2,107
Views
28
CrossRef citations to date
0
Altmetric
Review

Improving Drug Delivery for Alzheimer’s Disease Through Nose-to-Brain Delivery Using Nanoemulsions, Nanostructured Lipid Carriers (NLC) and in situ Hydrogels

, ORCID Icon, & ORCID Icon
Pages 4373-4390 | Published online: 29 Jun 2021

References

  • Association As. 2019 Alzheimer’s disease facts and figures. Alzheimers Dement. 2019;15(3):321–387.
  • Kales HC, Lyketsos CG, Miller EM, Ballard C. Management of behavioral and psychological symptoms in people with Alzheimer’s disease: an international Delphi consensus. Int Psychogeriatr. 2019;31(1):83–90. doi:10.1017/S1041610218000534
  • Tan JZA, Gleeson PA. The role of membrane trafficking in the processing of amyloid precursor protein and production of amyloid peptides in Alzheimer’s disease. Biochim Biophys Acta. 2019;1861(4):697–712. doi:10.1016/j.bbamem.2018.11.013
  • Sharma P, Srivastava P, Seth A, Tripathi PN, Banerjee AG, Shrivastava SK. Comprehensive review of mechanisms of pathogenesis involved in Alzheimer’s disease and potential therapeutic strategies. Prog Neurobiol. 2019;174:53–89.
  • Sochocka M, Donskow-łysoniewska K, Diniz BS, Kurpas D, Brzozowska E, Leszek J. The gut microbiome alterations and inflammation-driven pathogenesis of Alzheimer’s disease—a critical review. Mol Neurobiol. 2019;56(3):1841–1851. doi:10.1007/s12035-018-1188-4
  • Webers A, Heneka MT, Gleeson PA. The role of innate immune responses and neuroinflammation in amyloid accumulation and progression of Alzheimer’s disease. Immunol Cell Biol. 2020;98(1):28–41. doi:10.1111/imcb.12301
  • Bradburn S, Murgatroyd C, Ray N. Neuroinflammation in mild cognitive impairment and Alzheimer’s disease: a meta-analysis. Ageing Res Rev. 2019;50:1–8. doi:10.1016/j.arr.2019.01.002
  • Atri A. Current and future treatments in Alzheimer’s Disease. Semin Neurol. 2019;39(2):227–240. doi:10.1055/s-0039-1678581
  • Reynolds DS. A short perspective on the long road to effective treatments for Alzheimer’s disease. Br J Pharmacol. 2019;176(18):3636–3648. doi:10.1111/bph.14581
  • Grodzicki W, Dziendzikowska K. The role of selected bioactive compounds in the prevention of Alzheimer’s disease. Antioxidants. 2020;9(3):229. doi:10.3390/antiox9030229
  • Li R, Zhang Y, Rasool S, Geetha T, Babu JR. Effects and underlying mechanisms of bioactive compounds on type 2 diabetes mellitus and Alzheimer’s disease. In: Jakovljevic V, editor. Oxidative Medicine and Cellular Longevity. 2019.
  • Saxena C, Arora K, Chaurasia L. Importance of different novel nasal drug delivery system-A Review. Int J Pharm Clin Res. 2019;11(1):13–19.
  • Moinuddin S, Razvi S, Uddin MS, Fazil M, Shahidulla S, Akmal MM. Nasal drug delivery system: a innovative approach. J Pharm Innov. 2019;8(3):169–177.
  • Schwarz B, Merkel OM. Nose-to-brain delivery of biologics. Fut Sci. 2019.
  • Giunchedi P, Gavini E, Bonferoni MC Nose-to-Brain Delivery. Multidisciplinary Digital Publishing Institute; 2020.
  • Theochari I, Xenakis A, Papadimitriou V. Nanocarriers for effective drug delivery. In: Nguyen-Tri P, Do TO, Nguyen TA, editors. Smart Nanocontainers. Elsevier; 2020:315–341.
  • Singh AK, Yadav TP, Pandey B, Gupta V, Singh SP. Engineering Nanomaterials for Smart Drug Release: recent Advances and Challenges. In: Mohapatra M, Ranjan S, Dasgupta N, Mishra R, Thomas S, editors. Applications of Targeted Nano Drugs and Delivery Systems. Elsevier; 2019:411–449.
  • Guideline IHT. Pharmaceutical development. In: Q8 (R2) Current Step. PharmaLogika, Inc.; 2009:4.
  • Guideline IHT. Pharmaceutical quality system q10. In: Current Step. ICH Expert Working Group; 2008:4.
  • Guideline IHT. Quality risk management. In: Q9, Current Step. 2005, 4;408.
  • Cunha S, Costa CP, Moreira JN, Lobo JMS, Silva AC. Using the quality by design (QbD) approach to optimize formulations of lipid nanoparticles and nanoemulsions: a review. Nanomedicine. 2020;28:102206. doi:10.1016/j.nano.2020.102206
  • Iqbal B, Ali J, Baboota S. Silymarin loaded nanostructured lipid carrier: from design and dermatokinetic study to mechanistic analysis of epidermal drug deposition enhancement. J Mol Liq. 2018;255:513–529. doi:10.1016/j.molliq.2018.01.141
  • Shah B, Khunt D, Bhatt H, Misra M, Padh H. Application of quality by design approach for intranasal delivery of rivastigmine loaded solid lipid nanoparticles: effect on formulation and characterization parameters. Eur J Pharm Sci. 2015;78:54–66. doi:10.1016/j.ejps.2015.07.002
  • Han JY, Besser LM, Xiong C, Kukull WA, Morris JC. Cholinesterase inhibitors may not benefit mild cognitive impairment and mild Alzheimer disease dementia. Alzheimer Dis Assoc Disord. 2019;33(2):87. doi:10.1097/WAD.0000000000000291
  • Sharma P, Tripathi MK, Shrivastava SK. Cholinesterase as a target for drug development in Alzheimer’s Disease. In: Labrou N, editor. Targeting Enzymes for Pharmaceutical Development. Springer; 2020:257–286.
  • Sharma K. Cholinesterase inhibitors as Alzheimer’s therapeutics. Mol Med Rep. 2019;20(2):1479–1487. doi:10.3892/mmr.2019.10374
  • Tolar M, Abushakra S, Sabbagh M. The path forward in Alzheimer’s disease therapeutics: reevaluating the amyloid cascade hypothesis. Alzheimers Dement. 2019.
  • Castellani RJ, Plascencia-Villa G, Perry G. The amyloid cascade and Alzheimer’s disease therapeutics: theory versus observation. Lab Invest. 2019;99(7):958–970. doi:10.1038/s41374-019-0231-z
  • Cunha S, Almeida H, Amaral M, Lobo JS, Silva A. Intranasal lipid nanoparticles for the treatment of neurodegenerative diseases. Curr Pharm Des. 2017;23(43):6553–6562. doi:10.2174/1381612824666171128105305
  • Yang LY, Greig NH, Tweedie D, et al. The p53 inactivators pifithrin-mu and pifithrin-alpha mitigate TBI-induced neuronal damage through regulation of oxidative stress, neuroinflammation, autophagy and mitophagy. Exp Neurol. 2020;324:113135. doi:10.1016/j.expneurol.2019.113135
  • Gao Q. Oxidative stress and autophagy. In: Qin ZH, editor. Autophagy: Biology and Diseases. Springer; 2019:179–198.
  • Vasantharaja R, Stanley Abraham L, Gopinath V, Hariharan D, Smita KM. Attenuation of oxidative stress induced mitochondrial dysfunction and cytotoxicity in fibroblast cells by sulfated polysaccharide from Padina gymnospora. Int J Biol Macromol. 2019;124:50–59. doi:10.1016/j.ijbiomac.2018.11.104
  • Zokaei N, Cepukaityte G, Board AG, Mackay CE, Husain M, Nobre AC. Dissociable effects of the apolipoprotein-E (APOE) gene on short- and long-term memories. Neurobiol Aging. 2019;73:115–122. doi:10.1016/j.neurobiolaging.2018.09.017
  • Suidan GL, Ramaswamy G. Targeting Apolipoprotein E for Alzheimer’s Disease: an industry perspective. Int J Mol Sci. 2019;20(9):2161. doi:10.3390/ijms20092161
  • Tzioras M, Davies C, Newman A, Jackson R, Spires-Jones T. Invited Review: APOE at the interface of inflammation, neurodegeneration and pathological protein spread in Alzheimer’s disease. Neuropathol Appl Neurobiol. 2019;45(4):327–346. doi:10.1111/nan.12529
  • Voet S, Srinivasan S, Lamkanfi M, van Loo G. Inflammasomes in neuroinflammatory and neurodegenerative diseases. EMBO Mol Med. 2019;11(6):Jun. doi:10.15252/emmm.201810248
  • Ceyzeriat K, Zilli T, Millet P, Frisoni GB, Garibotto V, Tournier BB. Learning from the past: a review of clinical trials targeting amyloid, tau and neuroinflammation in Alzheimer’s Disease. Curr Alzheimer Res. 2020;17(2):112–125. doi:10.2174/1567205017666200304085513
  • Kaur D, Sharma V, Deshmukh R. Activation of microglia and astrocytes: a roadway to neuroinflammation and Alzheimer’s disease. Inflammopharmacology. 2019;27(4):663–677. doi:10.1007/s10787-019-00580-x
  • Lautrup S, Lou G, Aman Y, Nilsen H, Tao J, Fang EF. Microglial mitophagy mitigates neuroinflammation in Alzheimer’s disease. Neurochem Int. 2019;129:104469. doi:10.1016/j.neuint.2019.104469
  • Walker KA, Ficek BN, Westbrook R. Understanding the Role of Systemic Inflammation in Alzheimer’s Disease. ACS Publications; 2019.
  • Paouri E, Georgopoulos S. Systemic and CNS inflammation crosstalk: implications for Alzheimer’s Disease. Curr Alzheimer Res. 2019;16(6):559–574. doi:10.2174/1567205016666190321154618
  • Cabrera-Pastor A, Llansola M, Montoliu C, et al. Peripheral inflammation induces neuroinflammation that alters neurotransmission and cognitive and motor function in hepatic encephalopathy: underlying mechanisms and therapeutic implications. Acta Physiol (Oxf). 2019;226(2):e13270. doi:10.1111/apha.13270
  • Sweeney MD, Zhao Z, Montagne A, Nelson AR, Zlokovic BV. Blood-brain barrier: from physiology to disease and back. Physiol Rev. 2019;99(1):21–78. doi:10.1152/physrev.00050.2017
  • Berhe AG, Tafere NA, Gebremariam BM, Beyene HA. Review on functional and histological effect of lead on the central nervous system. RRJoNS. 2020;9(3):29–33.
  • Charabati M, Rabanel J-M, Ramassamy C, Prat A. Overcoming the brain barriers: from immune cells to nanoparticles. Trends Pharmacol Sci. 2019;41(1):42–54. doi:10.1016/j.tips.2019.11.001
  • Brito MA. Blood–Brain Barrier in Alzheimer’s Disease. In: Fink G, editor. Stress: Physiology, Biochemistry, and Pathology. Elsevier; 2019:337–348.
  • Beccaria K, Canney M, Bouchoux G, Puget S, Grill J, Carpentier A. Blood-brain barrier disruption with low-intensity pulsed ultrasound for the treatment of pediatric brain tumors: a review and perspectives. Neurosurg Focus. 2020;48(1):E10. doi:10.3171/2019.10.FOCUS19726
  • Pardridge WM. Blood-Brain Barrier and delivery of protein and gene therapeutics to brain. Front Aging Neurosci. 2020;11:373. doi:10.3389/fnagi.2019.00373
  • D’Amico RS, Khatri D, Reichman N, et al. Super selective intra-arterial cerebral infusion of modern chemotherapeutics after blood–brain barrier disruption: where are we now, and where we are going. J Neurooncol. 2020;1–18.
  • Beccaria K, Sabbagh A, de Groot J, Canney M, Carpentier A, Heimberger AB. Blood–brain barrier opening with low intensity pulsed ultrasound for immune modulation and immune therapeutic delivery to CNS tumors. J Neurooncol. 2020;1–9.
  • Zhang P, Xu S, Zhu Z, Xu J. Multi-target design strategies for the improved treatment of Alzheimer’s disease. Eur J Med Chem. 2019;176:228–247. doi:10.1016/j.ejmech.2019.05.020
  • Haake A, Nguyen K, Friedman L, Chakkamparambil B, Grossberg GT. An update on the utility and safety of cholinesterase inhibitors for the treatment of Alzheimer’s disease. Expert Opin Drug Saf. 2020;19(2):147–157. doi:10.1080/14740338.2020.1721456
  • Food and Drug Administration (FDA). Aricep® (donepezil hydrochloride) tablets; 2012 [ cited 2020 July 15]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/020690s035,021720s008,022568s005lbl.pdf. Accessed May 28, 2021.
  • Food and Drug Administration (FDA). Reminyl® (galantamine hydrobromide) Tablets; 2001 [ cited 2020 July 15]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2001/21-224_REMINYL_biopharmr.pdf. Accessed May 28, 2021.
  • Food and Drug Administration (FDA). Razadyne®ER and Razadyne® (galantamine hydrobromide); 2017 [ cited 2020 July 15]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/021169Orig1s032,021224Orig1s030,021615Orig1s023lbl.pdf. Accessed May 28, 2021.
  • European Medicines Agency (EMA). Prometax® (rivastigmine); 2012 [ cited 2020 July 15]. Available from: https://www.ema.europa.eu/en/documents/overview/prometax-epar-summary-public_en.pdf. Accessed May 28, 2021.
  • Food and Drug Administration (FDA): Exelon® (rivastigmine tartrate) Capsules and Oral Solution; 2006 [ cited 2020 July 15]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2006/020823s016,021025s008lbl.pdf. Accessed May 28, 2021.
  • Food and Drug Administration (FDA). Exelon® Patch (rivastigmine transdermal system); 2007 [ cited 2020 July 15]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2007/022083lbl.pdf. Accessed May 28, 2021.
  • European Medicines Agency (EMA). Ebixa (cloridrato de memantina); 2011 [ cited 2020 July 15]. Available from: https://www.ema.europa.eu/en/documents/overview/ebixa-epar-summary-public_pt.pdf. Accessed May 28, 2021.
  • European Medicines Agency (EMA). Axura® (memantine hydrochloride); 2011 [ cited 2020 July 15]. https://www.ema.europa.eu/en/documents/overview/axura-epar-summary-public_en.pdf. Accessed May 28, 2021.
  • Ray B, Maloney B, Sambamurti K, et al. Rivastigmine modifies the alpha-secretase pathway and potentially early Alzheimer’s disease. Transl Psychiatry. 2020;10(1):47. doi:10.1038/s41398-020-0709-x
  • Grossberg GT, Tong G, Burke AD, Tariot PN. Present algorithms and future treatments for Alzheimer’s Disease. J Alzheimers Dis. 2019;67(4):1157–1171. doi:10.3233/jad-180903
  • Iraji A, Khoshneviszadeh M, Firuzi O, Khoshneviszadeh M, Edraki N. Novel Small Molecule Therapeutic Agents for Alzheimer Disease: focusing on BACE1 and multi-target directed ligands. Bioorg Chem. 2020;103649.
  • Schneider L. A resurrection of aducanumab for Alzheimer’s disease. Lancet Neurol. 2020;19(2):111–112. doi:10.1016/S1474-4422(19)30480-6
  • Cremonini AL, Caffa I, Cea M, Nencioni A, Odetti P, Monacelli F. Nutrients in the prevention of Alzheimer’s Disease. Oxid Med Cell Longev. 2019;2019:1–20. doi:10.1155/2019/9874159
  • Thuphairo K, Sornchan P, Suttisansanee U. Bioactive compounds, antioxidant activity and inhibition of key enzymes relevant to Alzheimer’s disease from sweet pepper (Capsicum annuum) extracts. Prevent Nutr Food Sci. 2019;24(3):327. doi:10.3746/pnf.2019.24.3.327
  • Serafini MM, Catanzaro M, Rosini M, Racchi M, Lanni C. Curcumin in Alzheimer’s disease: can we think to new strategies and perspectives for this molecule? Pharmacol Res. 2017;124:146–155. doi:10.1016/j.phrs.2017.08.004
  • Rajput AP, Butani SB. Resveratrol anchored nanostructured lipid carrier loaded in situ gel via nasal route: formulation, optimization and in vivo characterization. J Drug Deliv Sci Technol. 2019;51:214–223. doi:10.1016/j.jddst.2019.01.040
  • Pinheiro R, Granja A, Loureiro J, et al. Quercetin lipid nanoparticles functionalized with transferrin for Alzheimer’s disease. Eur J Pharm Sci. 2020;148:105314. doi:10.1016/j.ejps.2020.105314
  • Ahmad N, Ahmad R, Ahmad FJ, et al. Poloxamer-chitosan-based Naringenin nanoformulation used in brain targeting for the treatment of cerebral ischemia. Saudi J Biol Sci. 2020;27(1):500–517. doi:10.1016/j.sjbs.2019.11.008
  • Landel V, Annweiler C, Millet P, Morello M, Féron F. Vitamin D, cognition and Alzheimer’s Disease: the therapeutic benefit is in the D-Tails. J Alzheimers Dis. 2016;53(2):419–444. doi:10.3233/JAD-150943
  • Casati M, Boccardi V, Ferri E, et al. Vitamin E and Alzheimer’s disease: the mediating role of cellular aging. Aging Clin Exp Res. 2020;32(3):459–464. doi:10.1007/s40520-019-01209-3
  • Gupta S, Kumar S. An overview on intranasal drug delivery system: recent technique and its contribution in therapeutic management. Curr Res Pharm Sci. 2019.
  • Jadhav S, Sahoo S, Mishra SK. A Review: nose to brain drug delivery for various CNS disorders. In: Pawar PM, Balasubramaniam R, Ronge BP, Salunkhe SB, Vibhute AS, Melinamath B, editors. Techno-Societal 2018. Springer; 2020:375–385.
  • Akel H, Ismail R, Csóka I. Progress and perspectives of brain-targeting lipid-based nanosystems via the nasal route in Alzheimer’s disease. Eur J Pharm Biopharm. 2020;148:38–53. doi:10.1016/j.ejpb.2019.12.014
  • Cunha S, Amaral MH, Lobo JS, Silva AC. Lipid nanoparticles for nasal/intranasal drug delivery. Crit Rev Ther Drug Carrier Syst. 2017;34(3):3. doi:10.1615/CritRevTherDrugCarrierSyst.2017018693
  • Martins PP, Smyth HD, Cui Z. Strategies to facilitate or block nose-to-brain drug delivery. Int J Pharm. 2019;570:118635. doi:10.1016/j.ijpharm.2019.118635
  • Costa C, Moreira J, Amaral M, Lobo JS, Silva A. Nose-to-brain delivery of lipid-based nanosystems for epileptic seizures and anxiety crisis. J Control Release. 2019;295:187–200. doi:10.1016/j.jconrel.2018.12.049
  • Lochhead JJ, Davis TP. Perivascular and Perineural pathways involved in brain delivery and distribution of drugs after intranasal administration. Pharmaceutics. 2019;11(11):598. doi:10.3390/pharmaceutics11110598
  • Hanson LR, Frey WH. Intranasal delivery bypasses the blood-brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease. BMC Neurosci. 2008;9(S3):S5. doi:10.1186/1471-2202-9-S3-S5
  • Cunha S, Costa CP, Loureiro JA, et al. Double optimization of rivastigmine-loaded Nanostructured Lipid Carriers (NLC) for nose-to-brain delivery using the Quality by Design (QbD) approach: formulation variables and instrumental parameters. Pharmaceutics. 2020;12(7):599. doi:10.3390/pharmaceutics12070599
  • Dos Passos Menezes P, de Araújo Andrade T, La F, et al. Advances of nanosystems containing cyclodextrins and their applications in pharmaceuticals. Int J Pharm. 2019.
  • Chavda VP. Nanobased nano drug delivery: a comprehensive Review. In: Mohapatra S, Ranjan S, Dasgupta N, Kumar R,  Thomas S, editors. Applications of Targeted Nano Drugs and Delivery Systems. Elsevier; 2019:69–92.
  • Shaker DS, Ishak RA, Ghoneim A, Elhuoni MA. Nanoemulsion: a review on mechanisms for the transdermal delivery of hydrophobic and hydrophilic drugs. Sci Pharm. 2019;87(3):17. doi:10.3390/scipharm87030017
  • Jiang T, Liao W, Charcosset C. Recent advances in encapsulation of curcumin in nanoemulsions: a review of encapsulation technologies, bioaccessibility and applications. Food Res Int. 2020;132:109035. doi:10.1016/j.foodres.2020.109035
  • Gupta A. Nanoemulsions. In: Chung EJ, Leon L, Rinaldi C, editors. Nanoparticles for Biomedical Applications. Elsevier; 2020:371–384.
  • Nirale P, Paul A, Yadav KS. Nanoemulsions for targeting the neurodegenerative diseases: alzheimer’s, Parkinson’s and Prion’s. Life Sci. 2020;245:117394. doi:10.1016/j.lfs.2020.117394
  • Silva A, González-Mira E, Lobo JS, Amaral M. Current progresses on nanodelivery systems for the treatment of neuropsychiatric diseases: alzheimer’s and Schizophrenia. Curr Pharm Des. 2013;19(41):7185–7195. doi:10.2174/138161281941131219123329
  • Silva A, Santos D, Ferreira D, Lopes CM. Lipid-based nanocarriers as an alternative for oral delivery of poorly water-soluble drugs: peroral and mucosal routes. Curr Med Chem. 2012;19(26):4495–4510. doi:10.2174/092986712803251584
  • Bhosale RR, Osmani RA, Ghodake PP, Shaikh SM, Chavan SR. Nanoemulsion: a review on novel profusion in advanced drug delivery. Indian J Pharmaceut Biol Res. 2014;2(01):122–127. doi:10.30750/ijpbr.2.1.19
  • Bonferoni MC, Rossi S, Sandri G, et al. Nanoemulsions for “nose-to-brain” drug delivery. Pharmaceutics. 2019;11(2):84. doi:10.3390/pharmaceutics11020084
  • Chatterjee B, Gorain B, Mohananaidu K, Sengupta P, Mandal UK, Choudhury H. Targeted drug delivery to the brain via intranasal nanoemulsion: available proof of concept and existing challenges. Int J Pharm. 2019;565:258–268. doi:10.1016/j.ijpharm.2019.05.032
  • Karami Z, Zanjani MRS, Hamidi M. Nanoemulsions in CNS drug delivery: recent developments, impacts and challenges. Drug Discov Today. 2019;24(5):1104–1115. doi:10.1016/j.drudis.2019.03.021
  • Haider M, Abdin SM, Kamal L, Orive G. Nanostructured lipid carriers for delivery of chemotherapeutics: a Review. Pharmaceutics. 2020;12(3):288. doi:10.3390/pharmaceutics12030288
  • Beloqui A, Solinís MÁ, Rodríguez-Gascón A, Almeida AJ, Préat V. Nanostructured lipid carriers: promising drug delivery systems for future clinics. Nanomedicine. 2016;12(1):143–161. doi:10.1016/j.nano.2015.09.004
  • Alam MI, Baboota S, Ahuja A, Ali M, Ali J, Sahni JK. Intranasal administration of nanostructured lipid carriers containing CNS acting drug: pharmacodynamic studies and estimation in blood and brain. J Psychiatr Res. 2012;46(9):1133–1138. doi:10.1016/j.jpsychires.2012.05.014
  • Elmowafy M, Shalaby K, Badran MM, Ali HM, Abdel-Bakky MS, Ibrahim HM. Multifunctional carbamazepine loaded nanostructured lipid carrier (NLC) formulation. Int J Pharm. 2018;550(1–2):359–371. doi:10.1016/j.ijpharm.2018.08.062
  • Gadhave DG, Kokare CR. Nanostructured lipid carriers engineered for intranasal delivery of teriflunomide in multiple sclerosis: optimization and in vivo studies. Drug Dev Ind Pharm. 2019;45(5):839–851. doi:10.1080/03639045.2019.1576724
  • Desfrançois C, Auzély R, Texier I. Lipid nanoparticles and their hydrogel composites for drug delivery: a review. Pharmaceuticals. 2018;11(4):118. doi:10.3390/ph11040118
  • Sabale AS, Kulkarni AD, Sabale AS. Nasal in situ gel: novel approach for nasal drug delivery. J Drug Deliv Ther. 2020;10(2–s):183–197. doi:10.22270/jddt.v10i2-s.4029
  • Adnet T, Groo A-C, Picard C, et al. Pharmacotechnical development of a nasal drug delivery composite nanosystem intended for Alzheimer’s Disease Treatment. Pharmaceutics. 2020;12(3):251. doi:10.3390/pharmaceutics12030251
  • Makhlouf ASH, Perez A, Guerrero E. Recent trends in smart polymeric coatings in biomedicine and drug delivery applications. In: Makhlouf ASH,  Abu-Thabit NY, editors. Advances in Smart Coatings and Thin Films for Future Industrial and Biomedical Engineering Applications. Elsevier; 2020:359–381.
  • Guha A, Shaharyar MA, Ali KA, Roy SK, Kuotsu K. Smart and intelligent stimuli responsive materials: an innovative step in drug delivery system. Curr Biochem Eng. 2020;6(1):41–52. doi:10.2174/2212711906666190723142057
  • Sun R, Xia Q. Release mechanism of lipid nanoparticles immobilized within alginate beads influenced by nanoparticle size and alginate concentration. Colloid Polym Sci. 2019;297(9):1183–1198. doi:10.1007/s00396-019-04538-x
  • Grangeia HB, Silva C, Simões SP, Reis MS. Quality by design in pharmaceutical manufacturing: a systematic review of current status, challenges and future perspectives. Eur J Pharm Biopharm. 2019;147:19–37. doi:10.1016/j.ejpb.2019.12.007
  • Madane RG, Mahajan HS. Curcumin-loaded nanostructured lipid carriers (NLCs) for nasal administration: design, characterization, and in vivo study. Drug Deliv. 2016;23(4):1326–1334. doi:10.3109/10717544.2014.975382
  • Fachel FNS, Dal Prá M, Azambuja JH, et al. Glioprotective effect of chitosan-coated rosmarinic acid nanoemulsions against lipopolysaccharide-induced inflammation and oxidative stress in rat astrocyte primary cultures. Cell Mol Neurobiol. 2020;40(1):123–139. doi:10.1007/s10571-019-00727-y
  • Kaur A, Nigam K, Bhatnagar I, et al. Treatment of Alzheimer’s diseases using donepezil nanoemulsion: an intranasal approach. In: Alonso MJ, editor. Drug Delivery and Translational Research. 2020:1–14.
  • Kaur A, Nigam K, Srivastava S, Tyagi A, Dang S. Memantine nanoemulsion: a new approach to treat Alzheimer’s disease. J Microencapsul. 2020;1–11.
  • Jojo GM, Kuppusamy G, De A, Karri VNR. Formulation and optimization of intranasal nanolipid carriers of pioglitazone for the repurposing in Alzheimer’s disease using Box-Behnken design. Drug Dev Ind Pharm. 2019;45(7):1061–1072. doi:10.1080/03639045.2019.1593439
  • Anand A, Arya M, Kaithwas G, Singh G, Saraf SA. Sucrose stearate as a biosurfactant for development of rivastigmine containing nanostructured lipid carriers and assessment of its activity against dementia in C. elegans model. J Drug Deliv Sci Technol. 2019;49:219–226. doi:10.1016/j.jddst.2018.11.021
  • Pires PC, Peixoto D, Teixeira I, Rodrigues M, Alves G, Santos AO. Nanoemulsions and thermosensitive nanoemulgels of phenytoin and fosphenytoin for intranasal administration: formulation development and in vitro characterization. Eur J Pharmaceut Sci. 2020;141:105099. doi:10.1016/j.ejps.2019.105099
  • Focused ultrasound foundation: blood-brain barrier opening; 2019 [ cited 2020 July 15].
  • Hong -S-S, Oh KT, Choi H-G, Lim S-J. Liposomal formulations for nose-to-brain delivery: recent advances and future perspectives. Pharmaceutics. 2019;11(10):540. doi:10.3390/pharmaceutics11100540