214
Views
5
CrossRef citations to date
0
Altmetric
Review

Drug Delivery to the Bone Microenvironment Mediated by Exosomes: An Axiom or Enigma

, & ORCID Icon
Pages 3509-3540 | Published online: 21 May 2021

References

  • Boskey AL, Posner AS. Bone structure, composition, and mineralization. Orthop Clin North Am. 1984;15(4):597–612. doi:10.1016/S0030-5898(20)31258-X
  • Buckwalter JA, Cooper RR. Bone structure and function. Instr Course Lect. 1987;36:27–48.
  • Shea JE, Miller SC. Skeletal function and structure: implications for tissue-targeted therapeutics. Adv Drug Deliv Rev. 2005;57(7):945–957. doi:10.1016/j.addr.2004.12.017
  • Weiner S, Wagner HD. THE MATERIAL BONE: structure-Mechanical Function Relations. Adv Musculoskeletal Dis. 1998;28(1):271–298.
  • Florencio-Silva R, Sasso GR, Sasso-Cerri E, Simões MJ, Cerri PS. Biology of bone tissue: structure, function, and factors that influence bone cells. Biomed Res Int. 2015;2015:421746. doi:10.1155/2015/421746
  • Nakashima T, Hayashi M, Fukunaga T, et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med. 2011;17(10):1231–1234. doi:10.1038/nm.2452
  • Rodan GA. Bone homeostasis. Proce Nat Acad Sci United States Am. 1998;95(23):13361–13362. doi:10.1073/pnas.95.23.13361
  • Baron R, Kneissel M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med. 2013;19(2):179–192. doi:10.1038/nm.3074
  • Demontiero O, Vidal C, Duque G. Aging and bone loss: new insights for the clinician. Therapeutic Adv Musculoskeletal Dis. 2012;4(2):61–76. doi:10.1177/1759720X11430858
  • Duarte MP, Farias MLF, Coelho HSM, et al. Calcium-parathyroid hormone-vitamin D axis and metabolic bone disease in chronic viral liver disease. J Gastroenterol Hepatol. 2001;16(9):1022–1027.
  • Parfitt AM. The actions of parathyroid hormone on bone: relation to bone remodeling and turnover, calcium homeostasis, and metabolic bone disease: part IV of IV parts: the state of the bones in uremic hyperparathyroidism—The mechanisms of skeletal resistance to PTH in renal failure and pseudohypoparathyroidism and the role of PTH in osteoporosis, osteopetrosis, and osteofluorosis. Metabolism. 1976;25(10):1157–1188. doi:10.1016/0026-0495(76)90024-x
  • Westendorf JJ, Kahler RA, Schroeder TM. Wnt signaling in osteoblasts and bone diseases. Gene. 2004;341:19–39. doi:10.1016/j.gene.2004.06.044
  • Wada T, Nakashima T, Hiroshi N, Penninger JM. RANKL–RANK signaling in osteoclastogenesis and bone disease. Trends Mol Med. 2006;12(1):17–25. doi:10.1016/j.molmed.2005.11.007
  • Shoback D. Update in Osteoporosis and Metabolic Bone Disorders. J Clin Endocrinol Metab. 2007;92(3):747–753. doi:10.1210/jc.2007-0042
  • Black DM, Rosen CJ. Postmenopausal Osteoporosis. N Eng J Med. 2016;374(3):254–262. doi:10.1056/NEJMcp1513724
  • Coleman RE, Rubens RD. The clinical course of bone metastases from breast cancer. Br J Cancer. 1987;55(1):61–66. doi:10.1038/bjc.1987.13
  • Picci P. Osteosarcoma (Osteogenic sarcoma). Orphanet J Rare Dis. 2007;2(1):6. doi:10.1186/1750-1172-2-6
  • Schett G, Gravallese E. Bone erosion in rheumatoid arthritis: mechanisms, diagnosis and treatment. Nat Rev Rheumatol. 2012;8(11):656–664. doi:10.1038/nrrheum.2012.153
  • Kravets I. Paget’s Disease of Bone: diagnosis and Treatment. Am J Med. 2018;131(11):1298–1303. doi:10.1016/j.amjmed.2018.04.028
  • Rodan GA, Martin TJ. Therapeutic Approaches to Bone Diseases. Science (New York, N.Y.). 2000;289(5484):1508–1514. doi:10.1126/science.289.5484.1508
  • Cano A, Hermenegildo C. The endometrial effects of SERMs. Hum Reprod Update. 2000;6(3):244–254. doi:10.1093/humupd/6.3.244
  • Brisson J, Brisson B, Coté G, Maunsell E, Bérubé S, Robert J. Tamoxifen and Mammographic Breast Densities. Cancer Epidemiol Biomarkers. 2000;9(9):911–915.
  • Salari P, Abdollahi M. Long Term Bisphosphonate Use in Osteoporotic Patients; A Step Forward, Two Steps Back. J Pharm Pharmaceutical Sci. 2012;15(2):305–317. doi:10.18433/J3RK5J
  • Dimopoulos MA, Kastritis E, Anagnostopoulos A, et al. Osteonecrosis of the jaw in patients with multiple myeloma treated with bisphosphonates: evidence of increased risk after treatment with zoledronic acid. Haematologica. 2006;91(7):968–971.
  • Kennel KA, Drake MT. Adverse Effects of Bisphosphonates: implications for Osteoporosis Management. Mayo Clinic Proceedings. 2009;84(7):632–638. doi:10.1016/S0025-6196(11)60752-0
  • Gallagher AM, Rietbrock S, Olson M, van Staa TP. Fracture Outcomes Related to Persistence and Compliance With Oral Bisphosphonates. J Bone Mineral Res. 2008;23(10):1569–1575.
  • Adami S, Zamberlan N. Adverse Effects of Bisphosphonates. Drug Safety. 1996;14(3):158–170. doi:10.2165/00002018-199614030-00003
  • Yang L, Webster TJ. Nanotechnology controlled drug delivery for treating bone diseases. Expert Opin Drug Deliv. 2009;6(8):851–864. doi:10.1517/17425240903044935
  • Yang X, Chen S, Liu X, Yu M, Liu X. Drug Delivery Based on Nanotechnology for Target Bone Disease. Curr Drug Deliv. 2019;16(9):782–792. doi:10.2174/1567201816666190917123948
  • Gu W, Wu C, Chen J, Xiao Y. Nanotechnology in the targeted drug delivery for bone diseases and bone regeneration. Int J Nanomedicine. 2013;8:2305–2317. doi:10.2147/IJN.S44393
  • Ram Prasad S, Jayakrishnan A, Sampath Kumar TS. Hydroxyapatite-poly(vinyl alcohol) core-shell nanoparticles for dual delivery of methotrexate and gemcitabine for bone cancer treatment. J Drug Deliv Sci Technol. 2019;51:629–638. doi:10.1016/j.jddst.2019.03.041
  • Jayaraman P, Gandhimathi C, Venugopal JR, Becker DL, Ramakrishna S, Srinivasan DK. Controlled release of drugs in electrosprayed nanoparticles for bone tissue engineering. Adv Drug Deliv Rev. 2015;94:77–95. doi:10.1016/j.addr.2015.09.007
  • Sunoqrot S, Bugno J, Lantvit D, Burdette JE, Hong S. Prolonged blood circulation and enhanced tumor accumulation of folate-targeted dendrimer-polymer hybrid nanoparticles. J Controlled Release. 2014;191:115–122. doi:10.1016/j.jconrel.2014.05.006
  • Low SA, Kopeček J. Targeting polymer therapeutics to bone. Adv Drug Deliv Rev. 2012;64(12):1189–1204. doi:10.1016/j.addr.2012.01.012
  • Hengst V, Oussoren C, Kissel T, Storm G. Bone targeting potential of bisphosphonate-targeted liposomes: preparation, characterization and hydroxyapatite binding in vitro. Int J Pharm. 2007;331(2):224–227. doi:10.1016/j.ijpharm.2006.11.024
  • Cole LE, Vargo-Gogola T, Roeder RK. Targeted delivery to bone and mineral deposits using bisphosphonate ligands. Adv Drug Deliv Rev. 2016;99:12–27. doi:10.1016/j.addr.2015.10.005
  • Ramanlal Chaudhari K, Kumar A, Megraj Khandelwal VK, et al. Bone metastasis targeting: a novel approach to reach bone using Zoledronate anchored PLGA nanoparticle as carrier system loaded with Docetaxel. J Controlled Release. 2012;158(3):470–478. doi:10.1016/j.jconrel.2011.11.020
  • Hasani-Sadrabadi MM, Dashtimoghadam E, Bahlakeh G, et al. On-chip synthesis of fine-tuned bone-seeking hybrid nanoparticles. J Bone Mineral Res. 2015;10(23):3431–3449.
  • Song Y-F, Liu D-Z, Cheng Y. Charge Reversible and Mitochondria/Nucleus Dual Target Lipid Hybrid Nanoparticles To Enhance Antitumor Activity of Doxorubicin. Mol Pharm. 2018;15(3):1296–1308. doi:10.1021/acs.molpharmaceut.7b01109
  • Ortiz de Solorzano I, Alejo T, Abad M. Cleavable and thermo-responsive hybrid nanoparticles for on-demand drug delivery. J Colloid Interface Sci. 2019;533:171–181. doi:10.1016/j.jcis.2018.08.069
  • Park K. Facing the Truth about Nanotechnology in Drug Delivery. ACS Nano. 2013;7(9):7442–7447. doi:10.1021/nn404501g
  • Neuberger T, Schöpf B, Hofmann H, Hofmann M, von Rechenberg B. Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J Magn Magn Mater. 2005;293(1):483–496. doi:10.1016/j.jmmm.2005.01.064
  • Manzoor AA, Lindner LH, Landon CD, et al. Overcoming Limitations in Nanoparticle Drug Delivery: triggered, Intravascular Release to Improve Drug Penetration into Tumors. Cancer Research. 2012;72(21):5566–5575. doi:10.1158/0008-5472.CAN-12-1683
  • Hessvik NP, Llorente A. Current knowledge on exosome biogenesis and release. Cell Mol Life Sci. 2018;75(2):193–208.
  • Bobrie A, Colombo M, Raposo G, Théry C. Exosome Secretion: molecular Mechanisms and Roles in Immune Responses. Traffic (Copenhagen, Denmark). 2011;12(12):1659–1668. doi:10.1111/j.1600-0854.2011.01225.x
  • Vlassov AV, Magdaleno S, Setterquist R, Conrad R. Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochimica et Biophysica Acta. 2012;1820(7):940–948. doi:10.1016/j.bbagen.2012.03.017
  • Jiang L, Gu Y, Du Y, Liu J. Exosomes: diagnostic Biomarkers and Therapeutic Delivery Vehicles for Cancer. Mol Pharm. 2019;16(8):3333–3349. doi:10.1021/acs.molpharmaceut.9b00409
  • Munson P, Shukla A. Exosomes: potential in Cancer Diagnosis and Therapy. Medicines. 2015;2(4):310–327. doi:10.3390/medicines2040310
  • Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem. 1987;262(19):9412–9420.
  • Thébaud B, Stewart DJ. Exosomes. Circulation. 2012;126(22):2553–2555. doi:10.1161/CIRCULATIONAHA.112.146738
  • Pegtel DM, Cosmopoulos K, Thorley-Lawson DA, et al. Functional delivery of viral miRNAs via exosomes. Proce Nat Acad Sci United States Am. 2010;107(14):6328–6333. doi:10.1073/pnas.0914843107
  • Sun D, Zhuang X, Zhang S, et al. Exosomes are endogenous nanoparticles that can deliver biological information between cells. Adv Drug Deliv Rev. 2013;65(3):342–347. doi:10.1016/j.addr.2012.07.002
  • Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–659. doi:10.1038/ncb1596
  • Hurley JH, Odorizzi G. Get on the exosome bus with ALIX. Nat Cell Biol. 2012;14(7):654–655. doi:10.1038/ncb2530
  • Anand S, Samuel M, Kumar S, Mathivanan S. Ticket to a bubble ride: cargo sorting into exosomes and extracellular vesicles. Biochimica et Biophysica Acta. 2019;1867(12):140203. doi:10.1016/j.bbapap.2019.02.005
  • Mathieu M, Martin-Jaular L, Lavieu G, Théry C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol. 2019;21(1):9–17. doi:10.1038/s41556-018-0250-9
  • Danzer KM, Kranich LR, Ruf WP, et al. Exosomal cell-to-cell transmission of alpha synuclein oligomers. Mol Neurodegener. 2012;7(1):42. doi:10.1186/1750-1326-7-42
  • Tan A, Rajadas J, Seifalian AM. Exosomes as nano-theranostic delivery platforms for gene therapy. Adv Drug Deliv Rev. 2013;65(3):357–367. doi:10.1016/j.addr.2012.06.014
  • Li Y, Zhang Y, Li Z, Zhou K, Feng N. Exosomes as Carriers for Antitumor Therapy. ACS Biomater Sci Eng. 2019;5(10):4870–4881. doi:10.1021/acsbiomaterials.9b00417
  • Kumar S, Michael IJ, Park J, Granick S, Cho Y-K. Cloaked Exosomes: biocompatible. Durable Degradable Encapsulation. 2018;14(34):1802052.
  • Yang M, Wu SY. The Advances and Challenges in Utilizing Exosomes for Delivering Cancer Therapeutics. Front Pharmacol. 2018;9:735.
  • Felicetti F, De Feo A, Coscia C, et al. Exosome-mediated transfer of miR-222 is sufficient to increase tumor malignancy in melanoma. J Transl Med. 2016;14(1):56. doi:10.1186/s12967-016-0811-2
  • Zheng M, Huang M, Ma X, Chen H, Gao X. Harnessing Exosomes for the Development of Brain Drug Delivery Systems. Bioconjug Chem. 2019;30(4):994–1005. doi:10.1021/acs.bioconjchem.9b00085
  • Khongkow M, Yata T, Boonrungsiman S, Ruktanonchai UR, Graham D, Namdee K. Surface modification of gold nanoparticles with neuron-targeted exosome for enhanced blood–brain barrier penetration. Sci Rep. 2019;9(1):8278. doi:10.1038/s41598-019-44569-6
  • Liu C, Su C. Design strategies and application progress of therapeutic exosomes. Theranostics. 2019;9(4):1015–1028. doi:10.7150/thno.30853
  • Sherif AY, Harisa GI, Alanazi FK, Youssof AME. Engineering of Exosomes: steps Towards Green Production of Drug Delivery System. Curr Drug Targets. 2019;20(15):1537–1549. doi:10.2174/1389450120666190715104100
  • Xie Y, Chen Y, Zhang L, Ge W, Tang P. The roles of bone-derived exosomes and exosomal microRNAs in regulating bone remodelling. J Cell Mol Med. 2017;21(5):1033–1041. doi:10.1111/jcmm.13039
  • Cappariello A, Loftus A, Muraca M, Maurizi A, Rucci N, Teti A. Osteoblast-Derived Extracellular Vesicles Are Biological Tools for the Delivery of Active Molecules to Bone. J Bone Mineral Res. 2018;33(3):517–533.
  • Deng L, Wang Y, Peng Y, et al. Osteoblast-derived microvesicles: a novel mechanism for communication between osteoblasts and osteoclasts. Bone. 2015;79:37–42. doi:10.1016/j.bone.2015.05.022
  • Sun W, Zhao C, Li Y, et al. Osteoclast-derived microRNA-containing exosomes selectively inhibit osteoblast activity. Cell Discovery. 2016;2(1):16015. doi:10.1038/celldisc.2016.15
  • Kobayashi-Sun J, Yamamori S, Kondo M, Kuroda J, Ikegame M, Suzuki N. Uptake of osteoblast-derived extracellular vesicles promotes the differentiation of osteoclasts in the zebrafish scale. Commun Biol. 2020;3(1):190. doi:10.1038/s42003-020-0925-1
  • Qin Y, Wang L, Gao Z, Chen G, Zhang C. Bone marrow stromal/stem cell-derived extracellular vesicles regulate osteoblast activity and differentiation in vitro and promote bone regeneration in vivo. Sci Rep. 2016;6(1):21961. doi:10.1038/srep21961
  • Furuta T, Miyaki S, Ishitobi H, et al. Mesenchymal Stem Cell-Derived Exosomes Promote Fracture Healing in a Mouse Model. Stem Cells Translational Med. 2016;5(12):1620–1630. doi:10.5966/sctm.2015-0285
  • Zhao P, Xiao L, Peng J, Qian YQ, Huang CC. Exosomes derived from bone marrow mesenchymal stem cells improve osteoporosis through promoting osteoblast proliferation via MAPK pathway. Eur Rev Med Pharmacol Sci. 2018;22(12):3962–3970. doi:10.26355/eurrev_201806_15280
  • Qiu M. Bone marrow mesenchymal stem cells-derived exosomal microRNA-150-3p promotes osteoblast proliferation and differentiation in osteoporosis. Human Gene Therapy. 2021
  • Chindamo G, Sapino S, Peira E, Chirio D, Gonzalez MC, Gallarate M. Bone Diseases: current Approach and Future Perspectives in Drug Delivery Systems for Bone Targeted Therapeutics. Nanomaterials. 2020;10(5):875. doi:10.3390/nano10050875
  • Farrell KB, Karpeisky A, Thamm DH, Zinnen S. Bisphosphonate conjugation for bone specific drug targeting. Bone Reports. 2018;9:47–60. doi:10.1016/j.bonr.2018.06.007
  • Brown JP, Morin S, Leslie W, et al. Bisphosphonates for treatment of osteoporosis: expected benefits, potential harms, and drug holidays. Can Fam Physician. 2014;60(4):324–333.
  • Faienza MF, Chiarito M, D’amato G, et al. Monoclonal antibodies for treating osteoporosis. Expert Opin Biol Ther. 2018;18(2):149–157. doi:10.1080/14712598.2018.1401607
  • Bilezikian JP. Combination anabolic and antiresorptive therapy for osteoporosis: opening the anabolic window. Curr Osteoporos Rep. 2008;6(1):24–30. doi:10.1007/s11914-008-0005-9
  • Cosman F, Nieves JW, Dempster DW. Treatment Sequence Matters: anabolic and Antiresorptive Therapy for Osteoporosis. J Bone Mineral Res. 2017;32(2):198–202. doi:10.1002/jbmr.3051
  • Saikali Z, Singh G. Doxycycline and other tetracyclines in the treatment of bone metastasis. Anti-Cancer Drugs. 2003;14(10):773–778. doi:10.1097/00001813-200311000-00001
  • Eilber F, Giuliano A, Eckardt J, Patterson K, Moseley S, Goodnight J. Adjuvant chemotherapy for osteosarcoma: a randomized prospective trial. J Clin Oncol. 1987;5(1):21–26. doi:10.1200/JCO.1987.5.1.21
  • Carrle D, Bielack SS. Current strategies of chemotherapy in osteosarcoma. Int Orthop. 2006;30(6):445–451. doi:10.1007/s00264-006-0192-x
  • Notelovitz M. Estrogen Therapy and Osteoporosis: principles & Practice. Am J Med Sci. 1997;313(1):2–12. doi:10.1097/00000441-199701000-00002
  • Ganesan K, Roane D. Bisphosphonate. Treasure Island (FL): StatPearls Publishing; 2019.
  • Favus MJ. Bisphosphonates for Osteoporosis. N Eng J Med. 2010;363(21):2027–2035. doi:10.1056/NEJMct1004903
  • Watts NB. Erratum. J Clin Endocrinol Metab. 2010;95(7):3565. doi:10.1210/jcem.95.7.9997
  • Michaelson MD, Smith MR. Bisphosphonates for treatment and prevention of bone metastases. J clin oncol. 2005;23(32):8219–8224. doi:10.1200/JCO.2005.02.9579
  • Pfannkuchen N, Meckel M, Bergmann R, et al. Novel Radiolabeled Bisphosphonates for PET Diagnosis and Endoradiotherapy of Bone Metastases. Pharmaceuticals. 2017;10(2):45. doi:10.3390/ph10020045
  • Wu VM, Mickens J, Uskoković V. Bisphosphonate-Functionalized Hydroxyapatite Nanoparticles for the Delivery of the Bromodomain Inhibitor JQ1 in the Treatment of Osteosarcoma. ACS Appl Mater Interfaces. 2017;9(31):25887–25904. doi:10.1021/acsami.7b08108
  • Inoue R, Matsuki N-A, Jing G. The inhibitory effect of alendronate, a nitrogen-containing bisphosphonate on the PI3K-Akt-NFkappaB pathway in osteosarcoma cells. Br J Pharmacol. 2005;146(5):633–641. doi:10.1038/sj.bjp.0706373
  • Cremers S, Drake MT, Ebetino FH, Bilezikian JP, Russell RGG. Pharmacology of bisphosphonates. Br J Clin Pharmacol. 2019;85(6):1052–1062. doi:10.1111/bcp.13867
  • Rogers MJ, Gordon S, Benford HL, et al. Cellular and molecular mechanisms of action of bisphosphonates. Cancer. 2000;88(S12):2961–2978.
  • Tanaka Y, Iwasaki M, Murata-Hirai K, et al. Anti-Tumor Activity and Immunotherapeutic Potential of a Bisphosphonate Prodrug. Sci Rep. 2017;7(1):5987. doi:10.1038/s41598-017-05553-0
  • Heymann D, Ory B, Gouin F, Green JR, Rédini F. Bisphosphonates: new therapeutic agents for the treatment of bone tumors. Trends Mol Med. 2004;10(7):337–343. doi:10.1016/j.molmed.2004.05.007
  • Miller PD. Denosumab: anti-RANKL antibody. Curr Osteoporos Rep. 2009;7(1):18–22. doi:10.1007/s11914-009-0004-5
  • Moen MD, Keam SJ. Denosumab. Drugs Aging. 2011;28(1):63–82. doi:10.2165/11203300-000000000-00000
  • Cummings SR, Martin JS, McClung MR, et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Eng J Med. 2009;361(8):756–765. doi:10.1056/NEJMoa0809493
  • Anandarajah AP, Schwarz EM. Anti-RANKL therapy for inflammatory bone disorders: mechanisms and potential clinical applications. J Cell Biochem. 2006;97(2):226–232.
  • Baron R, Ferrari S, Russell RGG. Denosumab and bisphosphonates: different mechanisms of action and effects. Bone. 2011;48(4):677–692. doi:10.1016/j.bone.2010.11.020
  • Anastasilakis AD, Papapoulos SE, Polyzos SA, Appelman-Dijkstra NM, Makras P. Zoledronate for the Prevention of Bone Loss in Women Discontinuing Denosumab Treatment. A Prospective Clin Trial. 2019;34(12):2220–2228.
  • Matuoka JY, Kahn JG, Secoli SR. Denosumab versus bisphosphonates for the treatment of bone metastases from solid tumors: a systematic review. Eur J Health Economics. 2019;20(4):487–499. doi:10.1007/s10198-018-1011-1
  • Perrin DD. Binding of Tetracyclines to Bone. Nature. 1965;208(5012):787–788. doi:10.1038/208787a0
  • Kim Y, Kim J, Lee H, et al. Tetracycline Analogs Inhibit Osteoclast Differentiation by Suppressing MMP-9-Mediated Histone H3 Cleavage. J Cell Biochem. 2019;20(16):4038.
  • Hochdörffer K, Abu Ajaj K, Schäfer-Obodozie C, Kratz F. Development of Novel Bisphosphonate Prodrugs of Doxorubicin for Targeting Bone Metastases That Are Cleaved pH Dependently or by Cathepsin B: synthesis, Cleavage Properties, and Binding Properties to Hydroxyapatite As Well As Bone Matrix. J Med Chem. 2012;55(17):7502–7515. doi:10.1021/jm300493m
  • Ye W-L, Zhao Y-P, Li H-Q. Doxorubicin-poly (ethylene glycol)-alendronate self-assembled micelles for targeted therapy of bone metastatic cancer. Sci Rep. 2015;5(1):14614. doi:10.1038/srep14614
  • Chun R, Kurzman ID, Couto CG, Klausner J, Henry C, MacEwen EG. Cisplatin and Doxorubicin Combination Chemotherapy for the Treatment of Canine Osteosarcoma: a Pilot Study. J Veterinary Internal Med. 2000;14(5):495–498. doi:10.1892/0891-6640(2000)014<0495:cadccf>2.3.co;2
  • Heymann D, Ory B, Blanchard F, et al. Enhanced tumor regression and tissue repair when zoledronic acid is combined with ifosfamide in rat osteosarcoma. Bone. 2005;37(1):74–86. doi:10.1016/j.bone.2005.02.020
  • Cassano WF, Graham-Pole J, Dickson N. Etoposide, cyclophosphamide, cisplatin, and doxorubicin as neoadjuvant chemotherapy for osteosarcoma. Cancer. 1991;68(9):1899–1902. doi:10.1002/1097-0142(19911101)68:9<1899::aid-cncr2820680909>3.0.co;2-x
  • Holmboe L, Andersen AM, Mørkrid L, Slørdal L, Hall KS. High dose methotrexate chemotherapy: pharmacokinetics, folate and toxicity in osteosarcoma patients. Br J Clin Pharmacol. 2012;73(1):106–114. doi:10.1111/j.1365-2125.2011.04054.x
  • Joseph DL, Sahitya D, Jiaqiang Q, et al. Future Therapies for Human Osteosarcoma. Curr Cancer Ther Rev. 2013;9(1):55–77. doi:10.2174/1573394711309010006
  • Ma H, He C, Cheng Y, et al. Localized Co-delivery of Doxorubicin, Cisplatin, and Methotrexate by Thermosensitive Hydrogels for Enhanced Osteosarcoma Treatment. ACS Appl Mater Interfaces. 2015;7(49):27040–27048. doi:10.1021/acsami.5b09112
  • Ferrari S, Serra M. An update on chemotherapy for osteosarcoma. Expert Opin Pharmacother. 2015;16(18):2727–2736. doi:10.1517/14656566.2015.1102226
  • Gennari L, Merlotti D, Valleggi F, Martini G, Nuti R. Selective Estrogen Receptor Modulators for Postmenopausal Osteoporosis. Drugs Aging. 2007;24(5):361–379. doi:10.2165/00002512-200724050-00002
  • Peng L, Luo Q, Lu H. Efficacy and safety of bazedoxifene in postmenopausal women with osteoporosis: a systematic review and meta-analysis. J Cell Biochem. 2017;96(49):e8659.
  • Silverman SL, Christiansen C, Genant HK, et al. Efficacy of Bazedoxifene in Reducing New Vertebral Fracture Risk in Postmenopausal Women With Osteoporosis: results From a 3-Year, Randomized, Placebo-, and Active-Controlled Clinical Trial. J Bone Mineral Res. 2008;23(12):1923–1934.
  • Gennari L, Merlotti D, Nuti R. Selective estrogen receptor modulator (SERM) for the treatment of osteoporosis in postmenopausal women: focus on lasofoxifene. Clin Interv Aging. 2010;5:19–29. doi:10.2147/CIA.S6083
  • Nelson ER, Wardell SE, McDonnell DP. The molecular mechanisms underlying the pharmacological actions of estrogens, SERMs and oxysterols: implications for the treatment and prevention of osteoporosis. Bone. 2013;53(1):42–50. doi:10.1016/j.bone.2012.11.011
  • Watts NB, Diab DL. Long-Term Use of Bisphosphonates in Osteoporosis. J Clin Endocrinol Metab. 2010;95(4):1555–1565. doi:10.1210/jc.2009-1947
  • Whitaker M, Guo J, Kehoe T, Benson G. Bisphosphonates for Osteoporosis — where Do We Go from Here? N Eng J Med. 2012;366(22):2048–2051. doi:10.1056/NEJMp1202619
  • Compston J. Practical guidance for the use of bisphosphonates in osteoporosis. Bone. 2020;136:115330. doi:10.1016/j.bone.2020.115330
  • Domschke C, Schuetz F. Side Effects of Bone-Targeted Therapies in Advanced Breast Cancer. Breast Care. 2014;9(5):332–336. doi:10.1159/000368844
  • Vannala V, Palaian S, Shankar P. Therapeutic dimensions of bisphosphonates: a clinical update. Int J Preventive Med. 2020;11(1):166. doi:10.4103/ijpvm.IJPVM_33_19
  • Cheng H, Chawla A, Yang Y, et al. Development of nanomaterials for bone-targeted drug delivery. Drug Discov Today. 2017;22(9):1336–1350. doi:10.1016/j.drudis.2017.04.021
  • Tran N, Pareta RA, Taylor E, Webster TJ. Iron oxide nanoparticles: novel drug delivery materials for treating bone diseases. Adv Mater Res. 2010;89–91:411–418. doi:10.4028/www.scientific.net/AMR.89-91.411
  • Wang D, Miller S, Sima M, Kopečková P, Kopeček J. Synthesis and evaluation of water-soluble polymeric bone-targeted drug delivery systems. Bioconjug Chem. 2003;14(5):853–859. doi:10.1021/bc034090j
  • Sun W, Ge K, Jin Y, et al. Bone-targeted nanoplatform combining zoledronate and photothermal therapy to treat breast cancer bone metastasis. ACS Nano. 2019;13(7):7556–7567. doi:10.1021/acsnano.9b00097
  • Peng Z, Miyanji EH, Zhou Y, et al. Carbon dots: promising biomaterials for bone-specific imaging and drug delivery. Nanoscale. 2017;9(44):17533–17543. doi:10.1039/C7NR05731H
  • Medina-Cruz D, Mostafavi E, Vernet-Crua A, et al. Green nanotechnology-based drug delivery systems for osteogenic disorders. Expert Opin Drug Deliv. 2020;17(3):341–356. doi:10.1080/17425247.2020.1727441
  • Wang F, Chen L, Zhang R, Chen Z, Zhu L. RGD peptide conjugated liposomal drug delivery system for enhance therapeutic efficacy in treating bone metastasis from prostate cancer. J Controlled Release. 2014;196:222–233. doi:10.1016/j.jconrel.2014.10.012
  • Marra M, Salzano G, Leonetti C, et al. New self-assembly nanoparticles and stealth liposomes for the delivery of zoledronic acid: a comparative study. Biotechnol Adv. 2012;30(1):302–309. doi:10.1016/j.biotechadv.2011.06.018
  • Martínez-Carmona M, Lozano D, Colilla M, Vallet-Regí M. Lectin-conjugated pH-responsive mesoporous silica nanoparticles for targeted bone cancer treatment. Acta Biomaterialia. 2018;65:393–404. doi:10.1016/j.actbio.2017.11.007
  • Jawahar N, Meyyanathan S. Polymeric nanoparticles for drug delivery and targeting: a comprehensive review. J Bone Mineral Res. 2012;1(4):217–223.
  • Rai R, Alwani S, Badea I. Polymeric Nanoparticles in Gene Therapy: new Avenues of Design and Optimization for Delivery Applications. J Bone Mineral Res. 2019;11(4):745.
  • Masood F. Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater Sci Eng. 2016;60:569–578. doi:10.1016/j.msec.2015.11.067
  • Son J, Yang SM, Yi G, et al. Folate-modified PLGA nanoparticles for tumor-targeted delivery of pheophorbide a in vivo. Biochem Biophys Res Commun. 2018;498(3):523–528. doi:10.1016/j.bbrc.2018.03.013
  • Dangi R, Hurkat P, Jain A, et al. Targeting liver cancer via ASGP receptor using 5-FU-loaded surface-modified PLGA nanoparticles. J Microencapsul. 2014;31(5):479–487. doi:10.3109/02652048.2013.879929
  • Salmaso S, Caliceti P. Stealth Properties to Improve Therapeutic Efficacy of Drug Nanocarriers. J Drug Deliv. 2013;2013:374252. doi:10.1155/2013/374252
  • Wang B, Yu X-C, Xu S-F, Xu M. Paclitaxel and etoposide co-loaded polymeric nanoparticles for the effective combination therapy against human osteosarcoma. J Nanobiotechnology. 2015;13(1):22. doi:10.1186/s12951-015-0086-4
  • Garay RP, El-Gewely R, Armstrong JK, Garratty G, Richette P. Antibodies against polyethylene glycol in healthy subjects and in patients treated with PEG-conjugated agents. Expert Opin Drug Deliv. 2012;9(11):1319–1323. doi:10.1517/17425247.2012.720969
  • Elsabahy M, Perron M-È, Bertrand N. Solubilization of Docetaxel in Poly(ethylene oxide)-block-poly(butylene/styrene oxide) Micelles. Biomacromolecules. 2007;8(7):2250–2257. doi:10.1021/bm070226v
  • Chen Y, Zhang YX, Wu ZF, et al. Biodegradable poly(ethylene glycol)–poly(ε-carprolactone) polymeric micelles with different tailored topological amphiphilies for doxorubicin (DOX) drug delivery. RSC Adv. 2016;6(63):58160–58172. doi:10.1039/C6RA06040D
  • Liu T, Romanova S, Wang S, et al. Alendronate-Modified Polymeric Micelles for the Treatment of Breast Cancer Bone Metastasis. Mol Pharm. 2019;16(7):2872–2883. doi:10.1021/acs.molpharmaceut.8b01343
  • Kulthe SS, Choudhari YM, Inamdar NN, Mourya V. Polymeric micelles: authoritative aspects for drug delivery. Designed Monomers Polymers. 2012;15(5):465–521. doi:10.1080/1385772X.2012.688328
  • Tomalia DA, Fréchet JMJ. Discovery of dendrimers and dendritic polymers: a brief historical perspective. J Bone Mineral Res. 2002;40(16):2719–2728.
  • Patel H, Patel P. Dendrimer applications–a review. Chem Commun. 2013;4(2):454–463.
  • Bo J, Jing Z, Yanhua L, et al. Dual-targeting Janus Dendrimer Based Peptides for Bone Cancer: synthesis and Preliminary Biological Evaluation. Lett Org Chem. 2013;10(8):594–601. doi:10.2174/15701786113109990024
  • Pasut G, Veronese FM. Polymer–drug conjugation, recent achievements and general strategies. Prog Polym Sci. 2007;32(8):933–961. doi:10.1016/j.progpolymsci.2007.05.008
  • Kwon S, Singh RK, Perez RA, Abou Neel EA, Kim H-W, Chrzanowski W. Silica-based mesoporous nanoparticles for controlled drug delivery. J Tissue Eng. 2013;4:2041731413503357.
  • Lin Y-S, Abadeer N, Haynes CL. Stability of small mesoporous silica nanoparticles in biological media. Chem Commun. 2011;47(1):532–534. doi:10.1039/C0CC02923H
  • Ma X, Zhao Y, Ng KW, Zhao Y. Integrated Hollow Mesoporous Silica Nanoparticles for Target Drug/siRNA Co-Delivery. Chemistry. 2013;19(46):15593–15603. doi:10.1002/chem.201302736
  • Pasqua L, De Napoli IE, De Santo M, et al. Mesoporous silica-based hybrid materials for bone-specific drug delivery. Nanoscale Adv. 2019;1(8):3269–3278. doi:10.1039/C9NA00249A
  • Shahbazi M-A, Herranz B, Santos HA. Nanostructured porous Si-based nanoparticles for targeted drug delivery. Biomatter. 2012;2(4):296–312. doi:10.4161/biom.22347
  • Piao Y, Kim J, Na HB, et al. Wrap–bake–peel process for nanostructural transformation from β-FeOOH nanorods to biocompatible iron oxide nanocapsules. Nat Mater. 2008;7(3):242–247. doi:10.1038/nmat2118
  • Kandasamy R, Kandasamy R. A novel single step synthesis and surface functionalization of iron oxide magnetic nanoparticles and thereof for the copper removal from pigment industry effluent. Sep Purif Technol. 2017;188:458–467. doi:10.1016/j.seppur.2017.07.059
  • Hu FX, Neoh KG, Kang ET. Synthesis and in vitro anti-cancer evaluation of tamoxifen-loaded magnetite/PLLA composite nanoparticles. Biomaterials. 2006;27(33):5725–5733. doi:10.1016/j.biomaterials.2006.07.014
  • Sharma P, Rana S, Barick KC, Kumar C, Salunke HG, Hassan PA. Biocompatible phosphate anchored Fe3O4 nanocarriers for drug delivery and hyperthermia. New J Chem. 2014;38(11):5500–5508. doi:10.1039/C4NJ01431F
  • Gul S, Khan SB, Rehman IU, Khan MA, Khan MI, Comprehensive A. Review of Magnetic Nanomaterials Modern Day Theranostics. J Tissue Eng. 2019;6:179.
  • Çağdaş M, Sezer AD, Bucak S. Liposomes as Potential Drug Carrier Systems for Drug Delivery. Application Nanotechnol Drug Delivery. 2014.
  • Boakye CHA, Patel K, Singh M. Doxorubicin liposomes as an investigative model to study the skin permeation of nanocarriers. Int J Pharm. 2015;489(1):106–116. doi:10.1016/j.ijpharm.2015.04.059
  • Gu Q, Yang H, Shi Q. Macrophages and bone inflammation. J Orthopaedic Translation. 2017;10:86–93. doi:10.1016/j.jot.2017.05.002
  • Neog MK, Rasool M. Targeted delivery of p-coumaric acid encapsulated mannosylated liposomes to the synovial macrophages inhibits osteoclast formation and bone resorption in the rheumatoid arthritis animal model. Eur J Pharmaceutics Biopharmaceutics. 2018;133:162–175. doi:10.1016/j.ejpb.2018.10.010
  • Olusanya TOB, Haj Ahmad RR, Ibegbu DM, Smith JR, Elkordy AA. Liposomal Drug Delivery Systems and Anticancer Drugs. Molecules. 2018;23(4):907.
  • Gheinani AH, Vögeli M, Baumgartner U, et al. Improved isolation strategies to increase the yield and purity of human urinary exosomes for biomarker discovery. Sci Rep. 2018;8(1):3945. doi:10.1038/s41598-018-22142-x
  • Dash P, Piras AM, Dash M. Cell membrane coated nanocarriers - an efficient biomimetic platform for targeted therapy. J Controlled Release. 2020;327:546–570. doi:10.1016/j.jconrel.2020.09.012
  • Luk BT, Zhang L. Cell membrane-camouflaged nanoparticles for drug delivery. J Controlled Release. 2015;220:600–607. doi:10.1016/j.jconrel.2015.07.019
  • Li Z, Hu S, Cheng K. Platelets and their biomimetics for regenerative medicine and cancer therapies. J Mater Chem B. 2018;6(45):7354–7365. doi:10.1039/C8TB02301H
  • Fang RH, Hu C-MJ, Luk BT, et al. Cancer Cell Membrane-Coated Nanoparticles for Anticancer Vaccination and Drug Delivery. Nano Lett. 2014;14(4):2181–2188. doi:10.1021/nl500618u
  • Fan Z, Li PY, Deng J, Bady SC, Cheng H. Cell membrane coating for reducing nanoparticle-induced inflammatory responses to scaffold constructs. Nano Res. 2018;11(10):5573–5583. doi:10.1007/s12274-018-2084-y
  • György B, Szabó TG, Pásztói M, et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci. 2011;68(16):2667–2688.
  • Théry C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002;2(8):569–579. doi:10.1038/nri855
  • Gulei D, Irimie AI, Cojocneanu-Petric R, Schultze JL, Berindan-Neagoe I. Exosomes-Small Players, Big Sound. Bioconjug Chem. 2018;29(3):635–648. doi:10.1021/acs.bioconjchem.8b00003
  • Keerthikumar S, Chisanga D, Ariyaratne D, et al. ExoCarta: a Web-Based Compendium of Exosomal Cargo. J Mol Biol. 2016;428(4):688–692. doi:10.1016/j.jmb.2015.09.019
  • Pathan M, Fonseka P, Chitti SV, et al. Vesiclepedia 2019: a compendium of RNA, proteins, lipids and metabolites in extracellular vesicles. Nucleic Acids Res. 2018;47(D1):D516–D519. doi:10.1093/nar/gky1029
  • Qureshi MZ. Introducing Vesiclepedia. Nat Methods. 2013;10(3):194. doi:10.1038/nmeth.2384
  • Boriachek K, Islam MN, Möller A, et al. Biological Functions and Current Advances in Isolation and Detection Strategies for Exosome Nanovesicles. Small. 2017;14(6):1702153. doi:10.1002/smll.201702153
  • Mathivanan S, Fahner CJ, Reid GE, Simpson RJ. ExoCarta 2012: database of exosomal proteins, RNA and lipids. Nucleic Acids Res. 2012;40(Database issue):D1241–D1244. doi:10.1093/nar/gkr828
  • Farooqi AA, Desai NN, Qureshi MZ, et al. Exosome biogenesis, bioactivities and functions as new delivery systems of natural compounds. Biotechnol Adv. 2018;36(1):328–334. doi:10.1016/j.biotechadv.2017.12.010
  • Yokoi A, Yoshioka Y, Yamamoto Y, et al. Malignant extracellular vesicles carrying MMP1 mRNA facilitate peritoneal dissemination in ovarian cancer. Nat Commun. 2017;8(1):14470. doi:10.1038/ncomms14470
  • Lv -L-L, Feng Y, Wu M, et al. Exosomal miRNA-19b-3p of tubular epithelial cells promotes M1 macrophage activation in kidney injury. Cell Death Differ. 2020;27(1):210–226. doi:10.1038/s41418-019-0349-y
  • Wu M, Ouyang Y, Wang Z, et al. Isolation of exosomes from whole blood by integrating acoustics and microfluidics. Proce National Acad Sci. 2017;114(40):10584. doi:10.1073/pnas.1709210114
  • El Andaloussi S, Mäger I, Breakefield XO, Wood MJA. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov. 2013;12(5):347–357. doi:10.1038/nrd3978
  • Liu Y, Zhang X-L, Chen L, et al. Epigenetic mechanisms of bone regeneration and homeostasis. Prog Biophys Mol Biol. 2016;122(2):85–92. doi:10.1016/j.pbiomolbio.2016.01.005
  • Roodman GD. Mechanisms of Bone Metastasis. N Eng J Med. 2004;350(16):1655–1664. doi:10.1056/NEJMra030831
  • Yoshiko Y, Minamizaki T. Emerging roles of microRNAs as extracellular vesicle cargo secreted from osteoblasts. J Oral Biosci. 2020;62(3):228–234. doi:10.1016/j.job.2020.05.006
  • Cui Y, Luan J, Li H, Zhou X, Han J. Exosomes derived from mineralizing osteoblasts promote ST2 cell osteogenic differentiation by alteration of microRNA expression. FEBS Lett. 2016;590(1):185–192. doi:10.1002/1873-3468.12024
  • Boyce BF, Xing L. Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys. 2008;473(2):139–146. doi:10.1016/j.abb.2008.03.018
  • Sojod B, Chateau D, Mueller CG, et al. RANK/RANKL/OPG Signalization Implication in Periodontitis: new Evidence from a RANK Transgenic Mouse Model. Frontiers in Physiology. 2017;8(338). doi:10.3389/fphys.2017.00338
  • Jimi E. The role of osteoclastic bone resorption on bone remodeling. Clin Calcium. 2017;27(12):1689–1695.
  • Huynh N, VonMoss L, Smith D, et al. Characterization of Regulatory Extracellular Vesicles from Osteoclasts. J Dent Res. 2016;95(6):673–679. doi:10.1177/0022034516633189
  • Gao M, Gao W, Papadimitriou JM, Zhang C, Gao J, Zheng M. Exosomes-the enigmatic regulators of bone homeostasis. Bone Res. 2018;6:36. doi:10.1038/s41413-018-0039-2
  • Liu M, Sun Y, Zhang Q. Emerging Role of Extracellular Vesicles in Bone Remodeling. J Dent Res. 2018;97(8):859–868. doi:10.1177/0022034518764411
  • Cappariello A, Loftus A, Muraca M, Maurizi A, Rucci N, Teti A. Osteoblast-Derived Extracellular Vesicles Are Biological Tools for the Delivery of Active Molecules to Bone. J Bone Mineral Res. 2018;33(3):517–533. doi:10.1002/jbmr.3332
  • Tiwari G, Tiwari R, Sriwastawa B, et al. Drug delivery systems: an updated review. Int J Pharm Investig. 2012;2(1):2–11. doi:10.4103/2230-973X.96920
  • Tan ML, Choong PFM, Dass CR. Recent developments in liposomes, microparticles and nanoparticles for protein and peptide drug delivery. Peptides. 2010;31(1):184–193. doi:10.1016/j.peptides.2009.10.002
  • Gregoriadis G. Liposomes in Drug Delivery: how It All Happened. Pharmaceutics. 2016;8(2):19. doi:10.3390/pharmaceutics8020019
  • El-Hammadi MM, Arias JL. An update on liposomes in drug delivery: a patent review (2014-2018). Expert Opin Ther Pat. 2019;29(11):891–907. doi:10.1080/13543776.2019.1679767
  • Mao J, Li Y, Wu T, et al. Responsive Prodrug-Based Polymeric Micelles for Drug Delivery. ACS Appl Mater Interfaces. 2016;8(27):17109–17117. doi:10.1021/acsami.6b04247
  • Janas C, Mostaphaoui Z, Schmiederer L, Bauer J, Wacker MG. Novel polymeric micelles for drug delivery: material characterization and formulation screening. Int J Pharm. 2016;509(1):197–207. doi:10.1016/j.ijpharm.2016.05.029
  • Sur S, Rathore A, Dave V, Reddy KR, Chouhan RS, Sadhu V. Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. Nano Structures Nano Objects. 2019;20:100397. doi:10.1016/j.nanoso.2019.100397
  • Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres M. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology. 2018;16(1):71. doi:10.1186/s12951-018-0392-8
  • Elsharkasy OM, Nordin JZ, Hagey DW, et al. Extracellular vesicles as drug delivery systems: why and how? Adv Drug Deliv Rev. 2020;159:332–343. doi:10.1016/j.addr.2020.04.004
  • Vader P, Mol EA, Pasterkamp G, Schiffelers RM. Extracellular vesicles for drug delivery. Adv Drug Deliv Rev. 2016;106:148–156. doi:10.1016/j.addr.2016.02.006
  • Gudbergsson JM, Jønsson K, Simonsen JB, Johnsen KB. Systematic review of targeted extracellular vesicles for drug delivery – considerations on methodological and biological heterogeneity. J Controlled Release. 2019;306:108–120. doi:10.1016/j.jconrel.2019.06.006
  • Huang D, Wu D. Biodegradable dendrimers for drug delivery. Mater Sci Eng. 2018;90:713–727. doi:10.1016/j.msec.2018.03.002
  • Wang Y, Luo Y, Zhao Q, Wang Z, Xu Z, Jia X. An Enzyme-Responsive Nanogel Carrier Based on PAMAM Dendrimers for Drug Delivery. ACS Appl Mater Interfaces. 2016;8(31):19899–19906. doi:10.1021/acsami.6b05567
  • Peng H, Ji W, Zhao R, et al. Exosome: a significant nano-scale drug delivery carrier. J Mater Chem B. 2020;8(34):7591–7608. doi:10.1039/D0TB01499K
  • Maia J, Caja S, Strano Moraes MC, Couto N, Costa-Silva B. Exosome-based cell-cell communication in the tumor microenvironment. Front Cell Dev Biol. 2018;6(18). doi:10.3389/fcell.2018.00018
  • Jiang X-C, Gao J-Q. Exosomes as novel bio-carriers for gene and drug delivery. Int J Pharm. 2017;521(1):167–175. doi:10.1016/j.ijpharm.2017.02.038
  • Ohno S-I, Takanashi M, Sudo K. Systemically Injected Exosomes Targeted to EGFR Deliver Antitumor MicroRNA to Breast Cancer Cells. Mol Therapy. 2013;21(1):185–191. doi:10.1038/mt.2012.180
  • Sun D, Zhuang X, Xiang X, et al. Drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Therapy. 2010;18(9):1606–1614. doi:10.1038/mt.2010.105
  • Haney MJ, Klyachko NL, Zhao Y, et al. Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J Controlled Release. 2015;207:18–30. doi:10.1016/j.jconrel.2015.03.033
  • Aqil F, Munagala R, Jeyabalan J, et al. Milk exosomes - Natural nanoparticles for siRNA delivery. Cancer Lett. 2019;449:186–195. doi:10.1016/j.canlet.2019.02.011
  • Morishita M, Takahashi Y, Nishikawa M, Takakura Y. Pharmacokinetics of Exosomes—An Important Factor for Elucidating the Biological Roles of Exosomes and for the Development of Exosome-Based Therapeutics. J Pharm Sci. 2017;106(9):2265–2269. doi:10.1016/j.xphs.2017.02.030
  • Tian T, Zhang H-X, He C-P, et al. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. Biomaterials. 2018;150:137–149. doi:10.1016/j.biomaterials.2017.10.012
  • Salunkhe S, Basak M, Chitkara D, Mittal A. Surface functionalization of exosomes for target-specific delivery and in vivo imaging & tracking: strategies and significance. J Controlled Release. 2020;326:599–614. doi:10.1016/j.jconrel.2020.07.042
  • Luan X, Sansanaphongpricha K, Myers I, Chen H, Yuan H, Sun D. Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacol Sin. 2017;38(6):754–763. doi:10.1038/aps.2017.12
  • Zhuang X, Xiang X, Grizzle W, et al. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Therapy. 2011;19(10):1769–1779. doi:10.1038/mt.2011.164
  • Qu M, Lin Q, Huang L, et al. Dopamine-loaded blood exosomes targeted to brain for better treatment of Parkinson’s disease. J Controlled Release. 2018;287:156–166. doi:10.1016/j.jconrel.2018.08.035
  • Bunggulawa EJ, Wang W, Yin T, et al. Recent advancements in the use of exosomes as drug delivery systems. J Nanobiotechnology. 2018;16(1):81. doi:10.1186/s12951-018-0403-9
  • Song H, Li X, Zhao Z, et al. Reversal of osteoporotic activity by endothelial cell-secreted bone targeting and biocompatible exosomes. Nano Lett. 2019;19(5):3040–3048. doi:10.1021/acs.nanolett.9b00287
  • Mehryab F, Rabbani S, Shahhosseini S, et al. Exosomes as a next-generation drug delivery system: an update on drug loading approaches, characterization, and clinical application challenges. Acta Biomaterialia. 2020;113:42–62. doi:10.1016/j.actbio.2020.06.036
  • Wei H, Chen J, Wang S, et al. Of Doxorubicin And Exosome Derived From Mesenchymal Stem Cells For Osteosarcoma Treatment In Vitro. Int J Nanomedicine. 2019;14:8603–8610. doi:10.2147/IJN.S218988
  • Luo Z-W, Li F-X-Z, Liu Y-W, et al. Aptamer-functionalized exosomes from bone marrow stromal cells target bone to promote bone regeneration. Nanoscale. 2019;11(43):20884–20892. doi:10.1039/C9NR02791B
  • Lin Q, Qu M, Zhou B, et al. Exosome-like nanoplatform modified with targeting ligand improves anti-cancer and anti-inflammation effects of imperialine. J Controlled Release. 2019;311:104–116. doi:10.1016/j.jconrel.2019.08.037
  • Yuan D, Zhao Y, Banks WA, et al. Macrophage exosomes as natural nanocarriers for protein delivery to inflamed brain. Biomaterials. 2017;142:1–12. doi:10.1016/j.biomaterials.2017.07.011
  • Yan F, Zhong Z, Wang Y, et al. Exosome-based biomimetic nanoparticles targeted to inflamed joints for enhanced treatment of rheumatoid arthritis. J Nanobiotechnology. 2020;18(1):115. doi:10.1186/s12951-020-00675-6
  • Li X, Corbett AL, Taatizadeh E, et al. Challenges and opportunities in exosome research—Perspectives from biology, engineering, and cancer therapy. APL Bioeng. 2019;3(1):011503.
  • Ludwig N, Whiteside TL, Reichert TE. Challenges in Exosome Isolation and Analysis in Health and Disease. Int J Mol Sci. 2019;20(19):4684.
  • Yang D, Zhang W, Zhang H, et al. Progress, opportunity, and perspective on exosome isolation - efforts for efficient exosome-based theranostics. Theranostics. 2020;10(8):3684–3707. doi:10.7150/thno.41580
  • King HW, Michael MZ, Gleadle JM. Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer. 2012;12(1):421. doi:10.1186/1471-2407-12-421
  • Théry C, Amigorena S, Raposo G, Clayton A. Isolation and Characterization of Exosomes from Cell Culture Supernatants and Biological Fluids. Int J Mol Sci. 2006;30(1):3.22.1–3.22.29.
  • Lobb RJ, Becker M, Wen SW, et al. Optimized exosome isolation protocol for cell culture supernatant and human plasma. J Extracellular Vesicles. 2015;4:27031. doi:10.3402/jev.v4.27031
  • Gupta S, Rawat S, Arora V, et al. An improvised one-step sucrose cushion ultracentrifugation method for exosome isolation from culture supernatants of mesenchymal stem cells. Stem Cell Res Ther. 2018;9(1):180. doi:10.1186/s13287-018-0923-0
  • Pedersen KW, Kierulf B, Manger I, Oksvold MP, Li M. Direct Isolation of Exosomes from Cell Culture: simplifying Methods for Exosome Enrichment and Analysis. Int J Mol Sci. 2015;6.
  • Karttunen J, Heiskanen M, Navarro-Ferrandis V, et al. Precipitation-based extracellular vesicle isolation from rat plasma co-precipitate vesicle-free microRNAs. J Extracellular Vesicles. 2019;8(1):1555410. doi:10.1080/20013078.2018.1555410
  • Böing AN, van der Pol E, Grootemaat AE, Coumans FAW, Sturk A, Nieuwland R. Single-step isolation of extracellular vesicles by size-exclusion chromatography. J Extracellular Vesicles. 2014;3(1):23430. doi:10.3402/jev.v3.23430
  • Gholizadeh S, Shehata Draz M, Zarghooni M, et al. Microfluidic approaches for isolation, detection, and characterization of extracellular vesicles: current status and future directions. Biosens Bioelectron. 2017;91:588–605. doi:10.1016/j.bios.2016.12.062
  • Contreras-Naranjo JC, Wu H-J, Ugaz VM. Microfluidics for exosome isolation and analysis: enabling liquid biopsy for personalized medicine. Lab Chip. 2017;17(21):3558–3577. doi:10.1039/C7LC00592J
  • Konoshenko MY, Lekchnov EA, Vlassov AV, Laktionov PP. Isolation of Extracellular Vesicles: general Methodologies and Latest Trends. Biomed Res Int. 2018;2018:8545347. doi:10.1155/2018/8545347
  • Zhao X, Wu D, Ma X, Wang J, Hou W, Zhang W. Exosomes as drug carriers for cancer therapy and challenges regarding exosome uptake. Biomed Pharmacotherapy. 2020;128:110237. doi:10.1016/j.biopha.2020.110237
  • Buschow SI, van Balkom BWM, Aalberts M, Heck AJR, Wauben M, Stoorvogel W. MHC class II-associated proteins in B-cell exosomes and potential functional implications for exosome biogenesis. Immunology Cell Biol. 2010;88(8):851–856.
  • Denzer K, van Eijk M, Kleijmeer MJ, et al. Cells Carry MHC Class II-Expressing Microvesicles at Their Surface. J Immunol. 2000;165(3):1259–1265. doi:10.4049/jimmunol.165.3.1259
  • Quah BJC, O’Neill HC. The immunogenicity of dendritic cell-derived exosomes. Blood Cells Mol Dis. 2005;35(2):94–110. doi:10.1016/j.bcmd.2005.05.002
  • Muhsin-Sharafaldine M-R, Saunderson SC, Dunn AC, Faed JM, Kleffmann T, McLellan AD. Procoagulant and immunogenic properties of melanoma exosomes, microvesicles and apoptotic vesicles. Oncotarget. 2016;7(35):56279–56294. doi:10.18632/oncotarget.10783
  • Van Niel G, Mallegol J, Bevilacqua C, et al. Intestinal epithelial exosomes carry MHC class II/peptides able to inform the immune system in mice. Gut. 2003;52(12):1690–1697. doi:10.1136/gut.52.12.1690
  • Gomari H, Forouzandeh Moghadam M, Soleimani M. Targeted cancer therapy using engineered exosome as a natural drug delivery vehicle. Onco Targets Ther. 2018;11:5753–5762. doi:10.2147/OTT.S173110
  • Elkhoury K, Koçak P, Kang A, Arab-Tehrany E, Ellis Ward J, Shin SR. Engineering Smart Targeting Nanovesicles and Their Combination with Hydrogels for Controlled Drug Delivery. Immunology Cell Biol. 2020;12(9):849.
  • Rayamajhi S, Aryal S. Surface functionalization strategies of extracellular vesicles. J Mater Chem B. 2020;8(21):4552–4569. doi:10.1039/D0TB00744G
  • Sato YT, Umezaki K, Sawada S. Engineering hybrid exosomes by membrane fusion with liposomes. Sci Rep. 2016;6(1):21933. doi:10.1038/srep21933
  • Zhuang M, Chen X, Du D, et al. SPION decorated exosome delivery of TNF-α to cancer cell membranes through magnetism. Nanoscale. 2020;12(1):173–188. doi:10.1039/C9NR05865F
  • Conlan RS, Pisano S, Oliveira MI, Ferrari M, Mendes Pinto I. Exosomes as Reconfigurable Therapeutic Systems. Trends Mol Med. 2017;23(7):636–650. doi:10.1016/j.molmed.2017.05.003
  • Kooijmans SAA, Vader P, van Dommelen SM, van Solinge WW, Schiffelers RM. Exosome mimetics: a novel class of drug delivery systems. Int J Nanomedicine. 2012;7:1525–1541. doi:10.2147/IJN.S29661
  • Jang SC, Kim OY, Yoon CM, et al. Bioinspired Exosome-Mimetic Nanovesicles for Targeted Delivery of Chemotherapeutics to Malignant Tumors. ACS Nano. 2013;7(9):7698–7710. doi:10.1021/nn402232g
  • Pisano S, Pierini I, Gu J, et al. Immune (Cell) Derived Exosome Mimetics (IDEM) as a Treatment for Ovarian Cancer. Front Cell DevBiol. 2020;8(932). doi:10.3389/fcell.2020.553576
  • Kalimuthu S, Gangadaran P, Rajendran RL, et al. Approach for loading anticancer drugs into mesenchymal stem cell-derived exosome mimetics for cancer therapy. Immunology Cell Biol. 2018;9:1116.
  • Johnsen KB, Gudbergsson JM, Skov MN, Pilgaard L, Moos T, Duroux M. A comprehensive overview of exosomes as drug delivery vehicles — endogenous nanocarriers for targeted cancer therapy. Biochimica et Biophysica Acta. 2014;1846(1):75–87. doi:10.1016/j.bbcan.2014.04.005
  • Biver E, Thouverey C, Magne D, Caverzasio J. Crosstalk between tyrosine kinase receptors, GSK3 and BMP2 signaling during osteoblastic differentiation of human mesenchymal stem cells. Mol Cell Endocrinol. 2014;382(1):120–130. doi:10.1016/j.mce.2013.09.018
  • Rayamajhi S, Nguyen TDT, Marasini R, Aryal S. Macrophage-derived exosome-mimetic hybrid vesicles for tumor targeted drug delivery. Acta Biomaterialia. 2019;94:482–494. doi:10.1016/j.actbio.2019.05.054
  • Lin Y, Wu J, Gu W, et al. Exosome–Liposome Hybrid Nanoparticles Deliver CRISPR/Cas9 System in MSCs. Advanced Sci. 2018;5(4):1700611.
  • Piffoux M, Silva AKA, Wilhelm C, Gazeau F, Tareste D. Modification of extracellular vesicles by fusion with liposomes for the design of personalized biogenic drug delivery systems. ACS Nano. 2018;12(7):6830–6842. doi:10.1021/acsnano.8b02053
  • Lv Q, Cheng L, Lu Y, et al. Thermosensitive Exosome–Liposome Hybrid Nanoparticle-Mediated Chemoimmunotherapy for Improved Treatment of Metastatic Peritoneal Cancer. Advanced Sci. 2020;7(18):2000515.
  • Han Z, Lv W, Li Y, et al. Improving tumor targeting of exosomal membrane-coated polymeric nanoparticles by conjugation with aptamers. ACS Applied Bio Materials. 2020;3(5):2666–2673. doi:10.1021/acsabm.0c00181
  • Sawada S-I, Sato YT, Kawasaki R. Nanogel hybrid assembly for exosome intracellular delivery: effects on endocytosis and fusion by exosome surface polymer engineering. Biomaterials Sci. 2020;8(2):619–630. doi:10.1039/C9BM01232J
  • Jo W, Jeong D, Kim J, et al. Microfluidic fabrication of cell-derived nanovesicles as endogenous RNA carriers. Lab Chip. 2014;14(7):1261–1269. doi:10.1039/C3LC50993A
  • Illes B, Hirschle P, Barnert S, Cauda V, Wuttke S, Engelke H. Exosome-coated metal–organic framework nanoparticles: an efficient drug delivery platform. Chem Mater. 2017;29(19):8042–8046. doi:10.1021/acs.chemmater.7b02358
  • Zha Y, Lin T, Li Y, et al. Exosome-mimetics as an engineered gene-activated matrix induces in-situ vascularized osteogenesis. Biomaterials. 2020;247:119985. doi:10.1016/j.biomaterials.2020.119985