1,290
Views
56
CrossRef citations to date
0
Altmetric
Original Research

Green Synthesis of Silver Nanoparticles Using the Flower Extract of Abelmoschus esculentus for Cytotoxicity and Antimicrobial Studies

ORCID Icon &
Pages 3343-3356 | Published online: 14 May 2021

References

  • AlSalhi MS, Devanesan S, Alfuraydi AA, et al. Green synthesis of silver nanoparticles using Pimpinella anisum seeds: antimicrobial activity and cytotoxicity on human neonatal skin stromal cells and colon cancer cells. Int J Nanomed. 2016;11:4439–4449. doi:10.2147/IJN.S113193
  • Devanesan S, AlSalhi MS, Balaji RV, et al. Antimicrobial and cytotoxicity effects of synthesized silver nanoparticles from Punica granatum peel extract. Nanoscale Res Lett. 2018;13(1):315. doi:10.1186/s11671-018-2731-y
  • Bindhu MR, Umadevi M, Esmail GA, Al-Dhabi NA, Arasu MV. Green synthesis and characterization of silver nanoparticles from Moringa oleifera flower and assessment of antimicrobial and sensing properties. J Photochem Photobiol B. 20(205):111836.
  • Devanesan S, Ponmurugan K, AlSalhi MS, Al-Dhabi NA. Cytotoxic and antimicrobial efficacy of silver nanoparticles synthesized using a traditional phytoproduct, Asafoetida Gum. Int J Nanomed. 2020;15:4351–4362. doi:10.2147/IJN.S258319
  • Al-Ansari MM, Dhasarathan P, Ranjitsingh AJA, Al-Humaid LA. Ganoderma lucidum inspired silver nanoparticles and its biomedical applications with special reference to drug resistant Escherichia coli isolates from CAUTI. Saudi J Biol Sci. 2020;27:2993–3002. doi:10.1016/j.sjbs.2020.09.008
  • Devanesan S, AlSalhi MS, Vishnubalaji R, et al. Rapid biological synthesis of silver nanoparticles using plant seed extracts and their cytotoxicity on colorectal cancer cell lines. J Clust Sci. 2014;28:595–605. doi:10.1007/s10876-016-1134-4
  • Khan SA, Shahid S, Ayaz A, Alkahtani J, Elshikh MS, Riaz T. Phytomolecules-coated nio nanoparticles synthesis using abutilon indicum leaf extract: antioxidant, antibacterial, and anticancer activities. Int J Nanomed. 2021;16:1757–1773. doi:10.2147/IJN.S294012
  • Khan SA, Shahid S, Lee CS. Green synthesis of gold and silver nanoparticles using leaf extract of clerodendrum inerme; characterization, antimicrobial, and antioxidant activities. Biomolecules. 2020;10(6):835. doi:10.3390/biom10060835
  • Khan SA, Shahid S, Hanif S, Almoallim HS, Alharbi SA, Sellami H. Green synthesis of chromium oxide nanoparticles for antibacterial, antioxidant anticancer, and biocompatibility activities. Int J Mol Sci. 2021;22(2):502. doi:10.3390/ijms22020502
  • Patil SP. Calotropis gigantea assisted green synthesis of nanomaterials and their applications: a review. Beni-Suef Univ J Basic Appl Sci. 2020;9:14. doi:10.1186/s43088-020-0036-6
  • Elhawary S, EL-Hefnawy H, Alzahraa FA. Green synthesis of silver nanoparticles using extract of Jasminum officinal l. leaves and evaluation of cytotoxic activity towards bladder (5637) and breast cancer (MCF-7) cell lines. Int J Nanomed. 2020;15:9771–9781. doi:10.2147/IJN.S269880
  • Hemeg HA. Nanomaterials for alternative antibacterial therapy. Int J Nanomed. 2017;12:8211–8225. doi:10.2147/IJN.S132163
  • Rakesh Kumar B, Alemu F, Archana B, Azamal H. Biogenic fabrication of nanomaterials from flower-based chemical compounds, characterization and their various applications: a review. Saudi J Biol Sci. 2020;27:2551–2562. doi:10.1016/j.sjbs.2020.05.012
  • Bharathi D, Diviya JM, Vasantharaj S, Bhuvaneshwari V. Biosynthesis of silver nanoparticles using stem bark extracts of Diospyros montana and their antioxidant and antibacterial activities. J Nanostruct Chem. 2018;8:83–92. doi:10.1007/s40097-018-0256-7
  • Bharathi D, Vasantharaj S, Bhuvaneshwari V. Green synthesis of silver nanoparticles using Cordia dichotoma fruit extract and its enhanced antibacterial, anti-biofilm and photo catalytic activity. Mater Res Express. 2018;5:055404. doi:10.1088/2053-1591/aac2ef
  • Aravind M, Awais A, Ikram A, et al. Critical green routing synthesis of silver NPs using jasmine flower extract for biological activities and photocatalytical degradation of methylene blue. J Environ Chem Eng. 2021;9:104877. doi:10.1016/j.jece.2020.104877
  • Qhtani M, El-Debaiky S, Sayed M. Antifungal and cytotoxic activities of biosynthesized silver, zinc and gold nanoparticles by flower extract of Rhanterium epapposum. Open J Appl Sci. 2020;10:663–674. doi:10.4236/ojapps.2020.1011046
  • Singh P, Chauhan V, Tiwari BK, et al. Overview on Okra Abelmoschus esculentes and its importance as a nutritive vegetable in the world. IJPBS. 2014;4:227–233.
  • Mollick MR, Bhowmick B, Mondal D, et al. Anticancer (in vitro) and antimicrobial effect of gold nanoparticles synthesized using Abelmoschus esculentus (L.) pulp extract via a green route. RSC Adv. 2014;4:37838–37848. doi:10.1039/C4RA07285E
  • Somasundaram G, Rajan J. Effectual Role of Abelmoschus esculentus (Okra) extract on morphology, microbial and photocatalytic activities of CdO Tetrahedral Clogs. J Inorg Organomet Polym Mater. 2017;28:152–167. doi:10.1007/s10904-017-0695-5
  • Sabouri Z, Akbari A, Ali HH, Hashemzadeh A, Darroudi M. Eco-friendly biosynthesis of nickel oxide nanoparticles mediated by okra plant extract and investigation of their photocatalytic, magnetic, cytotoxicity, and antibacterial properties. J Clust Sci. 2019;30:1425–1434. doi:10.1007/s10876-019-01584-x
  • Gu L, Hong F, Fan K, et al. Integrated Network Pharmacology Analysis and Pharmacological Evaluation to Explore the Active Components and Mechanism of Abelmoschus manihot (L.). Medik on renal fibrosis. Drug Des Devel Ther. 2020;14:4053–4067.
  • CLSI. Methods for dilution antimicrobial susceptibility tests f or bacteria that grow aerobically; approved standard—Ninth Edition. CLSI document M07-A9. Wayne, PA: Clinical and Laboratory Standards Institute; 2012.
  • Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63. doi:10.1016/0022-1759(83)90303-4
  • Brus L. Electronic wave functions in semiconductor clusters: experiment and theory. J Phys Chem. 1986;90:2555–2560. doi:10.1021/j100403a003
  • Maheshwaran G, Nivedhitha bharathi A, Malai Selvi M, Krishna Kumar M, Mohan Kumar R, Sudhahar S. Green synthesis of Silver oxide nanoparticles using Zephyranthes Rosea flower extract and evaluation of biological activities. J Environ Chem Eng. 2020;8:104137. doi:10.1016/j.jece.2020.104137
  • Fatimah I, Hidayat H, Nugroho BH, Husein S. Ultrasound-assisted biosynthesis of silver and gold nanoparticles using Clitoria ternatea flower. S Afr J Chem Eng. 2020;34:97–106.
  • Wei S, Wang Y, Tang Z, et al. A novel green synthesis of silver nanoparticles by the residues of Chinese herbal medicine and their biological activities. RSC Adv. 2021;11:1411. doi:10.1039/D0RA08287B
  • Sundeep D, Kumar V, Rao T, Rao PSS, Ravikumar RVSS, Gopala Krishna A. Green synthesis and characterization of Ag nanoparticles from Mangifera indica leaves for dental restoration and antibacterial applications. Prog Biomater. 2017;6:57–66. doi:10.1007/s40204-017-0067-9
  • Peterson VK, Papadakis CM. Functional materials analysis using in situ and in operando X-ray and neutron scattering. IUCrJ. 2015;2:292–304. doi:10.1107/S2052252514026062
  • Swilam N, Nematallah KA. Polyphenols profile of pomegranate leaves and their role in green synthesis of silver nanoparticles. Sci Rep. 2020;10:14851. doi:10.1038/s41598-020-71847-5
  • Singh C, Kumar J, Kumar P, et al. Green synthesis of silver nanoparticles using aqueous leaf extract of Premna integrifolia (L.) rich in polyphenols and evaluation of their antioxidant, antibacterial and cytotoxic activity. Biotechnol. Biotechnol Equip. 2019;33:359–371. doi:10.1080/13102818.2019.1577699
  • Ibrahim AA, Mohamed MI, Gehan AE. Evaluation of green synthesis of Ag nanoparticles using Eruca sativa and Spinacia oleracea leaf extracts and their antimicrobial activity. Iran J Biotechnol. 2014;12:50–55.
  • Rautela A, Rani J, Debnath DM. Green synthesis of silver nanoparticles from Tectona grandis seeds extract: characterization and mechanism of antimicrobial action on different microorganisms. J Anal Sci Technol. 2019;10:5.
  • Hamouda RA, Hussein MH, Abo-elmagd RA, Bawazir SS. Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica. Sci Rep. 2019;9:13071.
  • Tavares TD, Antunes JC, Padrão J, et al. Activity of specialized biomolecules against gram-positive and gram-negative bacteria. Antibiotics (Basel, Switzerland). 2020;9(6):314. doi:10.3390/antibiotics9060314
  • Xuan NP, Hoa NA, Ngan TA. Green synthesis and antibacterial activity of HAp@Ag nanocomposite using Centella asiatica (L.) Urban extract and eggshell. Int J Biomater. 2020;2020:8841221.
  • Qais FA, Shafiq A, Khan HM, et al. Antibacterial effect of silver nanoparticles synthesized using Murraya koenigii (L.) against multidrug-resistant pathogens. Ahmad Bioinorg Chem Appl. 2019;2019:4649506.
  • Salem SS, El-Belely EF, Niedbała G, et al. Bactericidal and in-vitro cytotoxic efficacy of silver nanoparticles (Ag-NPs) fabricated by endophytic actinomycetes and their use as coating for the textile fabrics. Nanomaterials (Basel). 2020;10:2082. doi:10.3390/nano10102082
  • Zorraquín-Peña I, Cueva C, Bartolomé B, Moreno-Arribas MV. Silver nanoparticles against foodborne bacteria. effects at intestinal level and health limitations. Microorganisms. 2020;8:132. doi:10.3390/microorganisms8010132
  • Park SB, White SB, Steadman CS, et al. Silver-coated magnetic nanocomposites induce growth inhibition and protein changes in foodborne bacteria. Sci Rep. 2019;9(1):17499. doi:10.1038/s41598-019-53080-x
  • Dakal TC, Kumar A, Majumdar RS, Yadav V. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol. 2016;7:1831. doi:10.3389/fmicb.2016.01831
  • Pryshchepa O, Pomastowski P, Buszewski B. Silver nanoparticles: synthesis, investigation techniques, and properties. Adv Colloid Interface Sci. 2020;284:102246. doi:10.1016/j.cis.2020.102246
  • Gabrielyan L, Badalyan H, Gevorgyan A, Trchounian A. Comparable antibacterial efects and action mechanisms of silver and iron oxide nanoparticles on Escherichia coli and Salmonella typhimurium. Sci Rep. 2020;10:13145. doi:10.1038/s41598-020-70211-x
  • Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomed. 2017;12:1227–1249. doi:10.2147/IJN.S121956
  • Ranghar S. Nanoparticle-based drug delivery systems: promising approaches against infections. Braz Arch Biol Technol. 2012;57:209–222. doi:10.1590/S1516-89132013005000011
  • Pellissari CVG, Vergani CE, Longo E, et al. In vitro toxic effect of biomaterials coated with silver tungstate or silver molybdate microcrystals. Nanometer. 2020;2020:2971827.
  • Baker MA, Assis SL, Higa OZ, Costa I. Nanocomposite hydroxyapatite formation on a Ti-13Nb-13Zr alloy exposed in a MEM cell culture medium and the effect of H2O2 addition. Acta Biomater. 2009;5:63–75. doi:10.1016/j.actbio.2008.08.008
  • Bin-Jumah M, Al-Abdan M, Albasher G, Alarifi S. Effects of green silver nanoparticles on apoptosis and oxidative stress in normal and cancerous human hepatic cells. Int J Nanomed. 2020;15:1537–1548. doi:10.2147/IJN.S239861
  • Mao BH, Chen ZY, Wang YJ, Yan SJ. Silver nanoparticles have lethal and sublethal adverse effects on development and longevity by inducing ROS-mediated stress responses. Sci Rep. 2018;8:2445. doi:10.1038/s41598-018-20728-z
  • Majid SJ, Aya AH, Ghassan MS, et al. Green synthesis of silver nanoparticles from Eriobotrya japonica extract: a promising approach against cancer cells proliferation, inflammation, allergic disorders and phagocytosis induction. Artif Cells Nanomed Biotechnol. 2021;49:48–60. doi:10.1080/21691401.2020.1867152
  • Skomorokhova EA, Sankova TP, Orlov IA, et al. Size-dependent bioactivity of silver nanoparticles: antibacterial properties, influence on copper status in mice, and whole-body turnover. Nanotechnol Sci Appl. 2020;13:137–157. doi:10.2147/NSA.S287658
  • Datkhile KD, Durgawale PP, Patil MN. Biogenic silver nanoparticles are equally Cytotoxic as Chemically Synthesized silver nanoparticles. Biomed Pharmacol J. 2017;10. doi:10.13005/bpj/1114]
  • Mie R, Samsudin MW, Din L, Ahmad A, Ibrahim N, Adnan S. Synthesis of silver nanoparticles with antibacterial activity using the lichen Parmotrema praesorediosum. Int J Nanomed. 2014;9(1):121–127. doi:10.2147/IJN.S52306
  • Edis Z, Wang J, Waqas MK, Ijaz M, Ijaz M. Nanocarriers-mediated drug delivery systems for anticancer agents: an overview and perspectives. Int J Nanomed. 2021;16:1313–1330. doi:10.2147/IJN.S289443
  • Devanesan S, Jeyamala M, AlSalhi MS, Umamaheswari M, Ranjithsingh AJA. Antimicrobial and Anticancer properties of Carica papaya leaves derived di-methyl flubendazole mediated silver nanoparticles. J Infect Public Health. 2021. doi:10.1016/j.jiph.2021.02.004
  • Zhen X, Qi F, Min W, Huange Z, Yingying L, Songlin Z. Front. Green biosynthesized silver nanoparticles with aqueous extracts of Ginkgo biloba induce apoptosis via mitochondrial pathway in cervical cancer cells. Oncol. 2020;10:2282.
  • Abdellatif AAH, Rasheed Z, Alhowail AH, et al. Silver citrate nanoparticles inhibit PMA-Induced TNFα Expression via Deactivation of NF-κB activity in human cancer cell-lines, MCF-7. Int J Nanomed. 2020;15:8479–8493. doi:10.2147/IJN.S274098
  • Taha ZK, Hawar SN, Sulaiman GM. Extracellular biosynthesis of silver nanoparticles from Penicillium italicum and its antioxidant, antimicrobial and cytotoxicity activities. Biotechnol Lett. 2019;41:899–914. doi:10.1007/s10529-019-02699-x
  • Jabir MS, Saleh YM, Sulaiman GM, et al. Green synthesis of silver nanoparticles using annona muricata extract as an inducer of apoptosis in cancer cells and inhibitor for NLRP3 inflammasome via enhanced autophagy. Nanomaterials (Basel). 2021;11(2):384. doi:10.3390/nano11020384