285
Views
16
CrossRef citations to date
0
Altmetric
Review

Current Strategies and Potential Prospects of Nanomedicine-Mediated Therapy in Inflammatory Bowel Disease

, , &
Pages 4225-4237 | Published online: 23 Jun 2021

References

  • Molodecky NA, Soon S, Rabi DM, et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology. 2012;142(1):46–54. e42.
  • Kostić M, Djakovic L, Šujić R, Godman B, Janković SM. Inflammatory bowel diseases (Crohn's disease and ulcerative colitis): cost of treatment in Serbia and the implications. Appl Health Econ Health Policy. 2017;15(1):85–93. doi:10.1007/s40258-016-0272-z
  • Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86. doi:10.1002/ijc.29210
  • Burisch J, Munkholm P. The epidemiology of inflammatory bowel disease. Scand J Gastroenterol. 2015;50(8):942–951. doi:10.3109/00365521.2015.1014407
  • Burisch J, Jess T, Martinato M, Lakatos PL; ECCO-EpiCom. The burden of inflammatory bowel disease in Europe. J Crohns Colitis. 2013;7(4):322–337. doi:10.1016/j.crohns.2013.01.010
  • Kaplan GG, Bernstein CN, Coward S, et al. The impact of inflammatory bowel disease in Canada 2018: epidemiology. J Can Assoc Gastroenterol. 2019;2(Suppl 1):S6–s16. doi:10.1093/jcag/gwy054
  • M’koma AE. Inflammatory bowel disease: an expanding global health problem. Clin Med Insights Gastroenterol. 2013;6(CGast):S12731.
  • Burisch J. Crohn’s disease and ulcerative colitis. Occurrence, course and prognosis during the first year of disease in a European population-based inception cohort. Dan Med J. 2014;61(1):B4778.
  • Itzkowitz SH, Yio X. Inflammation and Cancer IV. Colorectal cancer in inflammatory bowel disease: the role of inflammation. Am J Physiol Gastrointest Liver Physiol. 2004;287(1):G7–G17. doi:10.1152/ajpgi.00079.2004
  • Han W, Xie B, Li Y, et al. Orally deliverable nanotherapeutics for the synergistic treatment of colitis-associated colorectal cancer. Theranostics. 2019;9(24):7458–7473. doi:10.7150/thno.38081
  • Zhang Z, Dong L, Jia A, et al. Glucocorticoids promote the onset of acute experimental colitis and cancer by upregulating mTOR signaling in intestinal epithelial cells. Cancers (Basel). 2020;12(4):945. doi:10.3390/cancers12040945
  • Pu J, Zhou X, Liu J, Hou P, Ji M. The therapeutic potential and deleterious effect of glucocorticoids on AOM/DSS-induced colorectal cancer in mice. 2021.
  • Dayharsh GA, Loftus EV, Sandborn WJ, et al. Epstein-Barr virus–positive lymphoma in patients with inflammatory bowel disease treated with azathioprine or 6-mercaptopurine. Gastroenterology. 2002;122(1):72–77. doi:10.1053/gast.2002.30328
  • Talley NJ, Abreu MT, Achkar J-P, et al.; for the American College of Gastroenterology, I. B. D. Task Force. An evidence-based systematic review on medical therapies for inflammatory bowel disease. Am Coll Gastroenterol. 2011;106.
  • Coco R, Plapied L, Pourcelle V, et al. Drug delivery to inflamed colon by nanoparticles: comparison of different strategies. Int J Pharm. 2013;440(1):3–12. doi:10.1016/j.ijpharm.2012.07.017
  • Lautenschläger C, Schmidt C, Fischer D, Stallmach A. Drug delivery strategies in the therapy of inflammatory bowel disease. Adv Drug Deliv Rev. 2014;71:58–76. doi:10.1016/j.addr.2013.10.001
  • Hua S. Orally administered liposomal formulations for colon targeted drug delivery. Front Pharmacol. 2014;5:138. doi:10.3389/fphar.2014.00138
  • Zhang S, Ermann J, Succi MD, et al. An inflammation-targeting hydrogel for local drug delivery in inflammatory bowel disease. Sci Transl Med. 2015;7(300):300ra128–300ra128. doi:10.1126/scitranslmed.aaa5657
  • Talekar M, Tran T-H, Amiji M. Translational nano-medicines: targeted therapeutic delivery for cancer and inflammatory diseases. AAPS J. 2015;17(4):813–827. doi:10.1208/s12248-015-9772-2
  • Yang C, Merlin D. Can naturally occurring nanoparticle-based targeted drug delivery effectively treat inflammatory bowel disease? Expert Opin Drug Deliv. 2020;17(1):1–4. doi:10.1080/17425247.2020.1698543
  • Viscido A, Capannolo A, Latella G, Caprilli R, Frieri G. Nanotechnology in the treatment of inflammatory bowel diseases. J Crohns Colitis. 2014;8(9):903–918. doi:10.1016/j.crohns.2014.02.024
  • Ramos GP, Papadakis KA. Mechanisms of Disease: Inflammatory Bowel Diseases, Mayo Clinic Proceedings. Elsevier; 2019:155–165.
  • Hua S, Marks E, Schneider JJ, Keely S. Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: selective targeting to diseased versus healthy tissue. Nanomedicine. 2015;11(5):1117–1132. doi:10.1016/j.nano.2015.02.018
  • Vass P, Demuth B, Hirsch E, et al. Drying technology strategies for colon-targeted oral delivery of biopharmaceuticals. J Control Release. 2019;296:162–178. doi:10.1016/j.jconrel.2019.01.023
  • Coward S, Clement F, Benchimol EI, et al. Past and future burden of inflammatory bowel diseases based on modeling of population-based data. Gastroenterology. 2019;156(5):1345–1353. e4. doi:10.1053/j.gastro.2019.01.002
  • Jacob EM, Borah A, Pillai SC, Kumar DS. Inflammatory bowel disease: the emergence of new trends in lifestyle and nanomedicine as the modern tool for pharmacotherapy. Nanomaterials. 2020;10(12):2460. doi:10.3390/nano10122460
  • Guan Q. A comprehensive review and update on the pathogenesis of inflammatory bowel disease. J Immunol Res. 2019;2019:1–16. doi:10.1155/2019/7247238
  • Neurath MF. Targeting immune cell circuits and trafficking in inflammatory bowel disease. Nat Immunol. 2019;20(8):970–979. doi:10.1038/s41590-019-0415-0
  • Kmieć Z, Cyman M, Ślebioda TJ. Cells of the innate and adaptive immunity and their interactions in inflammatory bowel disease. Adv Med Sci. 2017;62(1):1–16. doi:10.1016/j.advms.2016.09.001
  • Sayed IM, Suarez K, Lim E, et al. Host engulfment pathway controls inflammation in inflammatory bowel disease. FEBS J. 2020;287(18):3967–3988. doi:10.1111/febs.15236
  • Neurath MF. Cytokines in inflammatory bowel disease. Nat Rev Immunol. 2014;14(5):329–342. doi:10.1038/nri3661
  • Glocker E, Grimbacher B. Inflammatory bowel disease: is it a primary immunodeficiency? Cell Mol Life Sci. 2012;69(1):41–48. doi:10.1007/s00018-011-0837-9
  • Weisshof R, El Jurdi K, Zmeter N, Rubin DT. Emerging therapies for inflammatory bowel disease. Adv Ther. 2018;35(11):1746–1762. doi:10.1007/s12325-018-0795-9
  • Katsanos KH, Papadakis KA. Inflammatory bowel disease: updates on molecular targets for biologics. Gut Liver. 2017;11(4):455. doi:10.5009/gnl16308
  • Singh D, Srivastava S, Pradhan M, Kanwar JR, Singh MR. Inflammatory bowel disease: pathogenesis, causative factors, issues, drug treatment strategies, and delivery approaches. Crit Rev Ther Drug Carrier Syst. 2015;32(3):181–214. doi:10.1615/CritRevTherDrugCarrierSyst.2015011095
  • Sales-Campos H, Basso PJ, Alves VB, et al. Classical and recent advances in the treatment of inflammatory bowel diseases. Braz J Med Biol Res. 2015;48(2):96–107. doi:10.1590/1414-431x20143774
  • Vindigni SM, Zisman TL, Suskind DL, Damman CJ. The intestinal microbiome, barrier function, and immune system in inflammatory bowel disease: a tripartite pathophysiological circuit with implications for new therapeutic directions. Therap Adv Gastroenterol. 2016;9(4):606–625. doi:10.1177/1756283X16644242
  • Waljee AK, Lipson R, Wiitala WL, et al. Predicting hospitalization and outpatient corticosteroid use in inflammatory bowel disease patients using machine learning. Inflamm Bowel Dis. 2018;24(1):45–53. doi:10.1093/ibd/izx007
  • Narula N, Borges L, Steinhart AH, Colombel J-F. Trends in narcotic and corticosteroid prescriptions in patients with inflammatory bowel disease in the United States ambulatory care setting from 2003 to 2011. Inflamm Bowel Dis. 2017;23(6):868–874. doi:10.1097/MIB.0000000000001084
  • Bermejo F, Algaba A, López-Durán S, et al. Mercaptopurine and inflammatory bowel disease: the other thiopurine. Revista Española de Enfermedades Digestivas. 2017;109(1):10–16. doi:10.17235/reed.2016.4546/2016
  • Nielsen OH, Steenholdt C, Juhl CB, Rogler G. Efficacy and safety of methotrexate in the management of inflammatory bowel disease: a systematic review and meta-analysis of randomized, controlled trials. EClinicalMedicine. 2020;20:100271. doi:10.1016/j.eclinm.2020.100271
  • Roblin X, Boschetti G, Williet N, et al. Azathioprine dose reduction in inflammatory bowel disease patients on combination therapy: an open‐label, prospective and randomised clinical trial. Aliment Pharmacol Ther. 2017;46(2):142–149. doi:10.1111/apt.14106
  • Weissman S, Chris-Olaiya A, Mehta TI, et al. A novel player: cyclosporine therapy in the management of inflammatory bowel disease. Transl Gastroenterol Hepatol. 2019;4:67. doi:10.21037/tgh.2019.08.08
  • van de Meeberg MM, Schultheiss JP, Oldenburg B, Fidder HH, Huitema AD. Does the 5-aminosalicylate concentration correlate with the efficacy of oral 5-aminosalicylate and predict response in patients with inflammatory bowel disease? A systematic review. Digestion. 2020;101(3):245–261. doi:10.1159/000499331
  • Ma H-Q, Yu -T-T, Zhao X-J, Zhang Y, Zhang H-J. Fecal microbial dysbiosis in Chinese patients with inflammatory bowel disease. World J Gastroenterol. 2018;24(13):1464. doi:10.3748/wjg.v24.i13.1464
  • Di Paolo A, Luci G. Personalized medicine of monoclonal antibodies in inflammatory bowel disease: pharmacogenetics, therapeutic drug monitoring, and beyond. Front Pharmacol. 2020;11. doi:10.3389/fphar.2020.610806
  • Sheasgreen C, Nguyen GC. The evolving evidence for therapeutic drug monitoring of monoclonal antibodies in inflammatory bowel disease. Curr Gastroenterol Rep. 2017;19(5):19. doi:10.1007/s11894-017-0559-8
  • Rawla P, Sunkara T, Raj JP. Role of biologics and biosimilars in inflammatory bowel disease: current trends and future perspectives. J Inflamm Res. 2018;11:215. doi:10.2147/JIR.S165330
  • De Vries L, Wildenberg M, De Jonge W, D’Haens GR. The future of Janus kinase inhibitors in inflammatory bowel disease. J Crohn's Colitis. 2017;11(7):885–893. doi:10.1093/ecco-jcc/jjx003
  • Christensen B, Gibson PR, Micic D, et al. Safety and efficacy of combination treatment with calcineurin inhibitors and vedolizumab in patients with refractory inflammatory bowel disease. Clin Gastroenterol Hepatol. 2019;17(3):486–493. doi:10.1016/j.cgh.2018.04.060
  • Papamichael K, Lin S, Moore M, Papaioannou G, Sattler L, Cheifetz AS. Infliximab in inflammatory bowel disease. Ther Adv Chronic Dis. 2019;10:2040622319838443. doi:10.1177/2040622319838443
  • Barré A, Colombel JF, Ungaro R. predictors of response to vedolizumab and ustekinumab in inflammatory bowel disease. Aliment Pharmacol Ther. 2018;47(7):896–905. doi:10.1111/apt.14550
  • Amiot A, Serrero M, Peyrin‐Biroulet L, et al. One‐year effectiveness and safety of vedolizumab therapy for inflammatory bowel disease: a prospective multicentre cohort study. Aliment Pharmacol Ther. 2017;46(3):310–321. doi:10.1111/apt.14167
  • Dayan JR, Dolinger M, Benkov K, et al. Real world experience with ustekinumab in children and young adults at a tertiary care pediatric inflammatory bowel disease center. J Pediatr Gastroenterol Nutr. 2019;69(1):61. doi:10.1097/MPG.0000000000002362
  • Olivera P, Danese S, Peyrin-Biroulet L. JAK inhibition in inflammatory bowel disease. Expert Rev Clin Immunol. 2017;13(7):693–703. doi:10.1080/1744666X.2017.1291342
  • Biswas S, Bryant RV, Travis S. Interfering with leukocyte trafficking in Crohn’s disease. Best Pract Res Clin Gastroenterol. 2019;38:101617. doi:10.1016/j.bpg.2019.05.004
  • Mao F, Tu Q, Wang L, et al. Mesenchymal stem cells and their therapeutic applications in inflammatory bowel disease. Oncotarget. 2017;8(23):38008. doi:10.18632/oncotarget.16682
  • Holmberg FE, Pedersen J, Jørgensen P, Soendergaard C, Jensen KB, Nielsen OH. Intestinal barrier integrity and inflammatory bowel disease: stem cell‐based approaches to regenerate the barrier. J Tissue Eng Regen Med. 2018;12(4):923–935. doi:10.1002/term.2506
  • Tsuchiya A, Kojima Y, Ikarashi S, et al. Clinical trials using mesenchymal stem cells in liver diseases and inflammatory bowel diseases. Inflamm Regen. 2017;37(1):1–15. doi:10.1186/s41232-017-0045-6
  • Pouya S, Heidari M, Baghaei K, et al. Study the effects of mesenchymal stem cell conditioned medium injection in mouse model of acute colitis. Int Immunopharmacol. 2018;54:86–94. doi:10.1016/j.intimp.2017.11.001
  • Holmberg FE, Seidelin JB, Yin X, et al. Culturing human intestinal stem cells for regenerative applications in the treatment of inflammatory bowel disease. EMBO Mol Med. 2017;9(5):558–570. doi:10.15252/emmm.201607260
  • Zhang S, Langer R, Traverso G. Nanoparticulate drug delivery systems targeting inflammation for treatment of inflammatory bowel disease. Nano Today. 2017;16:82–96. doi:10.1016/j.nantod.2017.08.006
  • Guo Y, Zong S, Pu Y, Xu B, Zhang T, Wang B. Advances in pharmaceutical strategies enhancing the efficiencies of oral colon-targeted delivery systems in inflammatory bowel disease. Molecules. 2018;23(7):1622. doi:10.3390/molecules23071622
  • Kotla NG, Rana S, Sivaraman G, et al. Bioresponsive drug delivery systems in intestinal inflammation: state-of-the-art and future perspectives. Adv Drug Deliv Rev. 2019;146:248–266. doi:10.1016/j.addr.2018.06.021
  • Lamprecht A, Schäfer U, Lehr C-M. Size-dependent bioadhesion of micro-and nanoparticulate carriers to the inflamed colonic mucosa. Pharm Res. 2001;18(6):788–793. doi:10.1023/A:1011032328064
  • Wang L, Yu M, Yang H. Recent progress in the diagnosis and precise nanocarrier-mediated therapy of inflammatory bowel disease. J Inflamm Res. 2021;14:1701–1716. doi:10.2147/JIR.S304101
  • Youshia J, Lamprecht A. Size-dependent nanoparticulate drug delivery in inflammatory bowel diseases. Expert Opin Drug Deliv. 2016;13(2):281–294. doi:10.1517/17425247.2016.1114604
  • Song W, Shen L, Wang Y, et al. Synergistic and low adverse effect cancer immunotherapy by immunogenic chemotherapy and locally expressed PD-L1 trap. Nat Commun. 2018;9(1):2237. doi:10.1038/s41467-018-04605-x
  • Xiao B, Merlin D. Oral colon-specific therapeutic approaches toward treatment of inflammatory bowel disease. Expert Opin Drug Deliv. 2012;9(11):1393–1407. doi:10.1517/17425247.2012.730517
  • Sun T, Kwong CHT, Gao C, et al. Amelioration of ulcerative colitis via inflammatory regulation by macrophage-biomimetic nanomedicine. Theranostics. 2020;10(22):10106–10119. doi:10.7150/thno.48448
  • Chung CH, Jung W, Keum H, Kim TW, Jon S. Nanoparticles derived from the natural antioxidant rosmarinic acid ameliorate acute inflammatory bowel disease. ACS Nano. 2020;14(6):6887–6896. doi:10.1021/acsnano.0c01018
  • Miao L, Guo S, Lin CM, Liu Q, Huang L. Nanoformulations for combination or cascade anticancer therapy. Adv Drug Deliv Rev. 2017;115:3–22. doi:10.1016/j.addr.2017.06.003
  • Qiu N, Gao J, Liu Q, Wang J, Shen Y. Enzyme-responsive charge-reversal polymer-mediated effective gene therapy for intraperitoneal tumors. Biomacromolecules. 2018;19(6):2308–2319. doi:10.1021/acs.biomac.8b00440
  • Chen Y, Song W, Shen L, et al. Vasodilator hydralazine promotes nanoparticle penetration in advanced desmoplastic tumors. ACS Nano. 2019;13(2):1751–1763. doi:10.1021/acsnano.8b07830
  • Cuvelier CA, Quatacker J, Mielants H, Vos MD, Veys E, Roels HJ. M-cells are damaged and increased in number in inflamed human ileal mucosa. Histopathology. 1994;24(5):417–426. doi:10.1111/j.1365-2559.1994.tb00550.x
  • Pichai MV, Ferguson LR. Potential prospects of nanomedicine for targeted therapeutics in inflammatory bowel diseases. World J Gastroenterol. 2012;18(23):2895. doi:10.3748/wjg.v18.i23.2895
  • Colombel J-F, Narula N, Peyrin-Biroulet L. Management strategies to improve outcomes of patients with inflammatory bowel diseases. Gastroenterology. 2017;152(2):351–361. e5. doi:10.1053/j.gastro.2016.09.046
  • Mohan LJ, Daly JS, Ryan BM, Ramtoola Z. The future of nanomedicine in optimising the treatment of inflammatory bowel disease. Scand J Gastroenterol. 2019;54(1):18–26. doi:10.1080/00365521.2018.1563805
  • Yin Y, Yang J, Pan Y, et al. Mesopore to macropore transformation of metal-organic framework for drug delivery in inflammatory bowel disease. Adv Healthc Mater. 2021;10(3):e2000973. doi:10.1002/adhm.202000973
  • Sharpe LA, Daily AM, Horava SD, Peppas NA. Therapeutic applications of hydrogels in oral drug delivery. Expert Opin Drug Deliv. 2014;11(6):901–915. doi:10.1517/17425247.2014.902047
  • Deshmukh R, Harwansh RK, Paul SD, Shukla R. Controlled release of sulfasalazine loaded amidated pectin microparticles through Eudragit S 100 coated capsule for management of inflammatory bowel disease. J Drug Deliv Sci Technol. 2020;55:101495. doi:10.1016/j.jddst.2019.101495
  • Hou L, Zheng Y, Wang Y, et al. Self-regulated carboxyphenylboronic acid-modified mesoporous silica nanoparticles with “touch switch” releasing property for insulin delivery. ACS Appl Mater Interfaces. 2018;10(26):21927–21938. doi:10.1021/acsami.8b06998
  • Minakshi P, Kumar R, Ghosh M, Brar B, Barnela M, Lakhani P. Application of polymeric nano-materials in management of inflammatory bowel disease. Curr Top Med Chem. 2020;20(11):982–1008.
  • Wang Q-S, Wang G-F, Zhou J, Gao L-N, Cui Y-L. Colon targeted oral drug delivery system based on alginate-chitosan microspheres loaded with icariin in the treatment of ulcerative colitis. Int J Pharm. 2016;515(1–2):176–185. doi:10.1016/j.ijpharm.2016.10.002
  • Oliva N, Conde J, Wang K, Artzi N. Designing hydrogels for on-demand therapy. Acc Chem Res. 2017;50(4):669–679. doi:10.1021/acs.accounts.6b00536
  • Laroui H, Dalmasso G, Nguyen HTT, Yan Y, Sitaraman SV, Merlin D. Drug-loaded nanoparticles targeted to the colon with polysaccharide hydrogel reduce colitis in a mouse model. Gastroenterology. 2010;138(3):843–853. e2. doi:10.1053/j.gastro.2009.11.003
  • Beloqui A, Coco R, Alhouayek M, et al. Budesonide-loaded nanostructured lipid carriers reduce inflammation in murine DSS-induced colitis. Int J Pharm. 2013;454(2):775–783. doi:10.1016/j.ijpharm.2013.05.017
  • Vafaei SY, Esmaeili M, Amini M, Atyabi F, Ostad SN, Dinarvand R. Self assembled hyaluronic acid nanoparticles as a potential carrier for targeting the inflamed intestinal mucosa. Carbohydr Polym. 2016;144:371–381. doi:10.1016/j.carbpol.2016.01.026
  • Dianzani C, Foglietta F, Ferrara B, et al. Solid lipid nanoparticles delivering anti-inflammatory drugs to treat inflammatory bowel disease: effects in an in vivo model. World J Gastroenterol. 2017;23(23):4200. doi:10.3748/wjg.v23.i23.4200
  • Lamprecht A, Yamamoto H, Takeuchi H, Kawashima Y. Nanoparticles enhance therapeutic efficiency by selectively increased local drug dose in experimental colitis in rats. J Pharmacol Exp Therap. 2005;315(1):196–202. doi:10.1124/jpet.105.088146
  • Muheem A, Shakeel F, Jahangir MA, et al. A review on the strategies for oral delivery of proteins and peptides and their clinical perspectives. Saudi Pharm J. 2016;24(4):413–428. doi:10.1016/j.jsps.2014.06.004
  • Vegter S, Tolley K, Wilson Waterworth T, Jones H, Jones S, Jewell D. Meta‐analysis using individual patient data: efficacy and durability of topical alicaforsen for the treatment of active ulcerative colitis. Aliment Pharmacol Ther. 2013;38(3):284–293. doi:10.1111/apt.12369
  • Monteleone G, Neurath MF, Ardizzone S, et al. Mongersen, an oral SMAD7 antisense oligonucleotide, and Crohn’s disease. N Engl J Med. 2015;372(12):1104–1113. doi:10.1056/NEJMoa1407250
  • Collnot E-M, Ali H, Lehr C-M. Nano- and microparticulate drug carriers for targeting of the inflamed intestinal mucosa. J Controll Release. 2012;161(2):235–246. doi:10.1016/j.jconrel.2012.01.028
  • Guo J, Jiang X, Gui S. RNA interference-based nanosystems for inflammatory bowel disease therapy. Int J Nanomedicine. 2016;11:5287–5310. doi:10.2147/IJN.S116902
  • Di Fusco D, Dinallo V, Marafini I, Figliuzzi MM, Romano B, Monteleone G. Antisense oligonucleotide: basic concepts and therapeutic application in inflammatory bowel disease. Front Pharmacol. 2019;10:305. doi:10.3389/fphar.2019.00305
  • Tahara K, Samura S, Tsuji K, et al. Oral nuclear factor-κB decoy oligonucleotides delivery system with chitosan modified poly (D, L-lactide-co-glycolide) nanospheres for inflammatory bowel disease. Biomaterials. 2011;32(3):870–878. doi:10.1016/j.biomaterials.2010.09.034
  • Arthur Kaser S, Richard Blumberg S, Blumberg RS. Inflammatory bowel disease. Annu Rev Immunol. 2010;28:573–621. doi:10.1146/annurev-immunol-030409-101225
  • Verma P, Srivastava A, Srikanth CV, Bajaj A. Nanoparticle-mediated gene therapy strategies for mitigating inflammatory bowel disease. Biomater Sci. 2021;9:1481–1502. doi:10.1039/D0BM01359E
  • Xu X, Yang W, Liang Q, et al. Efficient and targeted drug/siRNA co-delivery mediated by reversibly crosslinked polymersomes toward anti-inflammatory treatment of ulcerative colitis (UC). Nano Res. 2019;12(3):659–667. doi:10.1007/s12274-019-2274-2
  • Yang C, Zhang M, Lama S, Wang L, Merlin D. Natural-lipid nanoparticle-based therapeutic approach to deliver 6-shogaol and its metabolites M2 and M13 to the colon to treat ulcerative colitis. J Controll Release. 2020;323:293–310. doi:10.1016/j.jconrel.2020.04.032
  • Khare T, Palakurthi SS, Shah BM, Palakurthi S, Khare S. Natural product-based nanomedicine in treatment of inflammatory bowel disease. Int J Mol Sci. 2020;21(11):3956. doi:10.3390/ijms21113956
  • Li Y, Fan L, Tang T, et al. Modified apple polysaccharide prevents colitis through modulating IL-22 and IL-22BP expression. Int J Biol Macromol. 2017;103:1217–1223. doi:10.1016/j.ijbiomac.2017.05.172
  • Maria-Ferreira D, Nascimento AM, Cipriani TR, et al. Rhamnogalacturonan, a chemically-defined polysaccharide, improves intestinal barrier function in DSS-induced colitis in mice and human Caco-2 cells. Sci Rep. 2018;8(1):12261. doi:10.1038/s41598-018-30526-2
  • Nie Y, Lin Q, Luo F. Effects of non-starch polysaccharides on inflammatory bowel disease. Int J Mol Sci. 2017;18(7):1372. doi:10.3390/ijms18071372
  • Li J, Chen H, Wang B, et al. ZnO nanoparticles act as supportive therapy in DSS-induced ulcerative colitis in mice by maintaining gut homeostasis and activating Nrf2 signaling. Sci Rep. 2017;7:43126. doi:10.1038/srep43126
  • Bhavsar MD, Amiji MM. Oral IL-10 gene delivery in a microsphere-based formulation for local transfection and therapeutic efficacy in inflammatory bowel disease. Gene Ther. 2008;15(17):1200–1209. doi:10.1038/gt.2008.67
  • Kriegel C, Amiji M. Oral TNF-α gene silencing using a polymeric microsphere-based delivery system for the treatment of inflammatory bowel disease. J Control Release. 2011;150(1):77–86. doi:10.1016/j.jconrel.2010.10.002
  • Castangia I, Nácher A, Caddeo C, et al. Therapeutic efficacy of quercetin enzyme-responsive nanovesicles for the treatment of experimental colitis in rats. Acta Biomaterialia. 2015;13:216–227. doi:10.1016/j.actbio.2014.11.017
  • Shen C, Zhao L, Du X, et al. Smart responsive quercetin-conjugated glycol chitosan prodrug micelles for treatment of inflammatory bowel diseases. Mol Pharm. 2021;18:1419–1430. doi:10.1021/acs.molpharmaceut.0c01245
  • Patole VC, Pandit AP. Mesalamine-loaded alginate microspheres filled in enteric coated HPMC capsules for local treatment of ulcerative colitis: in vitro and in vivo characterization. J Pharm Investig. 2018;48(3):257–267. doi:10.1007/s40005-017-0304-1
  • Wang B, Zhuang X, Deng ZB, et al. Targeted drug delivery to intestinal macrophages by bioactive nanovesicles released from grapefruit. Mol Ther. 2014;22(3):522–534. doi:10.1038/mt.2013.190
  • Zhang M, Viennois E, Prasad M, et al. Edible ginger-derived nanoparticles: a novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials. 2016;101:321–340. doi:10.1016/j.biomaterials.2016.06.018
  • Zhang M, Xu C, Liu D, Han MK, Wang L, Merlin D. Oral delivery of nanoparticles loaded with ginger active compound, 6-shogaol, attenuates ulcerative colitis and promotes wound healing in a murine model of ulcerative colitis. J Crohns Colitis. 2018;12(2):217–229. doi:10.1093/ecco-jcc/jjx115
  • Zhu C, Zhang S, Song C, et al. Selenium nanoparticles decorated with Ulva lactuca polysaccharide potentially attenuate colitis by inhibiting NF-κB mediated hyper inflammation. J Nanobiotechnology. 2017;15(1):20. doi:10.1186/s12951-017-0252-y
  • Deng Z, Rong Y, Teng Y, et al. Broccoli-derived nanoparticle inhibits mouse colitis by activating dendritic cell AMP-activated protein kinase. Mol Ther. 2017;25(7):1641–1654. doi:10.1016/j.ymthe.2017.01.025
  • Kim J-H, Hong -S-S, Lee M, et al. Krill oil-incorporated liposomes as an effective nanovehicle to ameliorate the inflammatory responses of DSS-induced colitis. Int J Nanomedicine. 2019;14:8305. doi:10.2147/IJN.S220053
  • Chambers E, Mitragotri S. Prolonged circulation of large polymeric nanoparticles by non-covalent adsorption on erythrocytes. J Control Release. 2004;100(1):111–119. doi:10.1016/j.jconrel.2004.08.005
  • Markov DE, Boeve H, Gleich B, et al. Human erythrocytes as nanoparticle carriers for magnetic particle imaging. Phys Med Biol. 2010;55(21):6461–6473. doi:10.1088/0031-9155/55/21/008
  • Castro M, Rossi L, Papadatou B, et al. Long-term treatment with autologous red blood cells loaded with dexamethasone 21-phosphate in pediatric patients affected by steroid-dependent Crohn disease. J Pediatr Gastroenterol Nutr. 2007;44(4):423–426. doi:10.1097/MPG.0b013e3180320667
  • Papadatou B, Knafelz D, Bracci F, et al. P351 Long term treatment with autologous red blood cells loaded with dexamethasone 21-phosphate in pediatric patients affected by steroid-dependent Crohn’s disease: in the era of biologics can steroids be reconsidered? J Crohns Colitis. 2012;6(Supplement_1):S149–S149. doi:10.1016/S1873-9946(12)60370-5
  • Li X, Lu C, Yang Y, Yu C, Rao Y. Site-specific targeted drug delivery systems for the treatment of inflammatory bowel disease. Biomed Pharmacother. 2020;129:110486. doi:10.1016/j.biopha.2020.110486
  • Ha D, Yang N, Nadithe V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharmaceutica Sinica B. 2016;6(4):287–296. doi:10.1016/j.apsb.2016.02.001
  • Baghaei K, Tokhanbigli S, Asadzadeh H, Nmaki S, Reza Zali M, Hashemi SM. Exosomes as a novel cell‐free therapeutic approach in gastrointestinal diseases. J Cell Physiol. 2019;234(7):9910–9926. doi:10.1002/jcp.27934
  • Di Gioia S, Hossain MN, Conese M. Biological properties and therapeutic effects of plant-derived nanovesicles. Open Med (Wars). 2020;15(1):1096–1122. doi:10.1515/med-2020-0160
  • Van Niel G, Mallegol J, Bevilacqua C, et al. Intestinal epithelial exosomes carry MHC class II/peptides able to inform the immune system in mice. Gut. 2003;52(12):1690–1697. doi:10.1136/gut.52.12.1690
  • Wang Y, Tian J, Tang X, et al. Exosomes released by granulocytic myeloid-derived suppressor cells attenuate DSS-induced colitis in mice. Oncotarget. 2016;7(13):15356. doi:10.18632/oncotarget.7324
  • Yang J, Liu -X-X, Fan H, et al. Extracellular vesicles derived from bone marrow mesenchymal stem cells protect against experimental colitis via attenuating colon inflammation, oxidative stress and apoptosis. PLoS One. 2015;10(10):e0140551. doi:10.1371/journal.pone.0140551
  • Mao F, Wu Y, Tang X, et al. Exosomes derived from human umbilical cord mesenchymal stem cells relieve inflammatory bowel disease in mice. Biomed Res Int. 2017;2017:1–12. doi:10.1155/2017/5356760
  • Wu Y, Qiu W, Xu X, et al. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate inflammatory bowel disease in mice through ubiquitination. Am J Transl Res. 2018;10(7):2026.
  • Gao J-G, Yu M-S, Zhang -M-M, et al. Adipose-derived mesenchymal stem cells alleviate TNBS-induced colitis in rats by influencing intestinal epithelial cell regeneration, Wnt signaling, and T cell immunity. World J Gastroenterol. 2020;26(26):3750. doi:10.3748/wjg.v26.i26.3750
  • Liu P, Gao C, Chen H, et al. Receptor-mediated targeted drug delivery systems for treatment of inflammatory bowel disease: opportunities and emerging strategies. Acta Pharmaceutica Sinica B. 2020. doi:10.1016/j.apsb.2020.11.003
  • Kim E, Schueller O, Sweetnam PM. Targeting the leukocyte activation cascade: getting to the site of inflammation using microfabricated assays. Lab Chip. 2012;12(12):2255–2264. doi:10.1039/c2lc21078a
  • Cox D, Brennan M, Moran N. Integrins as therapeutic targets: lessons and opportunities. Nat Rev Drug Discov. 2010;9(10):804–820. doi:10.1038/nrd3266
  • Farkas S, Hornung M, Sattler C, et al. Short-term treatment with anti-CD44v7 antibody, but not CD44v4, restores the gut mucosa in established chronic dextran sulphate sodium (DSS)-induced colitis in mice. Clin Exp Immunol. 2005;142(2):260–267. doi:10.1111/j.1365-2249.2005.02911.x
  • Dreaden EC, Morton SW, Shopsowitz KE, et al. Bimodal tumor-targeting from microenvironment responsive hyaluronan Layer-by-Layer (LbL) nanoparticles. ACS Nano. 2014;8(8):8374–8382. doi:10.1021/nn502861t
  • Xiao B, Xu Z, Viennois E, et al. Orally targeted delivery of tripeptide KPV via hyaluronic acid-functionalized nanoparticles efficiently alleviates ulcerative colitis. Mol Ther. 2017;25(7):1628–1640. doi:10.1016/j.ymthe.2016.11.020
  • Chapkin RS, Kamen BA, Callaway ES, et al. Use of a novel genetic mouse model to investigate the role of folate in colitis-associated colon cancer. J Nutr Biochem. 2009;20(8):649–655. doi:10.1016/j.jnutbio.2008.07.001
  • Spencer SP, Belkaid Y. Dietary and commensal derived nutrients: shaping mucosal and systemic immunity. Curr Opin Immunol. 2012;24(4):379–384. doi:10.1016/j.coi.2012.07.006
  • Günter EA, Markov PA, Melekhin AK, et al. Preparation and release characteristics of mesalazine loaded calcium pectin-silica gel beads based on callus cultures pectins for colon-targeted drug delivery. Int J Biol Macromol. 2018;120(Pt B):2225–2233. doi:10.1016/j.ijbiomac.2018.07.078
  • Kriegel C, Amiji MM. Dual TNF-α/cyclin D1 gene silencing with an oral polymeric microparticle system as a novel strategy for the treatment of inflammatory bowel disease. Clin Transl Gastroenterol. 2011;2(3):e2–e2. doi:10.1038/ctg.2011.1
  • Xiao B, Yang Y, Viennois E, et al. Glycoprotein CD98 as a receptor for colitis-targeted delivery of nanoparticles. J Mater Chem B. 2014;2(11):1499–1508. doi:10.1039/c3tb21564d
  • Laroui H, Geem D, Xiao B, et al. Targeting intestinal inflammation with CD98 siRNA/PEI–loaded nanoparticles. Mol Ther. 2014;22(1):69–80. doi:10.1038/mt.2013.214
  • Nguyen HTT, Dalmasso G, Torkvist L, et al. CD98 expression modulates intestinal homeostasis, inflammation, and colitis-associated cancer in mice. J Clin Invest. 2011;121(5):1733–1747. doi:10.1172/JCI44631
  • Iglesias N, Galbis E, Díaz-Blanco MJ, Lucas R, Benito E, De-paz MV. Nanostructured chitosan-based biomaterials for sustained and colon-specific resveratrol release. Int J Mol Sci. 2019;20(2):398. doi:10.3390/ijms20020398
  • Makhlof A, Tozuka Y, Takeuchi H. pH-Sensitive nanospheres for colon-specific drug delivery in experimentally induced colitis rat model. Eur J Pharm Biopharm. 2009;72(1):1–8. doi:10.1016/j.ejpb.2008.12.013
  • Sun Q, Luan L, Arif M, et al. Redox-sensitive nanoparticles based on 4-aminothiophenol-carboxymethyl inulin conjugate for budesonide delivery in inflammatory bowel diseases. Carbohydr Polym. 2018;189:352–359. doi:10.1016/j.carbpol.2017.12.021
  • Simmonds NJ, Allen RE, Stevens TRJ, et al. Chemiluminescence assay of mucosal reactive oxygen metabolites in inflammatory bowel disease. Gastroenterology. 1992;103(1):186–196. doi:10.1016/0016-5085(92)91112-H
  • Sedghi S, Fields JZ, Klamut M, et al. Increased production of luminol enhanced chemiluminescence by the inflamed colonic mucosa in patients with ulcerative colitis. Gut. 1993;34(9):1191. doi:10.1136/gut.34.9.1191
  • Vong LB, Tomita T, Yoshitomi T, Matsui H, Nagasaki Y. An orally administered redox nanoparticle that accumulates in the colonic mucosa and reduces colitis in mice. Gastroenterology. 2012;143(4):1027–1036. e3. doi:10.1053/j.gastro.2012.06.043
  • Zhang Q, Tao H, Lin Y, et al. A superoxide dismutase/catalase mimetic nanomedicine for targeted therapy of inflammatory bowel disease. Biomaterials. 2016;105:206–221. doi:10.1016/j.biomaterials.2016.08.010
  • Wilson DS, Dalmasso G, Wang L, Sitaraman SV, Merlin D, Murthy N. Orally delivered thioketal nanoparticles loaded with TNF-α–siRNA target inflammation and inhibit gene expression in the intestines. Nat Mater. 2010;9(11):923–928. doi:10.1038/nmat2859
  • Antoni L, Nuding S, Wehkamp J, Stange EF. Intestinal barrier in inflammatory bowel disease. World J Gastroenterol. 2014;20(5):1165–1179. doi:10.3748/wjg.v20.i5.1165
  • Ma TY, Boivin MA, Ye D, Pedram A, Said HM. Mechanism of TNF-α modulation of Caco-2 intestinal epithelial tight junction barrier: role of myosin light-chain kinase protein expression. Am J Physiol Gastrointest Liver Physiol. 2005;288(3):G422–G430. doi:10.1152/ajpgi.00412.2004
  • Schmidt C, Lautenschlaeger C, Collnot E-M, et al. Nano- and microscaled particles for drug targeting to inflamed intestinal mucosa—A first in vivo study in human patients. J Controll Release. 2013;165(2):139–145. doi:10.1016/j.jconrel.2012.10.019
  • Lautenschläger C, Schmidt C, Lehr C-M, Fischer D, Stallmach A. PEG-functionalized microparticles selectively target inflamed mucosa in inflammatory bowel disease. Eur J Pharm Biopharm. 2013;85(3):578–586. doi:10.1016/j.ejpb.2013.09.016
  • Jubeh TT, Barenholz Y, Rubinstein A. Differential adhesion of normal and inflamed rat colonic mucosa by charged liposomes. Pharm Res. 2004;21(3):447–453. doi:10.1023/B:PHAM.0000019298.29561.cd
  • Liu Q, Chen F, Hou L, et al. Nanocarrier-mediated chemo-immunotherapy arrested cancer progression and induced tumor dormancy in desmoplastic melanoma. ACS Nano. 2018;12(8):7812–7825. doi:10.1021/acsnano.8b01890
  • Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021;20(2):101–124.
  • Lamas B, Martins Breyner N, Houdeau E. Impacts of foodborne inorganic nanoparticles on the gut microbiota-immune axis: potential consequences for host health. Part Fibre Toxicol. 2020;17(1):19.