181
Views
8
CrossRef citations to date
0
Altmetric
Original Research

Taqman-MGB nanoPCR for Highly Specific Detection of Single-Base Mutations

, ORCID Icon, , , , , , , & show all
Pages 3695-3705 | Published online: 28 May 2021

References

  • Hart JR, Zhang Y, Liao L, et al. The butterfly effect in cancer: a single base mutation can remodel the cell. Proc Natl Acad Sci U S A. 2015;112(4):1131. doi:10.1073/pnas.1424012112
  • Riva L, Pandiri AR, Li YR, et al. The mutational signature profile of known and suspected human carcinogens in mice. Nat Genet. 2020;52(11):1189–1197. doi:10.1038/s41588-020-0692-4
  • Doudna JA. The promise and challenge of therapeutic genome editing. Nature. 2020;578(7794):229–236. doi:10.1038/s41586-020-1978-5
  • Chen P, Pan D, Fan C, et al. Gold nanoparticles for high-throughput genotyping of long-range haplotypes. Nat Nanotechnol. 2011;6(10):639–644. doi:10.1038/nnano.2011.141
  • Oxnard GR, Hu Y, Mileham KF, et al. Assessment of resistance mechanisms and clinical implications in patients with EGFR T790M-positive lung cancer and acquired resistance to osimertinib. JAMA Oncol. 2018;4(11):1527–1534. doi:10.1001/jamaoncol.2018.2969
  • Planchard D, Popat S, Kerr K, et al. Correction to: “Metastatic non-small cell lung cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up”. Ann Oncol. 2019;30(5):863–870. doi:10.1093/annonc/mdy474
  • Eide I, Å H, Ekman S, et al. Osimertinib in T790M-positive and -negative patients with EGFR-mutated advanced non-small cell lung cancer (the TREM-study). Lung Cancer. 2020;143:27–35. doi:10.1016/j.lungcan.2020.03.009
  • Vollbrecht C, Lehmann A, Lenze D, Hummel M. Validation and comparison of two NGS assays for the detection of EGFR T790M resistance mutation in liquid biopsies of NSCLC patients. Oncotarget. 2018;9(26):18529–18539. doi:10.18632/oncotarget.24908
  • Aravanis AM, Lee M, Klausner RD. Next-generation sequencing of circulating tumor DNA for early cancer detection. Cell. 2017;168(4):571–574. doi:10.1016/j.cell.2017.01.030
  • Van Amerongen RA, Retèl VP, Coupé VM, Nederlof PM, Vogel MJ, Van Harten WH. Next-generation sequencing in NSCLC and melanoma patients: a cost and budget impact analysis. Ecancermedicalscience. 2016;10. doi:10.3332/ecancer.2016.684
  • Brychta N, Krahn T, von Ahsen O. Detection of KRAS mutations in circulating tumor DNA by digital PCR in early stages of pancreatic cancer. Clin Chem. 2016;62(11):1482–1491. doi:10.1373/clinchem.2016.257469
  • Xiang Z, Wan R, Zou B, et al. Highly sensitive and specific real-time PCR by employing serial invasive reaction as a sequence identifier for quantifying EGFR mutation abundance in cfDNA. Anal Bioanal Chem. 2018;410(26):6751–6759. doi:10.1007/s00216-018-1316-z
  • Salipante SJ, Jerome KR. Digital PCR-an emerging technology with broad applications in microbiology. Clin Chem. 2020;66(1):117–123. doi:10.1373/clinchem.2019.304048
  • Newton CR, Graham A, Heptinstall LE, et al. Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res. 1989;17(7):2503–2516. doi:10.1093/nar/17.7.2503
  • Xue B, Li Y, Wang X, et al. TaqMan-MGB probe quantitative PCR assays to genotype and quantify three mtDNA mutations of Leber hereditary optic neuropathy. Sci Rep. 2020;10(1):12264. doi:10.1038/s41598-020-69220-7
  • Belousov YS, Welch RA, Sanders S, Mills A. Single nucleotide polymorphism genotyping by two colour melting curve analysis using the MGB eclipse probe system in challenging sequence environment. Hum Genomics. 2004;1(3):1–9. doi:10.1186/1479-7364-1-3-209
  • Park JY, Back SH, Chang SJ, Lee SJ, Lee KG, Park TJ. Dopamine-assisted synthesis of carbon-coated silica for PCR enhancement. ACS Appl Mater Interfaces. 2015;7(28):15633–15640. doi:10.1021/acsami.5b04404
  • Tong W, Cao X, Wen S, et al. Enhancing the specificity and efficiency of polymerase chain reaction using polyethyleneimine-based derivatives and hybrid nanocomposites. Int J Nanomedicine. 2012;7:1069–1078. doi:10.2147/IJN.S28947
  • Sun C, Cheng Y, Pan Y, Yang J, Wang X, Xia F. Efficient polymerase chain reaction assisted by metal–organic frameworks. Chem Sci. 2020;11(3):797–802. doi:10.1039/C9SC03202A
  • Chen F, Zhao Y, Fan C, Zhao Y. Mismatch extension of DNA polymerases and high-accuracy single nucleotide polymorphism diagnostics by gold nanoparticle-improved isothermal amplification. Anal Chem. 2015;87(17):8718–8723. doi:10.1021/acs.analchem.5b01545
  • Li H, Huang J, Lv J, et al. Nanoparticle PCR: nanogold-assisted PCR with enhanced specificity. Angew Chem Int Ed Engl. 2005;44(32):5100–5103. doi:10.1002/anie.200500403
  • Li M, Lin YC, Wu CC, Liu HS. Enhancing the efficiency of a PCR using gold nanoparticles. Nucleic Acids Res. 2005;33(21):e184. doi:10.1093/nar/gni183
  • Ye X, Fang X, Li X, Kong J. Gold nanoparticle-mediated nucleic acid isothermal amplification with enhanced specificity. Anal Chim Acta. 2018;1043:150–157. doi:10.1016/j.aca.2018.09.016
  • Sedighi A, Oberc C, Whitehall V, Li PCH. NanoHDA: a nanoparticle-assisted isothermal amplification technique for genotyping assays. Nano Res. 2016.
  • Kim HR, Baek A, Lee IJ, Kim D. Facilitation of polymerase chain reaction with poly(ethylene glycol)-engrafted graphene oxide analogous to a single-stranded-DNA binding protein. Acs Appl Mater Inter. 2016;8(49):33521–33528. doi:10.1021/acsami.6b13223
  • Lou X, Zhang Y. Mechanism studies on nanoPCR and applications of gold nanoparticles in genetic analysis. Appl Mater Interfaces. 2013;5(13):6276–6284. doi:10.1021/am4013209
  • Cui D, Tian F, Kong Y, Titushikin I, Gao H. Effects of single-walled carbon nanotubes on the polymerase chain reaction. Nanotechnology. 2004;15(1):154–157. doi:10.1088/0957-4484/15/1/030
  • Li A, Zhou B, Alves C, et al. Mechanistic studies of enhanced PCR using PEGylated PEI-entrapped gold nanoparticles. Acs Appl Mater Interfaces. 2016;8(39):25808–25817. doi:10.1021/acsami.6b09310
  • Pan D, Mi L, Huang Q, Hu J, Fan C. Genetic analysis with nanoPCR. Integr Biol-Uk. 2012;4(10):1155–1163. doi:10.1039/c2ib20076g
  • Pan D, Wen Y, Mi L, Fan C, Hu J. Nanomaterials-based polymerase chain reactions for DNA detection. Curr Org Chem. 2011;15(4):486–497. doi:10.2174/138527211794474447
  • Bai Y, Cui Y, Paoli GC, Shi C, Shi X. Nanoparticles affect PCR primarily via surface interactions with PCR components: using amino-modified silica-coated magnetic nanoparticles as a main model. Acs Appl Mater Inter. 2015;7(24):13142–13153. doi:10.1021/am508842v
  • Cao X, Shi X, Yang W, Zhang X, Fan C, Hu J. Enhanced specificity and efficiency of polymerase chain reactions using poly(amidoamine) dendrimers and derivatives. Analyst. 2008;134:87–92. doi:10.1039/B812176A
  • Li X, Cai W, Yang G, et al. Comprehensive analysis of EGFR-mutant abundance and its effect on efficacy of EGFR TKIs in advanced NSCLC with EGFR mutations. J Thorac Oncol. 2017;12(9):1388–1397. doi:10.1016/j.jtho.2017.06.006
  • Malapelle U, Sirera R, Jantus-Lewintre E, et al. Profile of the Roche cobas® EGFR mutation test v2 for non-small cell lung cancer. Expert Rev Mol Diagn. 2017;17(3):209–215. doi:10.1080/14737159.2017.1288568
  • Wu S, Chiang C, Liu C, et al. An observational study of acquired EGFR T790M-dependent resistance to EGFR-TKI treatment in lung adenocarcinoma patients in Taiwan. Front Oncol. 2020;10.
  • Vallée A, Le Loupp A, Denis MG. Efficiency of the Therascreen® RGQ PCR kit for the detection of EGFR mutations in non-small cell lung carcinomas. Clin Chim Acta. 2014;429:8–11. doi:10.1016/j.cca.2013.11.014
  • Feng Q, Gai F, Sang Y, et al. A comparison of QuantStudio™ 3D Digital PCR and ARMS-PCR for measuring plasma EGFR T790M mutations of NSCLC patients. Cancer Manag Res. 2018;10:115–121. doi:10.2147/CMAR.S148134
  • Yang Y, Meng Y, Zhang H, et al. Detection of EGFR and BRAF mutations by competitive allele-specific TaqMan polymerase chain reaction in lung adenocarcinoma. Oncol Lett. 2018;15(3):3295–3304. doi:10.3892/ol.2017.7652
  • Wang M, Yan Y, Wang R, et al. Simultaneous detection of bovine rotavirus, bovine parvovirus, and bovine viral diarrhea virus using a gold nanoparticle-assisted PCR assay with a dual-priming oligonucleotide system. Front Microbiol. 2019;10:2884. doi:10.3389/fmicb.2019.02884