375
Views
13
CrossRef citations to date
0
Altmetric
Review

High Stability Au NPs: From Design to Application in Nanomedicine

ORCID Icon, , , , , , , & show all
Pages 6067-6094 | Published online: 31 Aug 2021

References

  • Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev. 2004;104(1):293–346.
  • Jimenez-Ruiz A, Perez-Tejeda P, Grueso E, Castillo PM, Prado-Gotor R. Nonfunctionalized gold nanoparticles: synthetic routes and synthesis condition dependence. Chem A Eur J. 2015;21(27):9596–9609. doi:10.1002/chem.201405117
  • Gréget R, Nealon GL, Vileno B, et al. Magnetic properties of gold nanoparticles: a room-temperature quantum effect. ChemPhysChem. 2012;13(13):3092–3097. doi:10.1002/cphc.201200394
  • Xu L, Feng L, Dong S, Hao J. Magnetic controlling of migration of DNA and proteins using one-step modified gold nanoparticles. Chem Commun. 2015;51(45):9257–9260. doi:10.1039/c5cc01738f
  • Han G, Ghosh P, Rotello VM. Functionalized gold nanoparticles for drug delivery. Nanomedicine. 2007;2(1):113–123. doi:10.2217/17435889.2.1.113
  • Subramanian P, Meziane D, Wojcieszak R, Dumeignil F, Boukherroub R, Szunerits S. Plasmon-induced electrocatalysis with multi-component nanostructures. Materials (Basel). 2018;12(1):43. doi:10.3390/ma12010043
  • Shpacovitch V, Hergenröder R. Surface plasmon resonance (SPR)-based biosensors as instruments with high versatility and sensitivity. Sensors (Switzerland). 2020;20(11):3010. doi:10.3390/s20113010
  • Chen YS, Zhao Y, Yoon SJ, Gambhir SS, Emelianov S. Miniature gold nanorods for photoacoustic molecular imaging in the second near-infrared optical window. Nat Nanotechnol. 2019;14(5):465–472. doi:10.1038/s41565-019-0392-3
  • Jaque D, Martínez Maestro L, Del Rosal B, et al. Nanoparticles for photothermal therapies. Nanoscale. 2014;6(16):9494–9530. doi:10.1039/c4nr00708e
  • Jain PK, ElSayed IH, El-Sayed MA. Au nanoparticles target cancer. Nano Today. 2007;2(1):18–29. doi:10.1016/S1748-0132(07)70016-6
  • Saha K, Agasti SS, Kim C, Li X, Rotello VM. Gold nanoparticles in chemical and biological sensing. Chem Rev. 2012;112(5):2739–2779. doi:10.1021/cr2001178
  • Haick H. Chemical sensors based on molecularly modified metallic nanoparticles. J Phys D Appl Phys. 2007;40(23):7173–7186. doi:10.1088/0022-3727/40/23/S01
  • Zeng S, Yong KT, Roy I, Dinh XQ, Yu X, Luan F. A Review on functionalized gold nanoparticles for biosensing applications. Plasmonics. 2011;6(3):491–506. doi:10.1007/s11468-011-9228-1
  • Deng D, Zhang D, Li Y, Achilefu S, Gu Y. Gold nanoparticles based molecular beacons for in vitro and in vivo detection of the matriptase expression on tumor. Biosens Bioelectron. 2013;49:216–221. doi:10.1016/j.bios.2013.05.018
  • Zhan Y, Yang J, Guo L, et al. Targets regulated formation of boron nitride quantum dots – gold nanoparticles nanocomposites for ultrasensitive detection of acetylcholinesterase activity and its inhibitors. Sensors Actuators B Chem. 2019;279:61–68. doi:10.1016/j.snb.2018.09.097
  • Franco-Ulloa S, Tatulli G, Bore SL, et al. Dispersion state phase diagram of citrate-coated metallic nanoparticles in saline solutions. Nat Commun. 2020;11(1):5422. doi:10.1038/s41467-020-19164-3
  • Fuller M, Kӧper I. Polyelectrolyte-coated gold nanoparticles: the effect of salt and polyelectrolyte concentration on colloidal stability. Polymers (Basel). 2018;10(12):1336. doi:10.3390/polym10121336
  • Hu S, Huang PJJ, Wang J, Liu J. Dissecting the effect of salt for more sensitive label-free colorimetric detection of DNA using gold nanoparticles. Anal Chem. 2020;92(19):13354–13360. doi:10.1021/acs.analchem.0c02688
  • Muangnapoh T, Sano N, Yusa SI, Viriya-empikul N, Charinpanitkul T. Facile strategy for stability control of gold nanoparticles synthesized by aqueous reduction method. Curr Appl Phys. 2010;10(2):708–714. doi:10.1016/j.cap.2009.09.005
  • Goia DV, Matijević E. Tailoring the particle size of monodispersed colloidal gold. Coll Surf A Physicochem Eng Asp. 1999;146(1–3):139–152. doi:10.1016/S0927-7757(98)00790-0
  • Patungwasa W, Hodak JH. pH tunable morphology of the gold nanoparticles produced by citrate reduction. Mater Chem Phys. 2008;108(1):45–54. doi:10.1016/j.matchemphys.2007.09.001
  • Brewer SH, Glomm WR, Johnson MC, Knag MK, Franzen S. Probing BSA binding to citrate-coated gold nanoparticles and surfaces. Langmuir. 2005;21(20):9303–9307. doi:10.1021/la050588t
  • Schubert J, Chanana M. Coating Matters: review on colloidal stability of nanoparticles with biocompatible coatings in biological media, living cells and organisms. Curr Med Chem. 2018;25(35):4553–4586. doi:10.2174/0929867325666180601101859
  • Moore TL, Rodriguez-Lorenzo L, Hirsch V, et al. Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chem Soc Rev. 2015;44(17):6287–6305. doi:10.1039/c4cs00487f
  • Larson TA, Joshi PP, Sokolov K. Preventing protein adsorption and macrophage uptake of gold nanoparticles via a hydrophobic shield. ACS Nano. 2012;6(10):9182–9190. doi:10.1021/nn3035155
  • Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A. Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B. 2006;110(32):15700–15707. doi:10.1021/jp061667w
  • Sangwan S, Seth R. Synthesis, characterization and stability of gold nanoparticles (AuNPs) in different buffer systems. J Clust Sci. 2021;1–6. doi:10.1007/s10876-020-01956-8
  • Burda C, Chen X, Narayanan R, El-Sayed MA. Chemistry and properties of nanocrystals of different shapes. Chem Rev. 2005;105(4):1025–1102. doi:10.1021/cr030063a
  • Cushing BL, Kolesnichenko VL, O’Connor CJ. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev. 2004;104(9):3893–3946. doi:10.1021/cr030027b
  • Waters CA, Mills AJ, Johnson KA, Schiffrin DJ. Purification of dodecanethiol derivatised gold nanoparticles. Chem Commun. 2003;3(4):540–541. doi:10.1039/b211874b
  • Shah M, Fawcett D, Sharma S, Tripathy SK, Poinern GEJ. Green synthesis of metallic nanoparticles via biological entities. Materials (Basel). 2015;8(11):7278–7308. doi:10.3390/ma8115377
  • Sengani M, Grumezescu AM, Rajeswari VD. Recent trends and methodologies in gold nanoparticle synthesis – a prospective review on drug delivery aspect. OpenNano. 2017;2:37–46. doi:10.1016/j.onano.2017.07.001
  • Hamamoto M, Yagyu H. Two-Phase Brust-Schiffrin Synthesis of Gold Nanoparticles Dispersion in Organic Solvent on Glass Microfluidic Device. IEEE. 2017;632–635. doi:10.1109/NANO.2017.8117309
  • Turkevich J, Stevenson PC, Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc. 1951;11:55–75. doi:10.1039/DF9511100055
  • Amina SJ, Guo B. A review on the synthesis and functionalization of gold nanoparticles as a drug delivery vehicle. Int J Nanomedicine. 2020;15:9823–9857. doi:10.2147/IJN.S279094
  • Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. J Chem Soc Chem Commun. 1994;(7):801–802. doi:10.1039/C39940000801
  • Ward CJ, Tronndorf R, Eustes AS, Auad ML, Davis EW. Seed-mediated growth of gold nanorods: limits of length to diameter ratio control. J Nanomater. 2014;2014:1–7. doi:10.1155/2014/765618
  • El-Sayed IH, Huang X, El-Sayed MA. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett. 2005;5(5):829–834. doi:10.1021/nl050074e
  • Edwards EW, Chanana M, Wang D. Capping gold nanoparticles with stimuli-responsive polymers to cross water-oil interfaces: in-depth insight to the trans-interfacial activity of nanoparticles. J Phys Chem C. 2008;112(39):15207–15219. doi:10.1021/jp803840b
  • Nadeem M, Abbasi BH, Younas M, Ahmad W, Khan T. A review of the green syntheses and anti-microbial applications of gold nanoparticles. Green Chem Lett Rev. 2017;10(4):216–227. doi:10.1080/17518253.2017.1349192
  • Jiang K, Wang X, Chuanxi W, Zhang C. On−off−on gold nanocluster-based near infrared fluorescent probe for recognition of Cu(II) and vitamin C. Microchim Acta. 2017;184:1315–1324. doi:10.1007/s00604-017-2111-9
  • Li D, He Q, Li J. Smart core/shell nanocomposites: intelligent polymers modified gold nanoparticles. Adv Colloid Interface Sci. 2009;149(1–2):28–38. doi:10.1016/j.cis.2008.12.007
  • Du B, Zhao B, Tao P, Yin K, Lei P, Wang Q. Amphiphilic multiblock copolymer stabilized Au nanoparticles. Coll Surf A Physicochem Eng Asp. 2008;317(1–3):194–205. doi:10.1016/j.colsurfa.2007.10.016
  • Scaravelli RCB, Dazzi RL, Giacomelli FC, Machado G, Giacomelli C, Schmidt V. Direct synthesis of coated gold nanoparticles mediated by polymers with amino groups. J Colloid Interface Sci. 2013;397:114–121. doi:10.1016/j.jcis.2013.01.058
  • Shan J, Nuopponen M, Jiang H, et al. Amphiphilic gold nanoparticles grafted with poly(N-isopropylacrylamide) and polystyrene. Macromolecules. 2005;38(7):2918–2926. doi:10.1021/ma049269j
  • Nuopponen M, Tenhu H. Gold nanoparticles protected with pH and temperature-sensitive diblock copolymers. Langmuir. 2007;23(10):5352–5357. doi:10.1021/la063240m
  • Shan J, Tenhu H. Recent advances in polymer protected gold nanoparticles: synthesis, properties and applications. Chem Commun. 2007;(44):4580–4598. doi:10.1039/b707740h
  • Muddineti OS, Ghosh B, Biswas S. Current trends in using polymer coated gold nanoparticles for cancer therapy. Int J Pharm. 2015;484(1–2):252–267. doi:10.1016/j.ijpharm.2015.02.038
  • Takara M, Toyoshima M, Seto H, Hoshino Y, Miura Y. Polymer-modified gold nanoparticles via RAFT polymerization: a detailed study for a biosensing application. Polym Chem. 2014;5(3):931–939. doi:10.1039/c3py01001e
  • Kim JH, Lee TR. Thermo- and pH-responsive hydrogel-coated gold nanoparticles. Chem Mater. 2004;16(19):3647–3651. doi:10.1021/cm049764u
  • Zhu MQ, Wang LQ, Exarhos GJ, Li ADQ. Thermosensitive gold nanoparticles. J Am Chem Soc. 2004;126(9):2656–2657. doi:10.1021/ja038544z
  • Ehlert S, Taheri SM, Pirner D, Drechsler M, Schmidt HW, Förster S. Polymer ligand exchange to control stabilization and compatibilization of nanocrystals. ACS Nano. 2014;8(6):6114–6122. doi:10.1021/nn5014512
  • Yuan JJ, Schmid A, Armes SP, Lewis AL. Facile synthesis of highly biocompatible poly(2-(methacryloyloxy)ethyl phosphorylcholine)-coated gold nanoparticles in aqueous solution. Langmuir. 2006;22(26):11022–11027. doi:10.1021/la0616350
  • Klinkova A, Choueiri RM, Kumacheva E. Self-assembled plasmonic nanostructures. Chem Soc Rev. 2014;43(11):3976–3991. doi:10.1039/c3cs60341e
  • Li W, Chen X. Gold nanoparticles for photoacoustic imaging. Nanomedicine. 2015;10(2):299–320. doi:10.2217/nnm.14.169
  • Mao Z, Xu H, Wang D. Molecular mimetic self-assembly of colloidal particles. Adv Funct Mater. 2010;20(7):1053–1074. doi:10.1002/adfm.200902076
  • Sukhishvili SA. Responsive polymer films and capsules via layer-by-layer assembly. Curr Opin Colloid Interface Sci. 2005;10(1–2):37–44. doi:10.1016/j.cocis.2005.05.001
  • Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev. 2001;53(3):321–339. doi:10.1016/S0169-409X(01)00203-4
  • Bae Y, Fukushima S, Harada A, Kataoka K. Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: polymeric micelles that are responsive to intracellular pH change. Angew Chemie Int Ed. 2003;42(38):4640–4643. doi:10.1002/anie.200250653
  • Zhang R, Tang M, Bowyer A, Eisenthal R, Hubble J. A novel pH- and ionic-strength-sensitive carboxy methyl dextran hydrogel. Biomaterials. 2005;26(22):4677–4683. doi:10.1016/j.biomaterials.2004.11.048
  • Liu R, Zhao X, Wu T, Feng P. Tunable redox-responsive hybrid nanogated ensembles. J Am Chem Soc. 2008;130(44):14418–14419. doi:10.1021/ja8060886
  • Xia Y, Burke NAD, Stöver HDH. End group effect on the thermal response of narrow-disperse poly(N-isopropylacrylamide) prepared by atom transfer radical polymerization. Macromolecules. 2006;39(6):2275–2283. doi:10.1021/ma0519617
  • Man RWY, Li CH, MacLean MWA, et al. Ultrastable gold nanoparticles modified by bidentate N-heterocyclic carbene ligands. J Am Chem Soc. 2018;140(5):1576–1579. doi:10.1021/jacs.7b08516
  • Raja DA, Musharraf SG, Shah MR, Jabbar A, Bhanger MI, Malik MI. Poly(propylene glycol) stabilized gold nanoparticles: an efficient colorimetric assay for ceftriaxone. J Ind Eng Chem. 2020;87:180–186. doi:10.1016/j.jiec.2020.03.041
  • Subramaniam C, Tom RT, Pradeep T. On the formation of protected gold nanoparticles from AuCl 4- By the reduction using aromatic amines. J Nanoparticle Res. 2005;7(2–3):209–217. doi:10.1007/s11051-005-0315-0
  • Salorinne K, Man RWY, Li CH, Taki M, Nambo M, Crudden CM. Water-soluble N-heterocyclic carbene-protected gold nanoparticles: size-controlled synthesis, stability, and optical properties. Angew Chemie Int Ed. 2017;56(22):6198–6202. doi:10.1002/anie.201701605
  • Crudden CM, Horton JH, Narouz MR, et al. Simple direct formation of self-assembled N-heterocyclic carbene monolayers on gold and their application in biosensing. Nat Commun. 2016;7(1):12654. doi:10.1038/ncomms12654
  • Zhukhovitskiy AV, MacLeod MJ, Johnson JA. Carbene ligands in surface chemistry: from stabilization of discrete elemental allotropes to modification of nanoscale and bulk substrates. Chem Rev. 2015;115(20):11503–11532. doi:10.1021/acs.chemrev.5b00220
  • Thomas SR, Casini A. N-Heterocyclic carbenes as “smart” gold nanoparticle stabilizers: state-of-the art and perspectives for biomedical applications. J Organomet Chem. 2021;938:121743. doi:10.1016/j.jorganchem.2021.121743
  • Smith CA, Narouz MR, Lummis PA, et al. N-heterocyclic carbenes in materials chemistry. Chem Rev. 2019;119(8):4986–5056. doi:10.1021/acs.chemrev.8b00514
  • MacLeod MJ, Johnson JA. PEGylated N-heterocyclic narbene anchors designed to stabilize gold nanoparticles in biologically relevant media. J Am Chem Soc. 2015;137(25):7974–7977. doi:10.1021/jacs.5b02452
  • Young AJ, Eisen C, Rubio GMDM, Chin JM, Reithofer MR. pH responsive histidin-2-ylidene stabilized gold nanoparticles. J Inorg Biochem. 2019;199:110707. doi:10.1016/j.jinorgbio.2019.110707
  • MacLeod MJ, Goodman AJ, Ye HZ, Nguyen HVT, Van Voorhis T, Johnson JA. Robust gold nanorods stabilized by bidentate N-heterocyclic-carbene–thiolate ligands. Nat Chem. 2019;11(1):57–63. doi:10.1038/s41557-018-0159-8
  • Li J, Han J, Xu T, et al. Coating urchinlike gold nanoparticles with polypyrrole thin shells to produce photothermal agents with high stability and photothermal transduction efficiency. Langmuir. 2013;29(23):7102–7110. doi:10.1021/la401366c
  • Tenório-Neto ET, Guilherme MR, Lima-Tenório MK, Rubira AF, Fessi H, Kunita MH. Poly(ethylene glycol)-based hydrogels from preparation methods to applications. J Colloid Sci Biotechnol. 2016;5(1):2–15. doi:10.1166/jcsb.2016.1139
  • Zhang X, Liu B, Servos MR, Liu J. Polarity control for nonthiolated DNA adsorption onto gold nanoparticles. Langmuir. 2013;29(20):6091–6098. doi:10.1021/la400617u
  • Karakoti AS, Das S, Thevuthasan S, Seal S. PEGylated inorganic nanoparticles. Angew Chemie Int Ed. 2011;50(9):1980–1994. doi:10.1002/anie.201002969
  • Manson J, Kumar D, Meenan BJ, Dixon D. Polyethylene glycol functionalized gold nanoparticles: the influence of capping density on stability in various media. Gold Bull. 2011;44(2):99–105. doi:10.1007/s13404-011-0015-8
  • Oh E, Susumu K, Mäkinen AJ, Deschamps JR, Huston AL, Medintz IL. Colloidal stability of gold nanoparticles coated with multithiol- poly(ethylene glycol) ligands: importance of structural constraints of the sulfur anchoring groups. J Phys Chem C. 2013;117(37):18947–18956. doi:10.1021/jp405265u
  • Park G, Seo D, Chung IS, Song H. Poly(ethylene glycol)- and carboxylate-functionalized gold nanoparticles using polymer linkages: single-step synthesis, high stability, and plasmonic detection of proteins. Langmuir. 2013;29(44):13518–13526. doi:10.1021/la402315a
  • Reznickova A, Slavikova N, Kolska Z, et al. PEGylated gold nanoparticles: stability, cytotoxicity and antibacterial activity. Coll Surf A Physicochem Eng Asp. 2019;560:26–34. doi:10.1016/j.colsurfa.2018.09.083
  • Zou R, Zhang Q, Zhao Q, et al. Thermal stability of gold nanorods in an aqueous solution. Coll Surf A Physicochem Eng Asp. 2010;372(1–3):177–181. doi:10.1016/j.colsurfa.2010.10.012
  • Li D, Chi H, Fang WJ. Preparation and thermal stability of oil-based Au nanofluids. Gaodeng Xuexiao Huaxue Xuebao. 2013;34(2):414–417. doi:10.7503/CJCU20120501
  • Sardar R, Bjorge NS, Shumaker-Parry JS. PH-controlled assemblies of polymeric amine-stabilized gold nanoparticles. Macromolecules. 2008;41(12):4347–4352. doi:10.1021/ma800407s
  • Saha Ray A, Ghann WE, Tsoi PS, et al. Set of Highly stable amine- and carboxylate-terminated dendronized Au nanoparticles with dense coating and nontoxic mixed-dendronized form. Langmuir. 2019;35(9):3391–3403. doi:10.1021/acs.langmuir.8b03196
  • Oh E, Susumu K, Blanco-Canosa JB, Medintz IL, Dawson PE, Mattoussi H. Preparation of stable maleimide-functionalized Au nanoparticles and their use in counting surface ligands. Small. 2010;6(12):1273–1278. doi:10.1002/smll.201000279
  • Bandulasena MV, Vladisavljević GT, Odunmbaku OG, Benyahia B. Continuous synthesis of PVP stabilized biocompatible gold nanoparticles with a controlled size using a 3D glass capillary microfluidic device. Chem Eng Sci. 2017;171:233–243. doi:10.1016/j.ces.2017.05.035
  • Newman JDS, Blanchard GJ. Formation and encapsulation of gold nanoparticles using a polymeric amine reducing agent. J Nanoparticle Res. 2007;9(5):861–868. doi:10.1007/s11051-006-9145-y
  • Wang L, Yang Q, Cui Y, et al. Highly stable and biocompatible dendrimer-encapsulated gold nanoparticle catalysts for the reduction of 4-nitrophenol. New J Chem. 2017;41(16):8399–8406. doi:10.1039/c7nj01567d
  • Strozyk MS, Chanana M, Pastoriza-Santos I, Pérez-Juste J, Liz-Marzán LM. Protein/polymer-based dual-responsive gold nanoparticles with pH-dependent thermal sensitivity. Adv Funct Mater. 2012;22(7):1436–1444. doi:10.1002/adfm.201102471
  • Tournebize J, Boudier A, Sapin-Minet A, Maincent P, Leroy P, Schneider R. Role of gold nanoparticles capping density on stability and surface reactivity to design drug delivery platforms. ACS Appl Mater Interfaces. 2012;4(11):5790–5799. doi:10.1021/am3012752
  • Zhou X, El Khoury JM, Qu L, Dai L, Li Q. A facile synthesis of aliphatic thiol surfactant with tunable length as a stabilizer of gold nanoparticles in organic solvents. J Colloid Interface Sci. 2007;308(2):381–384. doi:10.1016/j.jcis.2007.01.040
  • Azubel M, Kornberg RD. Synthesis of water-soluble, thiolate-protected gold nanoparticles uniform in size. Nano Lett. 2016;16(5):3348–3351. doi:10.1021/acs.nanolett.6b00981
  • Zhang F, Zhou Y, Chen Y, Shi Z, Tang Y, Lu T. Facile controlled preparation of phosphonic acid-functionalized gold nanoparticles. J Colloid Interface Sci. 2010;351(2):421–426. doi:10.1016/j.jcis.2010.07.063
  • Mohajeri M, Iranpour P, Vahidi Y, et al. Pegylated deoxycholic acid coated gold nanoparticles as a highly stable CT contrast agent. ChemistrySelect. 2020;5(29):9119–9126. doi:10.1002/slct.202001634
  • Wang L, Wei G, Sun L, et al. Self-assembly of cinnamic acid-capped gold nanoparticles. Nanotechnology. 2006;17(12):2907–2912. doi:10.1088/0957-4484/17/12/014
  • Zhang Y, Zhang C, Xu C, et al. Ultrasmall Au nanoclusters for biomedical and biosensing applications: a mini-review. Talanta. 2019;200:432–442. doi:10.1016/j.talanta.2019.03.068
  • Hulkoti NI, Taranath TC. Biosynthesis of nanoparticles using microbes-A review. Coll Surf B Biointerfaces. 2014;121:474–483. doi:10.1016/j.colsurfb.2014.05.027
  • Nasaruddin RR, Chen T, Yao Q, Zang S, Xie J. Toward greener synthesis of gold nanomaterials: from biological to biomimetic synthesis. Coord Chem Rev. 2021;426:213540. doi:10.1016/j.ccr.2020.213540
  • Kong Y, Chen J, Gao F, et al. Near-infrared fluorescent ribonuclease-A-encapsulated gold nanoclusters: preparation, characterization, cancer targeting and imaging. Nanoscale. 2013;5(3):1009–1017. doi:10.1039/c2nr32760k
  • Xie J, Lee JY, Wang DIC, Ting YP. Silver nanoplates: from biological to biomimetic synthesis. ACS Nano. 2007;1(5):429–439. doi:10.1021/nn7000883
  • Balasubramanian S, Bezawada SR, Raghavachari D. Green, selective, seedless and one-pot synthesis of triangular Au nanoplates of controlled size using bael gum and mechanistic study. ACS Sustain Chem Eng. 2016;4(7):3830–3839. doi:10.1021/acssuschemeng.6b00596
  • Gonzaga F, Singh S, Brook MA. Biomimetic synthesis of gold nanocrystals using a reducing amphiphile. Small. 2008;4(9):1390–1398. doi:10.1002/smll.200701163
  • Khan T, Ullah N, Khan MA, Mashwani ZR, Nadhman A. Plant-based gold nanoparticles; a comprehensive review of the decade-long research on synthesis, mechanistic aspects and diverse applications. Adv Colloid Interface Sci. 2019;272:102017. doi:10.1016/j.cis.2019.102017
  • Javed R, Zia M, Naz S, Aisida SO, Ain N, Ao Q. Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: recent trends and future prospects. J Nanobiotechnology. 2020;18(1):172. doi:10.1186/s12951-020-00704-4
  • Satpathy S, Patra A, Ahirwar B, Hussain MD. Process optimization for green synthesis of gold nanoparticles mediated by extract of Hygrophila spinosa T. Anders and their biological applications. Phys E Low Dimensional Syst Nanostruct. 2020;121:113830. doi:10.1016/j.physe.2019.113830
  • Lee J, Kim HY, Zhou H, et al. Green synthesis of phytochemical-stabilized Au nanoparticles under ambient conditions and their biocompatibility and antioxidative activity. J Mater Chem. 2011;21(35):13316–13326. doi:10.1039/c1jm11592h
  • Ankamwar B, Pansare S, Sur UK. Centrifuge controlled shape tuning of biosynthesized gold nanoparticles obtained from Plumbago zeylanica leaf extract. J Nanosci Nanotechnol. 2017;17(2):1041–1045. doi:10.1166/jnn.2017.12662
  • Singh R, Nawale L, Arkile M, et al. Phytogenic silver, gold, and bimetallic nanoparticles as novel antitubercular agents. Int J Nanomedicine. 2016;11:1889–1897. doi:10.2147/IJN.S102488
  • Salunke GR, Ghosh S, Santosh Kumar RJ, et al. Rapid efficient synthesis and characterization of silver, gold, and bimetallic nanoparticles from the medicinal plant Plumbago zeylanica and their application in biofilm control. Int J Nanomedicine. 2014;9(1):2635–2653. doi:10.2147/IJN.S59834
  • Ghosh S, Patil S, Ahire M, et al. Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. Int J Nanomedicine. 2012;7:483. doi:10.2147/ijn.s24793
  • Ghosh S, Gurav SP, Harke AN, et al. Dioscorea oppositifolia mediated synthesis of gold and silver nanoparticles with catalytic activity. J Nanomed Nanotechnol. 2016;07(05):2. doi:10.4172/2157-7439.1000398
  • Ghosh S, Patil S, Ahire M, et al. Synthesis of Gold Nanoanisotrops Using Dioscorea bulbifera Tuber Extract. J Nanomater. 2011;2011:1–8. doi:10.1155/2011/354793
  • Engelbrekt C, Sørensen KH, Zhang J, Welinder AC, Jensen PS, Ulstrup J. Green synthesis of gold nanoparticles with starch-glucose and application in bioelectrochemistry. J Mater Chem. 2009;19(42):7839–7847. doi:10.1039/b911111e
  • Parveen R, Ullah S, Sgarbi R, Tremiliosi-Filho G. One-pot ligand-free synthesis of gold nanoparticles: the role of glycerol as reducing-cum-stabilizing agent. Coll Surf A Physicochem Eng Asp. 2019;565:162–171. doi:10.1016/j.colsurfa.2019.01.005
  • Farag RS, El-Baroty GS, Basuny AM. Safety evaluation of olive phenolic compounds as natural antioxidants. Int J Food Sci Nutr. 2003;54(3):159–174. doi:10.1080/0963748031000136306
  • Khalil MMH, Ismail EH, El-Magdoub F. Biosynthesis of Au nanoparticles using olive leaf extract. 1st Nano Updates. Arab J Chem. 2012;5(4):431–437. doi:10.1016/j.arabjc.2010.11.011
  • Ling LT, Yap SA, Radhakrishnan AK, Subramaniam T, Cheng HM, Palanisamy UD. Standardised Mangifera indica extract is an ideal antioxidant. Food Chem. 2009;113(4):1154–1159. doi:10.1016/j.foodchem.2008.09.004
  • Philip D. Rapid green synthesis of spherical gold nanoparticles using Mangifera indica leaf. Spectrochim Acta - Part A Mol Biomol Spectrosc. 2010;77(4):807–810. doi:10.1016/j.saa.2010.08.008
  • Huang X, Wu H, Liao X, Shi B. One-step, size-controlled synthesis of gold nanoparticles at room temperature using plant tannin. Green Chem. 2010;12(3):395. doi:10.1039/b918176h
  • Djajadisastra J, Sutriyo PP, Pujiyanto A. Antioxidant activity of gold nanoparticles using gum arabic as a stabilizing agent. Int J Pharm Pharm Sci. 2014;6(7):462–465.
  • García I, Sánchez-Iglesias A, Henriksen-Lacey M, Grzelczak M, Penadés S, Liz-Marzán LM. Glycans as biofunctional ligands for gold nanorods: stability and targeting in protein-rich media. J Am Chem Soc. 2015;137(10):3686–3692. doi:10.1021/jacs.5b01001
  • Dumur F, Guerlin A, Dumas E, Bertin D, Gigmes D, Mayer CR. Controlled spontaneous generation of gold nanoparticles assisted by dual reducing and capping agents. Gold Bull. 2011;44(2):119–137. doi:10.1007/s13404-011-0018-5
  • Lee KX, Shameli K, Yew YP, et al. Recent developments in the facile bio-synthesis of gold nanoparticles (AuNPs) and their biomedical applications. Int J Nanomedicine. 2020;15:275–300. doi:10.2147/IJN.S233789
  • Patil MP, Kim GD. Marine microorganisms for synthesis of metallic nanoparticles and their biomedical applications. Coll Surf B Biointerfaces. 2018;172:487–495. doi:10.1016/j.colsurfb.2018.09.007
  • Kitching M, Ramani M, Marsili E. Fungal biosynthesis of gold nanoparticles: mechanism and scale up. Microb Biotechnol. 2015;8(6):904–917. doi:10.1111/1751-7915.12151
  • Dhillon GS, Brar SK, Kaur S, Verma M. Green approach for nanoparticle biosynthesis by fungi: current trends and applications. Crit Rev Biotechnol. 2012;32(1):49–73. doi:10.3109/07388551.2010.550568
  • Qu Y, Pei X, Shen W, et al. Biosynthesis of gold nanoparticles by Aspergillum sp. WL-Au for degradation of aromatic pollutants. Phys E Low Dimensional Syst Nanostruct. 2017;88:133–141. doi:10.1016/j.physe.2017.01.010
  • Eskandari-Nojedehi M, Jafarizadeh-Malmiri H, Rahbar-Shahrouzi J. Hydrothermal green synthesis of gold nanoparticles using mushroom (Agaricus bisporus) extract: physico-chemical characteristics and antifungal activity studies. Green Process Synth. 2018;7(1):38–47. doi:10.1515/gps-2017-0004
  • Thirumurugan A, Ramachandran S, Tomy NA, Jiflin GJ, Rajagomathi G. Biological synthesis of gold nanoparticles by Bacillus subtilis and evaluation of increased antimicrobial activity against clinical isolates. Korean J Chem Eng. 2012;29(12):1761–1765. doi:10.1007/s11814-012-0055-7
  • Kalabegishvili T, Murusidze I, Kirkesali E, et al. Gold and silver nanoparticles in Spirulina platensis biomass for medical application. Ecol Chem Eng S. 2013;20(4):621–631. doi:10.2478/eces-2013-0043
  • Tebbe M, Kuttner C, Männel M, Fery A, Chanana M. Colloidally stable and surfactant-free protein-coated gold nanorods in biological media. ACS Appl Mater Interfaces. 2015;7(10):5984–5991. doi:10.1021/acsami.5b00335
  • Liu N, Liedl T. DNA-assembled advanced plasmonic architectures. Chem Rev. 2018;118(6):3032–3053. doi:10.1021/acs.chemrev.7b00225
  • Shin J, Zhang X, Liu J. DNA-functionalized gold nanoparticles in macromolecularly crowded polymer solutions. J Phys Chem B. 2012;116(45):13396–13402. doi:10.1021/jp310662m
  • Wang CC, Wu SM, Li HW, Chang HT. Biomedical applications of DNA-conjugated gold nanoparticles. ChemBioChem. 2016;17(12):1052–1062. doi:10.1002/cbic.201600014
  • Kang H, Buchman JT, Rodriguez RS, et al. Stabilization of silver and gold nanoparticles: preservation and improvement of plasmonic functionalities. Chem Rev. 2019;119(1):664–699. doi:10.1021/acs.chemrev.8b00341
  • Nguyen DT, Kim DJ, Kim KS. Controlled synthesis and biomolecular probe application of gold nanoparticles. Micron. 2011;42(3):207–227. doi:10.1016/j.micron.2010.09.008
  • Aryal S, Remant BKC, Dharmaraj N, Bhattarai N, Kim CH, Kim HY. Spectroscopic identification of SAu interaction in cysteine capped gold nanoparticles. Spectrochim Acta - Part A Mol Biomol Spectrosc. 2006;63(1):160–163. doi:10.1016/j.saa.2005.04.048
  • Kumar S, Jha I, Mogha NK, Venkatesu P. Biocompatibility of surface-modified gold nanoparticles towards red blood cells and haemoglobin. Appl Surf Sci. 2020;512:145573. doi:10.1016/j.apsusc.2020.145573
  • Cheung-Lau JC, Liu D, Pulsipher KW, Liu W, Dmochowski IJ. Engineering a well-ordered, functional protein-gold nanoparticle assembly. J Inorg Biochem. 2014;130(1):59–68. doi:10.1016/j.jinorgbio.2013.10.003
  • Thilagam R, Gnanamani A. Preparation, characterization and stability assessment of keratin and albumin functionalized gold nanoparticles for biomedical applications. Appl Nanosci. 2020;10(6):1879–1892. doi:10.1007/s13204-020-01250-z
  • Lee HE, Ahn HY, Mun J, et al. Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles. Nature. 2018;556(7701):360–364. doi:10.1038/s41586-018-0034-1
  • Kitching M, Choudhary P, Inguva S, et al. Fungal surface protein mediated one-pot synthesis of stable and hemocompatible gold nanoparticles. Enzyme Microb Technol. 2016;95:76–84. doi:10.1016/j.enzmictec.2016.08.007
  • Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev. 2005;105(4):1103–1169. doi:10.1021/cr0300789
  • Guo S, Wang E. Synthesis and electrochemical applications of gold nanoparticles. Anal Chim Acta. 2007;598(2):181–192. doi:10.1016/j.aca.2007.07.054
  • Liu B, Liu J. Interface-driven hybrid materials based on DNA-functionalized gold nanoparticles. Matter. 2019;1(4):825–847. doi:10.1016/j.matt.2019.08.008
  • Nam JM, Thaxton CS, Mirkin CA. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science (80-). 2003;301(5641):1884–1886. doi:10.1126/science.1088755
  • Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science (80-). 1997;277(5329):1078–1081. doi:10.1126/science.277.5329.1078
  • Zhou W, Saran R, Liu J. Metal sensing by DNA. Chem Rev. 2017;117(12):8272–8325. doi:10.1021/acs.chemrev.7b00063
  • Zhang X, Servos MR, Liu J. Surface science of DNA adsorption onto citrate-capped gold nanoparticles. Langmuir. 2012;28(8):3896–3902. doi:10.1021/la205036p
  • Hwu S, Garzuel M, Forró C, et al. An analytical method to control the surface density and stability of DNA-gold nanoparticles for an optimized biosensor. Coll Surf B Biointerfaces. 2020;187:110650. doi:10.1016/j.colsurfb.2019.110650
  • Hinman SS, McKeating KS, Cheng Q. DNA linkers and diluents for ultrastable gold nanoparticle bioconjugates in multiplexed assay development. Anal Chem. 2017;89(7):4272–4279. doi:10.1021/acs.analchem.7b00341
  • Ma X, Guo Z, Mao Z, Tang Y, Miao P. Colorimetric theophylline aggregation assay using an RNA aptamer and non-crosslinking gold nanoparticles. Microchim Acta. 2018;185(1):33. doi:10.1007/s00604-017-2606-4
  • Shah SS, Cultrara CN, Ramos JA, Samuni U, Zilberberg J, Sabatino D. Bifunctional Au-templated RNA nanoparticles enable direct cell uptake detection and GRP75 knockdown in prostate cancer. J Mater Chem B. 2020;8(10):2169–2176. doi:10.1039/c9tb02438g
  • Jin R. Atomically precise metal nanoclusters: stable sizes and optical properties. Nanoscale. 2015;7(5):1549–1565. doi:10.1039/c4nr05794e
  • Jin R, Zeng C, Zhou M, Chen Y. Atomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunities. Chem Rev. 2016;116(18):10346–10413. doi:10.1021/acs.chemrev.5b00703
  • Chakraborty I, Pradeep T. Atomically precise clusters of noble metals: emerging link between atoms and nanoparticles. Chem Rev. 2017;117(12):8208–8271. doi:10.1021/acs.chemrev.6b00769
  • Xiao Y, Wu Z, Yao Q, Xie J. Luminescent metal nanoclusters: biosensing strategies and bioimaging applications. Aggregate. 2021;2(1):114–132. doi:10.1002/agt2.11
  • Kang X, Zhu M. Tailoring the photoluminescence of atomically precise nanoclusters. Chem Soc Rev. 2019;48(8):2422–2457. doi:10.1039/c8cs00800k
  • Zhu M, Aikens CM, Hendrich MP, et al. Reversible switching of magnetism in thiolate-protected Au 25 superatoms. J Am Chem Soc. 2009;131(7):2490–2492. doi:10.1021/ja809157f
  • Dainese T, Antonello S, Gascón JA, et al. Au25(SEt)18, a nearly naked thiolate-protected Au25 cluster: structural analysis by single crystal X-ray crystallography and electron nuclear double resonance. ACS Nano. 2014;8(4):3904–3912. doi:10.1021/nn500805n
  • Nie L, Xiao X, Yang H. Preparation and biomedical applications of gold nanocluster. J Nanosci Nanotechnol. 2016;16(8):8164–8175. doi:10.1166/jnn.2016.12373
  • Compel WS, Wong OA, Chen X, et al. Dynamic diglyme-mediated self-assembly of gold nanoclusters. ACS Nano. 2015;9(12):11690–11698. doi:10.1021/acsnano.5b02850
  • Tero T-R, Malola S, Koncz B, et al. Dynamic stabilization of the ligand–metal interface in atomically precise gold nanoclusters Au68 and Au144 protected by meta-mercaptobenzoic acid. ACS Nano. 2017;11(12):11872–11879. doi:10.1021/acsnano.7b07787
  • Dreier TA, Andrea Wong O, Ackerson CJ. Oxidative decomposition of Au25(SR)18 clusters in a catalytic context. Chem Commun. 2015;51(7):1240–1243. doi:10.1039/c4cc07832b
  • Yan L, Yu Y, Xia Z. Microwave-assisted in situ synthesis of fluorescent gold nanoclusters with BSA/montmorillonite and application on latent fingermark imaging. Sci China Chem. 2018;61(5):619–626. doi:10.1007/s11426-017-9216-7
  • Jao YC, Chen MK, Lin SY. Enhanced quantum yield of dendrimer-entrapped gold nanodots by a specific ion-pair association and microwave irradiation for bioimaging. Chem Commun. 2010;46(15):2626–2628. doi:10.1039/b926364k
  • Yuan X, Luo Z, Zhang Q, et al. Synthesis of highly fluorescent metal (Ag, Au, Pt, and Cu) nanoclusters by electrostatically induced reversible phase transfer. ACS Nano. 2011;5(11):8800–8808. doi:10.1021/nn202860s
  • Sokołowska K, Malola S, Lahtinen M, et al. Towards controlled synthesis of water-soluble gold nanoclusters: synthesis and analysis. J Phys Chem C. 2019;123(4):2602–2612. doi:10.1021/acs.jpcc.8b11056
  • Joseph D, Geckeler KE. Synthesis of highly fluorescent gold nanoclusters using egg white proteins. Coll Surf B Biointerfaces. 2014;115:46–50. doi:10.1016/j.colsurfb.2013.11.017
  • Liu C, Lin J, Shi Y, Li G. Efficient synthesis of Au99(SR)42 nanoclusters. Nanoscale. 2015;7(14):5987–5990. doi:10.1039/C5NR00543D
  • Pettibone JM, Hudgens JW. Gold cluster formation with phosphine ligands: etching as a size-selective synthetic pathway for small clusters? ACS Nano. 2011;5(4):2989–3002. doi:10.1021/nn200053b
  • Shang L, Azadfar N, Stockmar F, et al. One-pot synthesis of near-infrared fluorescent gold clusters for cellular fluorescence lifetime imaging. Small. 2011;7(18):2614–2620. doi:10.1002/smll.201100746
  • Tao Y, Li Z, Ju E, Ren J, Qu X. Polycations-functionalized water-soluble gold nanoclusters: a potential platform for simultaneous enhanced gene delivery and cell imaging. Nanoscale. 2013;5(13):6154–6160. doi:10.1039/C3NR01326J
  • Bao J, Yang L, Huang T, et al. XAFS study on thiol etching of diphosphine-stabilized gold nanoclusters. Radiat Phys Chem. 2017;137:99–103. doi:10.1016/j.radphyschem.2016.01.027
  • Chen TH, Yu CJ, Tseng WL. Sinapinic acid-directed synthesis of gold nanoclusters and their application to quantitative matrix-assisted laser desorption/ionization mass spectrometry. Nanoscale. 2014;6(3):1347–1353. doi:10.1039/C3NR04991D
  • Guan ZJ, Hu F, Li JJ, Wen ZR, Lin YM, Wang QM. Isomerization in alkynyl-protected gold nanoclusters. J Am Chem Soc. 2020;142(6):2995–3001. doi:10.1021/jacs.9b11836
  • Narouz MR, Osten KM, Unsworth PJ, et al. N-heterocyclic carbene-functionalized magic-number gold nanoclusters. Nat Chem. 2019;11(5):419–425. doi:10.1038/s41557-019-0246-5
  • Liu Z, Wu Z, Yao Q, Cao Y, Chai OJH, Xie J. Correlations between the fundamentals and applications of ultrasmall metal nanoclusters: recent advances in catalysis and biomedical applications. Nano Today. 2021;36:101053. doi:10.1016/j.nantod.2020.101053
  • Li Q, Pan Y, Chen T, et al. Design and mechanistic study of a novel gold nanocluster-based drug delivery system. Nanoscale. 2018;10(21):10166–10172. doi:10.1039/c8nr02189a
  • Jiang X, Sun Y, Shang L, Yang C, Kong L, Zhang Z. Green tea extract-assembled nanoclusters for combinational photothermal and chemotherapy. J Mater Chem B. 2019;7(39):5972–5982. doi:10.1039/c9tb01546a
  • Goswami U, Sahoo AK, Chattopadhyay A, Ghosh SS. In situ synthesis of luminescent Au nanoclusters on a bacterial template for rapid detection, quantification, and distinction of kanamycin-resistant bacteria. ACS Omega. 2018;3(6):6113–6119. doi:10.1021/acsomega.8b00504
  • Balasubramanian SK, Yang L, Yung LYL, Ong CN, Ong WY, Yu LE. Characterization, purification, and stability of gold nanoparticles. Biomaterials. 2010;31(34):9023–9030. doi:10.1016/j.biomaterials.2010.08.012
  • Zhang X, Servos MR, Liu J. Ultrahigh nanoparticle stability against salt, pH, and solvent with retained surface accessibility via depletion stabilization. J Am Chem Soc. 2012;134(24):9910–9913. doi:10.1021/ja303787e
  • Oh E, Susumu K, Goswami R, Mattoussi H. One-phase synthesis of water-soluble gold nanoparticles with control over size and surface functionalities. Langmuir. 2010;26(10):7604–7613. doi:10.1021/la904438s
  • Sztandera K, Gorzkiewicz M, Klajnert-Maculewicz B. Gold nanoparticles in cancer treatment. Mol Pharm. 2019;16(1):1–23. doi:10.1021/acs.molpharmaceut.8b00810
  • Boisselier E, Astruc D. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev. 2009;38(6):1759–1782. doi:10.1039/b806051g
  • Jeong HH, Choi E, Ellis E, Lee TC. Recent advances in gold nanoparticles for biomedical applications: from hybrid structures to multi-functionality. J Mater Chem B. 2019;7(22):3480–3496. doi:10.1039/c9tb00557a
  • Balfourier A, Kolosnjaj-Tabi J, Luciani N, Carn F, Gazeau F, Murphy CJ. Gold-based therapy: from past to present. Proc Natl Acad Sci USA. 2020;117(37):22639–22648. doi:10.1073/pnas.2007285117
  • Qiao Z, Zhang J, Hai X, Yan Y, Song W, Bi S. Recent advances in templated synthesis of metal nanoclusters and their applications in biosensing, bioimaging and theranostics. Biosens Bioelectron. 2021;176:112898. doi:10.1016/j.bios.2020.112898
  • Zhao N, Yan L, Zhao X, et al. Versatile types of organic/inorganic nanohybrids: from strategic design to biomedical applications. Chem Rev. 2018;119(3):1666–1762. doi:10.1021/acs.chemrev.8b00401
  • Qiu L, Chen T, Öçsoy I, et al. A cell-targeted, size-photocontrollable, nuclear-uptake nanodrug delivery system for drug-resistant cancer therapy. Nano Lett. 2015;15(1):457–463. doi:10.1021/nl503777s
  • Chen YH, Tsai CY, Huang PY, et al. Methotrexate conjugated to gold nanoparticles inhibits tumor growth in a syngeneic lung tumor model. Mol Pharm. 2007;4(5):713–722. doi:10.1021/mp060132k
  • Sulaiman GM, Waheeb HM, Jabir MS, Khazaal SH, Dewir YH, Naidoo Y. Hesperidin loaded on gold nanoparticles as a drug delivery system for a successful biocompatible, anti-Cancer, anti-inflammatory and phagocytosis inducer model. Sci Rep. 2020;10(1):9362. doi:10.1038/s41598-020-66419-6
  • Liu Y, Luo J, Chen X, Liu W, Chen T. Cell membrane coating technology: a promising strategy for biomedical applications. Nano Micro Lett. 2019;11(1):100. doi:10.1007/s40820-019-0330-9
  • Peng C, Xu J, Yu M, et al. Tuning the in vivo transport of anticancer drugs using renal-clearable gold nanoparticles. Angew Chemie Int Ed. 2019;58(25):8479–8483. doi:10.1002/anie.201903256
  • Sun H, Su J, Meng Q, et al. Cancer cell membrane-coated gold nanocages with hyperthermia-triggered drug release and homotypic target inhibit growth and metastasis of breast cancer. Adv Funct Mater. 2017;27(3):1604300. doi:10.1002/adfm.201604300
  • Kwon Y, Choi Y, Jang J, Yoon S, Choi J. Nir laser-responsive pnipam and gold nanorod composites for the engineering of thermally reactive drug delivery nanomedicine. Pharmaceutics. 2020;12(3):204. doi:10.3390/pharmaceutics12030204
  • Wang X, Jin N, Wang Q, et al. MiRNA delivery system based on stimuli-responsive gold nanoparticle aggregates for multimodal tumor therapy. ACS Appl Bio Mater. 2019;2(7):2833–2839. doi:10.1021/acsabm.9b00240
  • Ding Y, Xu H, Xu C, et al. A nanomedicine fabricated from gold nanoparticles-decorated metal–organic framework for cascade chemo/chemodynamic ccancer therapy. Adv Sci. 2020;7(17):2001060. doi:10.1002/advs.202001060
  • Smith BR, Gambhir SS. Nanomaterials for in vivo imaging. Chem Rev. 2017;117(3):901–986. doi:10.1021/acs.chemrev.6b00073
  • Hester SC, Kuriakose M, Nguyen CD, Mallidi S. Role of ultrasound and photoacoustic imaging in photodynamic therapy for cancer. Photochem Photobiol. 2020;96(2):260–279. doi:10.1111/php.13217
  • Lusic H, Grinstaff MW. X-ray-computed tomography contrast agents. Chem Rev. 2013;113(3):1641–1666. doi:10.1021/cr200358s
  • Alric C, Taleb J, Le Duc G, et al. Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging. J Am Chem Soc. 2008;130(18):5908–5915. doi:10.1021/ja078176p
  • Kiessling F, Pichler BJ. Small Animal Imaging: Basics and Practical Guide. Springer Science & Business Media; 2011. doi:10.1007/978-3-642-12945-2
  • Kim D, Park S, Jae HL, Yong YJ, Jon S. Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J Am Chem Soc. 2007;129(24):7661–7665. doi:10.1021/ja071471p
  • Cole LE, Ross RD, Tilley JM, Vargo-Gogola T, Roeder RK. Gold nanoparticles as contrast agents in X-ray imaging and computed tomography. Nanomedicine. 2015;10(2):321–341. doi:10.2217/nnm.14.171
  • Cai QY, Kim SH, Choi KS, et al. Colloidal gold nanoparticles as a blood-pool contrast agent for x-ray computed tomography in mice. Invest Radiol. 2007;42(12):797–806. doi:10.1097/RLI.0b013e31811ecdcd
  • Zhang Z, Ross RD, Roeder RK. Preparation of functionalized gold nanoparticles as a targeted X-ray contrast agent for damaged bone tissue. Nanoscale. 2010;2(4):582–586. doi:10.1039/b9nr00317g
  • Iranpour P, Ajamian M, Safavi A, Iranpoor N, Abbaspour A, Javanmardi S. Synthesis of highly stable and biocompatible gold nanoparticles for use as a new X-ray contrast agent. J Mater Sci Mater Med. 2018;29(5):48. doi:10.1007/s10856-018-6053-5
  • Wang LV, Hu S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science. 2012;335(6075):1458–1462. doi:10.1126/science.1216210
  • Li C, Chen T, Ocsoy I, et al. Gold-coated Fe3O4 nanoroses with five unique functions for cancer cell targeting, imaging, and therapy. Adv Funct Mater. 2014;24(12):1772–1780. doi:10.1002/adfm.201301659
  • Zhang Q, Iwakuma N, Sharma P, et al. Gold nanoparticles as a contrast agent for invivo tumor imaging with photoacoustic tomography. Nanotechnology. 2009;20(39):395102. doi:10.1088/0957-4484/20/39/395102
  • Song X, Zhu W, Ge X, et al. A new class of NIR-II gold nanocluster-based protein biolabels for in vivo tumor-targeted imaging. Angew Chemie Int Ed. 2021;60(3):1306–1312. doi:10.1002/anie.202010870
  • Liu H, Hong G, Luo Z, et al. Atomic-precision gold clusters for NIR-II imaging. Adv Mater. 2019;31(46):1901015. doi:10.1002/adma.201901015
  • Wu M, Li Z, Yao J, Shao Z, Chen X. Pea protein/gold nanocluster/indocyanine green ternary hybrid for near-infrared fluorescence/computed tomography dual-modal imaging and synergistic photodynamic/photothermal therapy. ACS Biomater Sci Eng. 2019;5(9):4799–4807. doi:10.1021/acsbiomaterials.9b00794
  • Masters A, Bown SG. Interstitial laser hyperthermia. Semin Surg Oncol. 1992;8(4):242–249. doi:10.1002/ssu.2980080410
  • Depciuch J, Stec M, Kandler M, Baran J, Parlinska-Wojtan M. From spherical to bone-shaped gold nanoparticles—Time factor in the formation of Au NPs, their optical and photothermal properties. Photodiagnosis Photodyn Ther. 2020;30:101670. doi:10.1016/j.pdpdt.2020.101670
  • Von Maltzahn G, Park JH, Agrawal A, et al. Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Res. 2009;69(9):3892–3900. doi:10.1158/0008-5472.CAN-08-4242
  • Lin M, Guo C, Li J, et al. Polypyrrole-coated chainlike gold nanoparticle architectures with the 808 nm photothermal transduction efficiency up to 70%. ACS Appl Mater Interfaces. 2014;6(8):5860–5868. doi:10.1021/am500715f
  • Yang Y, Chen M, Wu Y, et al. Ultrasound assisted one-step synthesis of Au@Pt dendritic nanoparticles with enhanced NIR absorption for photothermal cancer therapy. RSC Adv. 2019;9(49):28541–28547. doi:10.1039/c9ra04286e
  • Zeng J, Yang W, Shi D, Li X, Zhang H, Chen M. Porphyrin derivative conjugated with gold nanoparticles for dual-modality photodynamic and photothermal therapies in vitro. ACS Biomater Sci Eng. 2018;4(3):963–972. doi:10.1021/acsbiomaterials.7b00886
  • Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature. 1996;382(6592):607–609. doi:10.1038/382607a0
  • Baptista P, Pereira E, Eaton P, et al. Gold nanoparticles for the development of clinical diagnosis methods. Anal Bioanal Chem. 2008;391(3):943–950. doi:10.1007/s00216-007-1768-z
  • Li H, Rothberg L. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc Natl Acad Sci U S A. 2004;101(39):14036–14039. doi:10.1073/pnas.0406115101
  • Azzazy HME, Mansour MMH, Samir TM, Franco R. Gold nanoparticles in the clinical laboratory: principles of preparation and applications. Clin Chem Lab Med. 2012;50(2):193–209. doi:10.1515/cclm.2011.732
  • Bowey K, Tanguay J-F, Sandros MG, Tabrizian M. Microwave-assisted synthesis of surface-enhanced Raman scattering nanoprobes for cellular sensing. Coll Surf B Biointerfaces. 2014;122:617–622. doi:10.1016/j.colsurfb.2014.07.040
  • Yu S, Zhou Y, Sun Y, et al. Endogenous mRNA triggered DNA-Au nanomachine for in situ imaging and targeted multimodal synergistic cancer therapy. Angew Chemie Int Ed. 2021;60(11):5948–5958. doi:10.1002/anie.202012801
  • Nietzold C, Lisdat F. Fast protein detection using absorption properties of gold nanoparticles. Analyst. 2012;137(12):2821–2826. doi:10.1039/c2an35054h
  • Shukoor MI, Altman MO, Han D, et al. Aptamer-nanoparticle assembly for logic-based detection. ACS Appl Mater Interfaces. 2012;4(6):3007–3011. doi:10.1021/am300374q
  • Eissa S, Shawky SM, Matboli M, Mohamed S, Azzazy HME. Direct detection of unamplified hepatoma upregulated protein RNA in urine using gold nanoparticles for bladder cancer diagnosis. Clin Biochem. 2014;47(1–2):104–110. doi:10.1016/j.clinbiochem.2013.10.022
  • Wu J, Li W, Hajisalem G, et al. Trace cancer biomarker quantification using polystyrene-functionalized gold nanorods. Biomed Opt Express. 2014;5(12):4101. doi:10.1364/boe.5.004101
  • Wang J, Wuethrich A, Sina AAI, et al. Tracking extracellular vesicle phenotypic changes enables treatment monitoring in melanoma. Sci Adv. 2020;6(9):eaax3223. doi:10.1126/sciadv.aax3223
  • Kurdekar AD, Chunduri LAA, Manohar CS, Haleyurgirisetty MK, Hewlett IK, Venkataramaniah K. Streptavidin-conjugated gold nanoclusters as ultrasensitive fluorescent sensors for early diagnosis of HIV infection. Sci Adv. 2018;4(11):eaar6280. doi:10.1126/sciadv.aar6280
  • Zhang Y, Li S, Liu H, Long W, Zhang XD. Enzyme-like properties of gold clusters for biomedical application. Front Chem. 2020;8:219. doi:10.3389/fchem.2020.00219
  • Wang GL, Jin LY, Dong YM, Wu XM, Li ZJ. Intrinsic enzyme mimicking activity of gold nanoclusters upon visible light triggering and its application for colorimetric trypsin detection. Biosens Bioelectron. 2015;64:523–529. doi:10.1016/j.bios.2014.09.071
  • Liu R, Cheng D, Zhou Q, Niu F, Hu K. Gold nanoclusters perform enzyme-like photocatalysis for prodrug activation. ACS Appl Nano Mater. 2021;4(2):990–994. doi:10.1021/acsanm.1c00014
  • Liu CP, Wu TH, Liu CY, et al. Self-supplying O2 through the catalase-like activity of gold nanoclusters for photodynamic therapy against hypoxic cancer cells. Small. 2017;13(26):1700278. doi:10.1002/smll.201700278
  • Zhang Y, Song P, Chen T, et al. Unique size-dependent nanocatalysis revealed at the single atomically precise gold cluster level. Proc Natl Acad Sci USA. 2018;115(42):10588–10593. doi:10.1073/pnas.1805711115
  • Liu H, Li Y, Sun S, et al. Catalytically potent and selective clusterzymes for modulation of neuroinflammation through single-atom substitutions. Nat Commun. 2021;12(1):114. doi:10.1038/s41467-020-20275-0
  • Sun S, Liu H, Xin Q, et al. Atomic engineering of clusterzyme for relieving acute neuroinflammation through lattice expansion. Nano Lett. 2021;21(6):2562–2571. doi:10.1021/acs.nanolett.0c05148
  • Zheng K, Setyawati MI, Leong DT, Xie J. Surface ligand chemistry of gold nanoclusters determines their antimicrobial ability. Chem Mater. 2018;30(8):2800–2808. doi:10.1021/acs.chemmater.8b00667
  • Yougbare S, Chang TK, Tan SH, et al. Antimicrobial gold nanoclusters: recent developments and future perspectives. Int J Mol Sci. 2019;20(12):2924. doi:10.3390/ijms20122924
  • Zheng K, Xie J. Composition-dependent antimicrobial ability of full-spectrum AuxAg25- xalloy nanoclusters. ACS Nano. 2020;14(9):11533–11541. doi:10.1021/acsnano.0c03975
  • Zheng K, Setyawati MI, Leong DT, Xie J. Antimicrobial gold nanoclusters. ACS Nano. 2017;11(7):6904–6910. doi:10.1021/acsnano.7b02035
  • Yang H, Cai R, Zhang Y, Chen Y, Gu B. Gold nanoclusters as an antibacterial alternative against clostridium difficile. Int J Nanomedicine. 2020;15:6401–6408. doi:10.2147/IJN.S268758
  • Gopinath K, Kumaraguru S, Bhakyaraj K, et al. Green synthesis of silver, gold and silver/gold bimetallic nanoparticles using the Gloriosa superba leaf extract and their antibacterial and antibiofilm activities. Microb Pathog. 2016;101:1–11. doi:10.1016/j.micpath.2016.10.011
  • Kwatra D, Venugopal A, Anant S. Nanoparticles in radiation therapy: a summary of various approaches to enhance radiosensitization in cancer. Transl Cancer Res. 2013;2(4):330–342. doi:10.3978/j.issn.2218-676X.2013.08.06
  • Chen Y, Yang J, Fu S, Wu J. Gold nanoparticles as radiosensitizers in cancer radiotherapy. Int J Nanomedicine. 2020;15:9407–9430. doi:10.2147/IJN.S272902
  • Zhang XD, Luo Z, Chen J, et al. Ultrasmall Au10-12(SG)10-12 nanomolecules for high tumor specificity and cancer radiotherapy. Adv Mater. 2014;26(26):4565–4568. doi:10.1002/adma.201400866
  • Luo D, Wang X, Zeng S, Ramamurthy G, Burda C, Basilion JP. Targeted gold nanocluster-enhanced radiotherapy of prostate cancer. Small. 2019;15(34):1900968. doi:10.1002/smll.201900968
  • Liang G, Jin X, Zhang S, Xing D. RGD peptide-modified fluorescent gold nanoclusters as highly efficient tumor-targeted radiotherapy sensitizers. Biomaterials. 2017;144:95–104. doi:10.1016/j.biomaterials.2017.08.017
  • Kim SR, Kim EH. Feasibility study on the use of gold nanoparticles in fractionated kilovoltage X-ray treatment of melanoma. Int J Radiat Biol. 2018;94(1):8–16. doi:10.1080/09553002.2018.1393579
  • Shrestha B, Wang L, Zhang H, Yu Hung C, Tang L. Gold nanoparticles mediated drug-gene combinational therapy for breast cancer treatment. Int J Nanomedicine. 2020;15:8109–8119. doi:10.2147/IJN.S258625
  • Haimov E, Weitman H, Polani S, Schori H, Zitoun D, Shefi O. Meso-tetrahydroxyphenylchlorin-conjugated gold nanoparticles as a tool to improve photodynamic therapy. ACS Appl Mater Interfaces. 2018;10(3):2319–2327. doi:10.1021/acsami.7b16455
  • Dai X, Zhao X, Liu Y, et al. Controlled synthesis and surface engineering of janus chitosan-gold nanoparticles for photoacoustic imaging-guided synergistic gene/photothermal therapy. Small. 2021;17(11):2006004. doi:10.1002/smll.202006004
  • García Calavia P, Chambrier I, Cook MJ, Haines AH, Field RA, Russell DA. Targeted photodynamic therapy of breast cancer cells using lactose-phthalocyanine functionalized gold nanoparticles. J Colloid Interface Sci. 2018;512:249–259. doi:10.1016/j.jcis.2017.10.030