127
Views
8
CrossRef citations to date
0
Altmetric
Original Research

Small Extracellular Vesicles Derived from Adipose Tissue Prevent Bisphosphonate-Related Osteonecrosis of the Jaw by Promoting Angiogenesis

, &
Pages 3161-3172 | Published online: 07 May 2021

References

  • Marx RE. Pamidronate (aredia) and zoledronate (zometa) induced avascular necrosis of the jaws: a growing epidemic. J Oral Maxillofac Surg. 2003;61(9):1115–1117. doi:10.1016/S0278-2391(03)00720-1
  • Zhang X, Hamadeh I, Song S, et al. Osteonecrosis of the jaw in the United States food and drug administration’s adverse event reporting system (faers). J Bone Miner Res. 2016;31(2):336–340. doi:10.1002/jbmr.2693
  • Ruggiero SL, Dodson TB, Fantasia J, et al. American association of oral and maxillofacial surgeons position paper on medication-related osteonecrosis of the jaw–2014 update. J Oral Maxillofac Surg. 2014;72(10):1938–1956. doi:10.1016/j.joms.2014.04.031
  • Chang J, Hakam A, McCauley L. Current understanding of the pathophysiology of osteonecrosis of the jaw. Curr Osteoporos Rep. 2018;16(5):584–595. doi:10.1007/s11914-018-0474-4
  • Ramaglia L, Guida A, Iorio-Siciliano V, Cuozzo A, Blasi A, Sculean A. Stage-specific therapeutic strategies of medication-related osteonecrosis of the jaws: a systematic review and meta-analysis of the drug suspension protocol. Clin Oral Investig. 2018;22(2):597–615. doi:10.1007/s00784-017-2325-6
  • Hayashida S, Soutome S, Yanamoto S, et al. Evaluation of the treatment strategies for medication-related osteonecrosis of the jaws (mronj) and the factors affecting treatment outcome: a multicenter retrospective study with propensity score matching analysis. J Bone Miner Res. 2017;32(10):2022–2029. doi:10.1002/jbmr.3191
  • Wensveen F, Valentić S, Šestan M, Wensveen T, Polić B. Interactions between adipose tissue and the immune system in health and malnutrition. Semin Immunol. 2015;27(5):322–333. doi:10.1016/j.smim.2015.10.006
  • Yang Z, Wei Z, Wu X, Yang H. Screening of exosomal miRNAs derived from subcutaneous and visceral adipose tissues: determination of targets for the treatment of obesity and associated metabolic disorders. Mol Med Rep. 2018;18(3):3314–3324. doi:10.3892/mmr.2018.9312
  • Barba-Recreo P, Del Castillo Pardo de Vera JL, Georgiev-Hristov T. Adipose-derived stem cells and platelet-rich plasma for preventive treatment of bisphosphonate-related osteonecrosis of the jaw in a murine model. J Craniomaxillofac Surg. 2015;43(7):1161–1168. doi:10.1016/j.jcms.2015.04.026
  • Zang X, He L, Zhao L, He Y, Xiao E, Zhang Y. Adipose-derived stem cells prevent the onset of bisphosphonate-related osteonecrosis of the jaw through transforming growth factor beta-1-mediated gingival wound healing. Stem Cell Res Ther. 2019;10(1):169. doi:10.1186/s13287-019-1277-y
  • Kuroshima S, Sasaki M, Nakajima K, Tamaki S, Hayano H, Sawase T. Transplantation of noncultured stromal vascular fraction cells of adipose tissue ameliorates osteonecrosis of the jaw-like lesions in mice. J Bone Miner Res. 2018;33(1):154–166. doi:10.1002/jbmr.3292
  • Karnoub A, Dash A, Vo A, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. 2007;449(7162):557–563. doi:10.1038/nature06188
  • Comella K, Parcero J, Bansal H, et al. Effects of the intramyocardial implantation of stromal vascular fraction in patients with chronic ischemic cardiomyopathy. J Transl Med. 2016;14(1):158. doi:10.1186/s12967-016-0918-5
  • Bateman M, Strong A, Gimble J, Bunnell B. Concise review: using fat to fight disease: a systematic review of nonhomologous adipose-derived stromal/stem cell therapies. Stem Cells. 2018;36(9):1311–1328. doi:10.1002/stem.2847
  • Mathieu M, Martin-Jaular L, Lavieu G, Théry C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol. 2019;21(1):9–17. doi:10.1038/s41556-018-0250-9
  • Dai M, Yu M, Zhang Y, Tian W. Exosome-like vesicles derived from adipose tissue provide biochemical cues for adipose tissue regeneration. Tissue Eng Part A. 2017;23(21–22):1221–1230. doi:10.1089/ten.tea.2017.0045
  • Dong J, Wu Y, Zhang Y, Yu M, Tian W. Comparison of the therapeutic effect of allogeneic and xenogeneic small extracellular vesicles in soft tissue repair. Int J Nanomedicine. 2020;15:6975–6991. doi:10.2147/IJN.S269069
  • Kaibuchi N, Iwata T, Yamato M, Okano T, Ando T. Multipotent mesenchymal stromal cell sheet therapy for bisphosphonate-related osteonecrosis of the jaw in a rat model. Acta Biomater. 2016;42:400–410. doi:10.1016/j.actbio.2016.06.022
  • Kuroshima S, Nakajima K, Sasaki M, et al. Systemic administration of quality- and quantity-controlled pbmncs reduces bisphosphonate-related osteonecrosis of jaw-like lesions in mice. Stem Cell Res Ther. 2019;10(1):209. doi:10.1186/s13287-019-1308-8
  • Polchow B, Kebbel K, Schmiedeknecht G, et al. Cryopreservation of human vascular umbilical cord cells under good manufacturing practice conditions for future cell banks. J Transl Med. 2012;10(1):98. doi:10.1186/1479-5876-10-98
  • Jackson G, Morgan G, Davies F, et al. Osteonecrosis of the jaw and renal safety in patients with newly diagnosed multiple myeloma: medical research council myeloma ix study results. Br J Haematol. 2014;166(1):109–117. doi:10.1111/bjh.12861
  • Gralow J, Barlow W, Paterson A, et al. Phase III randomized trial of bisphosphonates as adjuvant therapy in breast cancer: S0307. J Natl Cancer Inst. 2020;112(7):698–707. doi:10.1093/jnci/djz215
  • Rosini S, Rosini S, Bertoldi I, Frediani B. Understanding bisphosphonates and osteonecrosis of the jaw: uses and risks. Eur Rev Med Pharmacol Sci. 2015;19(17):3309–3317.
  • Hasegawa T, Hayashida S, Kondo E, et al. Medication-related osteonecrosis of the jaw after tooth extraction in cancer patients: a multicenter retrospective study. Osteoporosis Int. 2019;30(1):231–239. doi:10.1007/s00198-018-4746-8
  • Otto S, Pautke C, Van den Wyngaert T, Niepel D, Schiødt M. Medication-related osteonecrosis of the jaw: prevention, diagnosis and management in patients with cancer and bone metastases. Cancer Treat Rev. 2018;69:177–187. doi:10.1016/j.ctrv.2018.06.007
  • Jabbour Z, El-Hakim M, Henderson J, de Albuquerque R. Bisphosphonates inhibit bone remodeling in the jaw bones of rats and delay healing following tooth extractions. Oral Oncol. 2014;50(5):485–490. doi:10.1016/j.oraloncology.2014.02.013
  • Ogata K, Katagiri W, Osugi M, et al. Evaluation of the therapeutic effects of conditioned media from mesenchymal stem cells in a rat bisphosphonate-related osteonecrosis of the jaw-like model. Bone. 2015;74:95–105. doi:10.1016/j.bone.2015.01.011
  • Li Y, Xu J, Mao L, et al. Allogeneic mesenchymal stem cell therapy for bisphosphonate-related jaw osteonecrosis in swine. Stem Cells Dev. 2013;22(14):2047–2056. doi:10.1089/scd.2012.0615
  • Kikuiri T, Kim I, Yamaza T, et al. Cell-based immunotherapy with mesenchymal stem cells cures bisphosphonate-related osteonecrosis of the jaw-like disease in mice. J Bone Miner Res. 2010;25(7):1668–1679. doi:10.1002/jbmr.37
  • Cai Y, Li J, Jia C, He Y, Deng C. Therapeutic applications of adipose cell-free derivatives: a review. Stem Cell Res Ther. 2020;11(1):312. doi:10.1186/s13287-020-01831-3
  • Phinney D, Pittenger M. Concise review: msc-derived exosomes for cell-free therapy. Stem Cells. 2017;35(4):851–858. doi:10.1002/stem.2575
  • Watanabe J, Sakai K, Urata Y, Toyama N, Nakamichi E, Hibi H. Extracellular vesicles of stem cells to prevent bronj. J Dent Res. 2020;99(5):552–560. doi:10.1177/0022034520906793
  • Tian M, Ticer T, Wang Q, et al. Adipose-derived biogenic nanoparticles for suppression of inflammation. Small. 2020;16(10):e1904064. doi:10.1002/smll.201904064
  • Zhang Y, Yu M, Dai M, et al. Mir-450a-5p within rat adipose tissue exosome-like vesicles promotes adipogenic differentiation by targeting wisp2. J Cell Sci. 2017;130(6):1158–1168. doi:10.1242/jcs.197764
  • Kün-Darbois J, Libouban H, Mabilleau G, Pascaretti-Grizon F, Chappard D. Bone mineralization and vascularization in bisphosphonate-related osteonecrosis of the jaw: an experimental study in the rat. Clin Oral Investig. 2018;22(9):2997–3006. doi:10.1007/s00784-018-2385-2
  • Kim B, Yang S, Kim C, Lee J. Zoledronate suppresses VEGF‑induced capillary tube formation and inhibits expression of interferon‑induced transmembrane protein‑1 in human umbilical vein endothelial cells. Int J Mol Med. 2018;41(5):2879–2884. doi:10.3892/ijmm.2018.3497
  • Wehrhan F, Amann K, Möbius P, et al. Bronj-related jaw bone is associated with increased dlx-5 and suppressed osteopontin-implication in the site-specific alteration of angiogenesis and bone turnover by bisphosphonates. Clin Oral Investig. 2015;19(6):1289–1298. doi:10.1007/s00784-014-1354-7
  • Ohlrich EJ, Coates DE, Cullinan MP, et al. The bisphosphonate zoledronic acid regulates key angiogenesis-related genes in primary human gingival fibroblasts. Arch Oral Biol. 2016;63:7–14. doi:10.1016/j.archoralbio.2015.11.013
  • Pazianas M, van der Geest S, Miller P. Bisphosphonates and bone quality. Bonekey Rep. 2014;3:529. doi:10.1038/bonekey.2014.24
  • Gong X, Yu W, Zhao H, Su J, Sheng Q. Skeletal site-specific effects of zoledronate on in vivo bone remodeling and in vitro bmscs osteogenic activity. Sci Rep. 2017;7(1):36129. doi:10.1038/srep36129
  • Yu Y, Lieu S, Hu D, Miclau T, Colnot C. Site specific effects of zoledronic acid during tibial and mandibular fracture repair. PLoS One. 2012;7(2):e31771. doi:10.1371/journal.pone.0031771
  • Taniguchi N, Osaki M, Onuma K, et al. Bisphosphonate-induced reactive oxygen species inhibit proliferation and migration of oral fibroblasts: a pathogenesis of bisphosphonate-related osteonecrosis of the jaw. J Periodontol. 2020;91(7):947–955. doi:10.1002/JPER.19-0385
  • Su J, Feng M, Han W, Zhao H. The effects of bisphosphonate on the remodeling of different irregular bones in mice. J Oral Pathol Med. 2015;44(8):638–648. doi:10.1111/jop.12281