanoparticle decoration with surfactants: molecular interactions, assembly, and applications. Surf Sci Rep. 2017;72:1–58.
  • Hohenstein EG, Sherrill CD. Effects of heteroatoms on aromatic pi-pi interactions: benzene-pyridine and pyridine dimer. J Phys Chem A. 2009;113:878–886. doi:10.1021/jp809062x
  • Mecozzi S, West AP, Dougherty DA. Cation-pi interactions in aromatics of biological and medicinal interest: electrostatic potential surfaces as a useful qualitative guide. Proc Natl Acad Sci U S A. 1996;93:10566–10571. doi:10.1073/pnas.93.20.10566
  • Wu M, Vartanian AM, Chong GN, et al. Solution NMR analysis of ligand environment in quaternary ammonium-terminated self -assembled monolayers on gold nanoparticles: the effect of surface curvature and ligand structure. J Am Chem Soc. 2019;141:4316–4327. doi:10.1021/jacs.8b11445
  • Lorenz S, Hauser CP, Autenrieth B, Weiss CK, Landfester K, Mailander V. The softer and more hydrophobic the better: influence of the side chain of polymethacrylate nanoparticles for cellular uptake. Macromol Biosci. 2010;10:1034–1042. doi:10.1002/mabi.201000099
  • Dausend J, Musyanovych A, Dass M, et al. Uptake mechanism of oppositely charged fluorescent nanoparticles in HeLa cells. Macromol Biosci. 2008;8:1135–1143. doi:10.1002/mabi.200800123
  • Kennedy LC, Bickford LR, Lewinski NA, et al. A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. Small. 2011;7:169–183. doi:10.1002/smll.201000134
  • Ali MR, Rahman MA, Wu Y, et al. Efficacy, long-term toxicity, and mechanistic studies of gold nanorods photothermal therapy of cancer in xenograft mice. Proc Natl Acad Sci U S A. 2017;114:E3110–e8. doi:10.1073/pnas.1619302114
  • Majumdar S, Sierra-Suarez JA, Schiffres SN, et al. Vibrational mismatch of metal leads controls thermal conductance of self-assembled monolayer junctions. Nano Lett. 2015;15:2985–2991. doi:10.1021/nl504844d
  • Luo T, Lloyd J. Non-equilibrium molecular dynamics study of thermal energy transport in Au-SAM-Au junctions. Int J Heat Mass Transf. 2010;53:1–11. doi:10.1016/j.ijheatmasstransfer.2009.10.033
  • Park J, Huang J, Wang W, Murphy CJ, Cahill DG. Heat transport between Au nanorods, surrounding liquids, and solid supports. J Phys Chem C. 2012;116:26335–26341. doi:10.1021/jp308130d
  • Schmidt AJ, Alper JD, Chiesa M, Chen G, Das SK, Hamad-Schifferli K. Probing the gold nanorod-ligand-solvent interface by plasmonic absorption and thermal decay. J Phys Chem C. 2008;112:13320–13323. doi:10.1021/jp8051888
  • Liu Y, Sun W, Wang K, Xu -J-J, Chen H-Y, Xia X-H. End group properties of thiols affecting the self-assembly mechanism at gold nanoparticles film as evidenced by water infrared probe. Anal Chem. 2019;91:14508–14513. doi:10.1021/acs.analchem.9b03332
  • Gu ZT, Wang H, Li L, et al. Heat stress induces apoptosis through transcription-independent p53-mediated mitochondrial pathways in human umbilical vein endothelial cell. Sci Rep. 2014;4. doi:10.1038/srep04469
  • Ratto F, Matteini P, Rossi F, et al. Photothermal effects in connective tissues mediated by laser-activated gold nanorods. Nanomed-Nanotechnol. 2009;5:143–151. doi:10.1016/j.nano.2008.10.002
  • Lukianova-Hleb EY, Koneva II, Oginsky AO, La Francesca S, Lapotko DO. Selective and self-guided micro-ablation of tissue with plasmonic nanobubbles. J Surg Res. 2011;166:E3–E13. doi:10.1016/j.jss.2010.10.039