141
Views
7
CrossRef citations to date
0
Altmetric
Original Research

Biodistribution of 68/67Ga-Radiolabeled Sphingolipid Nanoemulsions by PET and SPECT Imaging

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 5923-5935 | Published online: 26 Aug 2021

References

  • Witney TH, Blower PJ. The chemical tool-kit for molecular imaging with radionuclides in the age of targeted and immune therapy. Cancer Imaging. 2021;21(1):1–14. doi:10.1186/s40644-021-00385-8
  • Pérez-Medina C, Teunissen AJP, Kluza E, Mulder WJM, van der Meel R. Nuclear imaging approaches facilitating nanomedicine translation. Adv Drug Deliv Rev. 2020;154–155:123–141. doi:10.1016/j.addr.2020.07.017
  • Gabizon AA, de Rosales RTM, La-beck NM. Translational considerations in nanomedicine: the oncology perspective. Adv Drug Deliv Rev. 2020;158:140–157. doi:10.1016/j.addr.2020.05.012
  • Germain M, Caputo F, Metcalfe S, et al. Delivering the power of nanomedicine to patients today. J Control Release. 2020;326(April):164–171. doi:10.1016/j.jconrel.2020.07.007
  • Vázquez-Ríos AJ, Alonso-Nocelo M, Bouzo BL, Ruiz-Bañobre J, de la Fuente M. Nanotheranostics and their potential in the management of metastatic cancer. In: Conde J, editor. Handbook of Nanomaterials for Cancer Theranostics. Elsevier; 2018:199–244. doi:10.1016/b978-0-12-813339-2.00008-6
  • Filippi L, Chiaravalloti A, Schillaci O, Cianni R, Bagni O. Theranostic approaches in nuclear medicine: current status and future prospects. Expert Rev Med Devices. 2020;17(4):331–343. doi:10.1080/17434440.2020.1741348
  • Farzin L, Sheibani S, Moassesi ME, Shamsipur M. An overview of nanoscale radionuclides and radiolabeled nanomaterials commonly used for nuclear molecular imaging and therapeutic functions. J Biomed Mater Res A. 2019;107(1):251–285. doi:10.1002/jbm.a.36550
  • Ge J, Zhang Q, Zeng J, Gu Z, Gao M. Radiolabeling nanomaterials for multimodality imaging: new insights into nuclear medicine and cancer diagnosis. Biomaterials. 2020;228. doi:10.1016/j.biomaterials.2019.119553
  • Maccora D, Dini V, Battocchio C, et al. Gold nanoparticles and nanorods in nuclear medicine: a mini review. Appl Sci. 2019;9(16):16. doi:10.3390/app9163232
  • Venditti I. Engineered gold-based nanomaterials: morphologies and functionalities in biomedical applications. a mini review. Bioengineering. 2019;6(2):53. doi:10.3390/bioengineering6020053
  • Mirahadi M, Ghanbarzadeh S, Ghorbani M, Gholizadeh A, Hamishehkar H. A review on the role of lipid-based nanoparticles in medical diagnosis and imaging. Ther Deliv. 2018;9(8):557–569. doi:10.4155/tde-2018-0020
  • Man F, Gawne PJ, de Rosales RTM. Nuclear imaging of liposomal drug delivery systems: a critical review of radiolabelling methods and applications in nanomedicine. Adv Drug Deliv Rev. 2019;143:134–160. doi:10.1016/j.addr.2019.05.012
  • Pellico J, Gawne PJ, de Rosales RTM. Radiolabelling of nanomaterials for medical imaging and therapy. Chem Soc Rev. 2021. doi:10.1039/d0cs00384k
  • Singh Y, Meher JG, Raval K, et al. Nanoemulsion: concepts, development and applications in drug delivery. J Control Release. 2017;252:28–49. doi:10.1016/j.jconrel.2017.03.008
  • Sánchez-López E, Guerra M, Dias-Ferreira J, et al. Current applications of nanoemulsions in cancer therapeutics. Nanomaterials. 2019;9(6):6. doi:10.3390/nano9060821
  • Anton N, Hallouard F, Attia MF, Vandamme TF. Nano-emulsions for drug delivery and biomedical imaging. In: Prokop A, Weissig V, editors. Intracellular Delivery III, Fundamental Biomedical Technologies. Springer. Vol. 8. 2016:273–300. doi:10.1007/978-3-319-43525-1_11
  • Klymchenko AS, Liu F, Collot M, Anton N. Dye-loaded nanoemulsions: biomimetic fluorescent nanocarriers for bioimaging and nanomedicine. Adv Healthc Mater. 2021;10(1):1–27. doi:10.1002/adhm.202001289
  • Wang C, Leach BI, Lister D, et al. Metallo-fluorocarbon nanoemulsion for inflammatory macrophage detection via PET and MRI. J Nucl Med. 2021;62(8):1146–1153. doi:10.2967/jnumed.120.255273
  • Sofias AM, Toner YC, Meerwaldt AE, et al. Tumor targeting by αvβ3-integrin-specific lipid nanoparticles occurs via phagocyte hitchhiking. ACS Nano. 2020;14(7):7832–7846. doi:10.1021/acsnano.9b08693
  • Navascuez M, Dupin D, Grande HJ, et al. COSAN-stabilised omega-3 oil-in-water nanoemulsions to prolong lung residence time for poorly water soluble drugs. Chem Commun. 2020;56(63):8972–8975. doi:10.1039/d0cc00918k
  • Bouzo BL, Calvelo M, Martín-Pastor M, García-Fandiño R, De La Fuente M. In vitro- in silico modeling approach to rationally designed simple and versatile drug delivery systems. J Phys Chem B. 2020;124(28):5788–5800. doi:10.1021/acs.jpcb.0c02731
  • Rowe BRC, Sheskey PJ, Cook WG, Quinn ME. Handbook of pharmaceutical excipients – 7th edition. Pharm Dev Technol. 2013;18(2):544. doi:10.3109/10837450.2012.751408
  • Nagachinta S, Bouzo BL, Vazquez-Rios AJ, Lopez R, de la Fuente M. Sphingomyelin-based nanosystems (SNs) for the development of anticancer miRNA therapeutics. Pharmaceutics. 2020;12(2):189. doi:10.3390/pharmaceutics12020189
  • Nagachinta S, Becker G, Dammicco S, et al. Radiolabelling of lipid-based nanocarriers with fluorine-18 for in vivo tracking by PET. Colloids Surf B Biointerfaces. 2020;188:110793. doi:10.1016/j.colsurfb.2020.110793
  • Ščasnár V, van Lier JE. The use of SEP-PAK Sl cartridges for the preparation of gallium chloride from the citrate solution. Eur J Nucl Med. 1993;20(3):273. doi:10.1007/BF00170012
  • Stockhofe K, Postema JM, Schieferstein H, Ross TL. Radiolabeling of nanoparticles and polymers for PET imaging. Pharmaceuticals. 2014;7(4):392–418. doi:10.3390/ph7040392
  • Seo JW, Ang JC, Mahakian LM, et al. Self-assembled 20-nm64Cu-micelles enhance accumulation in rat glioblastoma. J Control Release. 2015;220:51–60. doi:10.1016/j.jconrel.2015.09.057
  • Wong P, Li L, Chea J, et al. PET imaging of 64Cu-DOTA-scFv-anti-PSMA lipid nanoparticles (LNPs): enhanced tumor targeting over anti-PSMA scFv or untargeted LNPs. Nucl Med Biol. 2017;47:62–68. doi:10.1016/j.nucmedbio.2017.01.004
  • Kurihara K, Ueda M, Hara I, Ozeki E, Togashi K, Kimura S. Polymeric micelle of a3 b-type lactosome as a vehicle for targeting meningeal dissemination. Nanomaterials. 2018;8(2):1–9. doi:10.3390/nano8020079
  • Yang BY, Moon S-H, Seelam SR, et al. Development of a multimodal imaging probe by encapsulating iron oxide nanoparticles with functionalized amphiphiles for lymph node imaging. Nanomedicine. 2015;10(12):1899–1910. doi:10.2217/nnm.15.41
  • Seo HJ, Nam SH, Im HJ, et al. Rapid hepatobiliary excretion of micelle-encapsulated/radiolabeled upconverting nanoparticles as an integrated form. Sci Rep. 2015;5:1–12. doi:10.1038/srep15685
  • Lee YK, Jeong J, Hoigebazar L, et al. Facile preparation of multimodal QDs using specially designed amphiphiles for targeting angiogenesis. J Nucl Med. 2011;52(supplement 1):295.
  • Helbok A, Decristoforo C, Dobrozemsky G, et al. Radiolabeling of lipid-based nanoparticles for diagnostics and therapeutic applications: a comparison using different radiometals. J Liposome Res. 2010;20(3):219–227. doi:10.3109/08982100903311812
  • de Arcocha-torres M, Quincoces G, Martínez-López AL, et al. Preparation, radiolabeling with 99mTc and 67Ga and biodistribution studies of albumin nanoparticles coated with polymers. Rev Esp Med Nucl Imagen Mol. 2020;39(4):225–232. doi:10.1016/j.remnie.2020.04.002
  • Drude N, Singh S, Winz OH, Möller M, Mottaghy FM, Morgenroth A. Multistage passive and active delivery of radiolabeled nanogels for superior tumor penetration efficiency. Biomacromolecules. 2017;18(8):2489–2498. doi:10.1021/acs.biomac.7b00629
  • Fernández-Barahona I, Muñoz-Hernando M, Pellico J, Ruiz-Cabello J, Herranz F. Molecular imaging with 68Ga radio-nanomaterials: shedding light on nanoparticles. Appl Sci. 2018;8(7):1098. doi:10.3390/app8071098
  • Malinge J, Géraudie B, Savel P, et al. Liposomes for PET and MR imaging and for dual targeting (magnetic field/glucose moiety): synthesis, properties, and in vivo studies. Mol Pharm. 2017;14(2):406–414. doi:10.1021/acs.molpharmaceut.6b00794
  • Ghai A, Singh B, Hazari PP, et al. Radiolabeling optimization and characterization of 68 Ga labeled DOTA–polyamido-amine dendrimer conjugate – animal biodistribution and PET imaging results. Appl Radiat Isot. 2015;105:40–46. doi:10.1016/j.apradiso.2015.07.021
  • Singh S, Bingöl B, Morgenroth A, Mottaghy FM, Möller M, Schmaljohann J. Radiolabeled nanogels for nuclear molecular imaging. Macromol Rapid Commun. 2013;34(7):562–567. doi:10.1002/marc.201200744
  • Körhegyi Z, Rózsa D, Hajdu I, et al. Synthesis of 68Ga-labeled biopolymer-based nanoparticle imaging agents for positron-emission tomography. Anticancer Res. 2019;39(5):2415–2427. doi:10.21873/anticanres.13359
  • Mandiwana V, Kalombo L, Hayeshi R, Zeevaart JR, Ebenhan T. Preclinical assessment addressing intravenous administration of a [68Ga]Ga-PSMA-617 microemulsion: acute in vivo toxicity, tolerability, PET imaging, and biodistribution. Molecules. 2021;26(9):2650. doi:10.3390/molecules26092650
  • Hübner R, Cheng X, Wängler B, Wängler C. Functional hybrid molecules for the visualization of cancer: PESIN-homodimers combined with multimodal molecular imaging probes for positron emission tomography and optical imaging: suited for tracking of GRPR-positive malignant tissue. Chem a Eur J. 2020;26(69):16349–16356. doi:10.1002/chem.202002386
  • Anderson CJ, Rocque PA, Weinheimer CJ, Welch MJ. Evaluation of copper-labeled bifunctional chelate-albumin conjugates for blood pool imaging. Nucl Med Biol. 1993;20(4):461–467. doi:10.1016/0969-8051(93)90077-8
  • Mitchell N, Kalber TL, Cooper MS, et al. Incorporation of paramagnetic, fluorescent and PET/SPECT contrast agents into liposomes for multimodal imaging. Biomaterials. 2013;34(4):1179–1192. doi:10.1016/j.biomaterials.2012.09.070
  • Lin M, Pallio V, Ta R, Santos EB, Ravizzini GC, Le D. What’s new for 68Ga in the world of molecular imaging? SOJ Pharm Pharm Sci. 2018;5(4):1–12. doi:10.15226/2374-6866/5/4/00191
  • Benito AB, Aiertza MK, Marradi M, et al. Functional single-chain polymer nanoparticles: targeting and imaging pancreatic tumors in vivo. Biomacromolecules. 2016;17(10):3213–3221. doi:10.1021/acs.biomac.6b00941
  • Kumar V, Boddeti DK. 68Ga-radiopharmaceuticals for PET imaging of infection and inflammation. In: Baum RP, Rösch F, editors. Theranostics, Gallium-68, and Other Radionuclides. Springer; 2013:189–219. doi:10.1007/978-3-642-27994-2_11
  • Zhao Z, Ukidve A, Krishnan V, Mitragotri S. Effect of physicochemical and surface properties on in vivo fate of drug nanocarriers. Adv Drug Deliv Rev. 2019;143:3–21. doi:10.1016/j.addr.2019.01.002
  • Han X, Xu K, Taratula O, Farsad K. Applications of nanoparticles in biomedical imaging. Nanoscale. 2019;11(3):799–819. doi:10.1039/c8nr07769j
  • Abbina S, Parambath A. PEGylation and Its Alternatives: A Summary. Elsevier Ltd; 2018. doi:10.1016/B978-0-08-101750-0.00014-3
  • Zhou M, Hou J, Zhong Z, Hao N, Lin Y, Li C. Targeted delivery of hyaluronic acid-coated solid lipid nanoparticles for rheumatoid arthritis therapy. Drug Deliv. 2018;25(1):716–722. doi:10.1080/10717544.2018.1447050
  • Ji P, Wang L, Chen Y, Wang S, Wu Z, Qi X. Hyaluronic acid hydrophilic surface rehabilitating curcumin nanocrystals for targeted breast cancer treatment with prolonged biodistribution. Biomater Sci. 2020;8(1):462–472. doi:10.1039/C9BM01605H
  • Cheng Y, Liu M, Hu H, Liu D, Zhou S. Development, optimization, and characterization of PEGylated nanoemulsion of prostaglandin E1 for long circulation. AAPS PharmSciTech. 2016;17(2):409–417. doi:10.1208/s12249-015-0366-1
  • Hak S, Garaiova Z, Olsen LT, Nilsen AM, De Lange Davies C. The effects of oil-in-water nanoemulsion polyethylene glycol surface density on intracellular stability, pharmacokinetics, and biodistribution in tumor bearing mice. Pharm Res. 2015;32(4):1475–1485. doi:10.1007/s11095-014-1553-6
  • Kim K, Choi H, Choi ES, Park MH, Ryu JH. Hyaluronic acid-coated nanomedicine for targeted cancer therapy. Pharmaceutics. 2019;11(7):1–22. doi:10.3390/pharmaceutics11070301
  • Teijeiro-Valiño C, Novoa-Carballal R, Borrajo E, et al. A multifunctional drug nanocarrier for efficient anticancer therapy. J Control Release. 2019;294:154–164. doi:10.1016/j.jconrel.2018.12.002