349
Views
11
CrossRef citations to date
0
Altmetric
Original Research

Green Synthesized Gold Nanoparticles Using Viola betonicifolia Leaves Extract: Characterization, Antimicrobial, Antioxidant, and Cytobiocompatible Activities

, , , , , , , & show all
Pages 7319-7337 | Published online: 29 Oct 2021

References

  • Singh P, Kim YJ, Zhang D, Yang DC. Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol. 2016;34(7):588–599. doi:10.1016/j.tibtech.2016.02.006
  • Riaz Rajoka MS, Mehwish HM, Xiong Y, et al. Gut microbiota targeted nanomedicine for cancer therapy: challenges and future considerations. Trends Food Sci Technol. 2021;107:240–251. doi:10.1016/J.TIFS.2020.10.036
  • Peralta-Videa JR, Huang Y, Parsons JG, et al. Plant-based green synthesis of metallic nanoparticles: scientific curiosity or a realistic alternative to chemical synthesis? Nanotechnol Environ Eng. 2016;1(1):1–29. doi:10.1007/s41204-016-0004-5
  • Majdalawieh A, Kanan MC, El-Kadri O, Kanan SM. Recent advances in gold and silver nanoparticles: synthesis and applications. J Nanosci Nanotechnol. 2014;14(7):4757–4780. doi:10.1166/jnn.2014.9526
  • Korbekandi H, Iravani S, Abbasi S. Production of nanoparticles using organisms Production of nanoparticles using organisms. Crit Rev Biotechnol. 2009;29(4):279–306. doi:10.3109/07388550903062462
  • Thakkar KN, Mhatre SS, Parikh RY. Biological synthesis of metallic nanoparticles. Nanomed Nanotechn Biol Med. 2010;6(2):257–262. doi:10.1016/j.nano.2009.07.002
  • Khan SA, Shahid S, Lee C-S-S. Green synthesis of gold and silver nanoparticles using leaf extract of Clerodendrum inerme; characterization, antimicrobial, and antioxidant activities. Biomolecules. 2020;10(6):835. doi:10.3390/biom10060835
  • Shankar SS, Rai A, Ankamwar B, Singh A, Ahmad A, Sastry M. Biological synthesis of triangular gold nanoprisms. Nat Mater. 2004;3(7):482–488. doi:10.1038/nmat1152
  • Elbagory AM, Hussein AA, Meyer M. The in vitro immunomodulatory effects of gold nanoparticles synthesized from hypoxis hemerocallidea aqueous extract and hypoxoside on macrophage and natural killer cells. Int J Nanomedicine. 2019;14:9007–9018. doi:10.2147/IJN.S216972
  • Gharehyakheh S, Ahmeda A, Haddadi A, et al. Effect of gold nanoparticles synthesized using the aqueous extract of Satureja hortensis leaf on enhancing the shelf life and removing Escherichia coli O157: h7 and Listeria monocytogenes in minced camel’s meat: the role of nanotechnology in the food industry. Appl Organomet Chem. 2020;34(4):e5492. doi:10.1002/aoc.5492
  • Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M. Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog. 2006;22(2):577–583. doi:10.1021/bp0501423
  • Kumar V, Yadav SK. Plant-mediated synthesis of silver and gold nanoparticles and their applications. J Chem Technol Biotechnol. 2009;84(2):151–157. doi:10.1002/jctb.2023
  • Muthukumar T, Sudhakumari B, Aravinthan A, Sastry TP, Kim JH. Green synthesis of gold nanoparticles and their enhanced synergistic antitumor activity using HepG2 and MCF7 cells and its antibacterial effects. Process Biochem. 2016;51(3):384–391. doi:10.1016/j.procbio.2015.12.017
  • Khan SA, Lee C-S-S. Green Biological Synthesis of Nanoparticles and Their Biomedical Applications. Vol. 10. Springer Science and Business Media B.V;2020:247–280. doi:10.1007/978-3-030-44176-0_10
  • Riaz Rajoka MS, Mehwish HM, Zhang H, et al. Antibacterial and antioxidant activity of exopolysaccharide mediated silver nanoparticle synthesized by Lactobacillus brevis isolated from Chinese koumiss. Colloids Surfaces B Biointerfaces. 2020;186:110734. doi:10.1016/J.COLSURFB.2019.110734
  • Mehwish HM, Liu G, Rajoka MSR, et al. Therapeutic potential of Moringa oleifera seed polysaccharide embedded silver nanoparticles in wound healing. Int J Biol Macromol. 2021;184:144–158. doi:10.1016/J.IJBIOMAC.2021.05.202
  • Mehwish HM, Rajoka MSR, Xiong Y, et al. Green synthesis of a silver nanoparticle using Moringa oleifera seed and its applications for antimicrobial and sun-light mediated photocatalytic water detoxification. J Environ Chem Eng. 2021;9(4):105290. doi:10.1016/J.JECE.2021.105290
  • Hirpara DG, Gajera HP. Green synthesis and antifungal mechanism of silver nanoparticles derived from chitin- induced exometabolites of Trichoderma interfusant. Appl Organomet Chem. 2020;34(3):e5407. doi:10.1002/AOC.5407
  • Import Alert 45-06. Available from: https://www.accessdata.fda.gov/cms_ia/importalert_119.html. Accessed September 18, 2021.
  • Rizwan K, Khan SA, Ahmad I, et al. A Comprehensive Review on Chemical and Pharmacological Potential of Viola betonicifolia: a plant with multiple benefits. Molecules. 2019;24(17):3138. doi:10.3390/molecules24173138
  • Iqbal I, Hamayun M. Studies on the Traditional Uses of Plants of Malam Jabba Valley, District Swat, Pakistan. Ethnobot Leafl. 2005;2005(1):254.
  • Muhammad N, Saeed M, Khan H. Antipyretic, analgesic and anti-inflammatory activity of Viola betonicifolia whole plant. BMC Complement Altern Med. 2012;12(1):1–8. doi:10.1186/1472-6882-12-59
  • Muhammad N, Rehman N, Khan H, Saeed M, Gilani AH. Prokinetic and laxative effects of the crude methanolic extract of Viola betonicifolia whole plant in rodents. BMC Complement Altern Med. 2013;13(1):1–7. doi:10.1186/1472-6882-13-70
  • Zhu H, Qin SS, Zhang N, et al. Chemical Constituents and Biological Activities of Plants from the Genus Viola. Chem Biodivers. 2015;12(12):1777–1808. doi:10.1002/cbdv.201400240
  • Alfuraydi AA, Devanesan S, Al-Ansari M, Alsalhi MS, Ranjitsingh AJ. Journal of Photochemistry & Photobiology, B: biology Eco-friendly green synthesis of silver nanoparticles from the sesame oil cake and its potential anticancer and antimicrobial activities. J Photochem Photobiol B Biol. 2019;192(December2018):83–89. doi:10.1016/j.jphotobiol.2019.01.011
  • Latha D, Sampurnam S, Arulvasu C, Prabu P, Govindaraju K, Narayanan V. Biosynthesis and characterization of gold nanoparticle from Justicia adhatoda and its catalytic activity. In: Materials Today: Proceedings. Vol. 5. Elsevier Ltd; 2018: 8968–8972. doi:10.1016/j.matpr.2017.12.337
  • Khan SA, Shahid S, Ayaz A, Alkahtani J, Elshikh MS, Riaz T. Phytomolecules-coated NiO nanoparticles synthesis using abutilon indicum leaf extract: antioxidant, antibacterial, and anticancer activities. Int J Nanomedicine. 2021;16:1757–1773. doi:10.2147/IJN.S294012
  • Hussain A, Alajmi MF, Khan MA, et al. Biosynthesized Silver Nanoparticle (AgNP) From Pandanus odorifer Leaf Extract Exhibits Anti-metastasis and Anti-biofilm Potentials. J Photochem Photobiol B Biol. 2019;10(February):1–19. DOI:10.3389/fmicb.2019.00008
  • Kasprzak MM, Erxleben A, Ochocki J. Properties and applications of flavonoid metal complexes. RSC Adv. 2015;5(57):45853–45877. doi:10.1039/c5ra05069c
  • Mata R, Nakkala JR, Sadras SR. Polyphenol stabilized colloidal gold nanoparticles from Abutilon indicum leaf extract induce apoptosis in HT-29 colon cancer cells. Colloids Surfaces B Biointerfaces. 2016;143:499–510. doi:10.1016/j.colsurfb.2016.03.069
  • Valencia C, Valencia CH, Zuluaga F. Synthesis and application of scaffolds of chitosan-graphene oxide by the freeze-drying method for tissue regeneration. Molecules. 2018;23(10):2651. doi:10.3390/molecules23102651
  • Fekri LZ, Nikpassand M. Synthesis, experimental and DFT studies on the crystal structure, FTIR, 1H NMR and 13C NMR spectra of derivatives of dihydropyridines. J Chil Chem Soc. 2012;57(4):1415–1421. doi:10.4067/S0717-97072012000400017
  • Patra JK, Baek KH. Novel green synthesis of gold nanoparticles using Citrullus lanatus rind and investigation of proteasome inhibitory activity, antibacterial, and antioxidant potential. Int J Nanomedicine. 2015;10(1):7253–7264. doi:10.2147/IJN.S95483
  • Ahmad T, Bustam MA, Zulfiqar M, et al. Controllable phytosynthesis of gold nanoparticles and investigation of their size and morphology-dependent photocatalytic activity under visible light. J Photochem Photobiol a Chem. 2020;392:112429. doi:10.1016/j.jphotochem.2020.112429
  • Feyzabadi Z, Ghorbani F, Vazani Y, Zarshenas MM, Critical A. Review on Phytochemistry, Pharmacology of Viola odorata L. and Related Multipotential Products in Traditional Persian Medicine. Phyther Res. 2017;31(11):1669–1675. doi:10.1002/ptr.5909
  • Ramalingam B, Parandhaman T, Das SK. Antibacterial Effects of Biosynthesized Silver Nanoparticles on Surface Ultrastructure and Nanomechanical Properties of Gram-Negative Bacteria viz. Escherichia coli and Pseudomonas aeruginosa. ACS Appl Mater Interfaces. 2016;8(7):4963–4976. doi:10.1021/acsami.6b00161
  • Arakha M, Saleem M, Mallick BC, Jha S. The effects of interfacial potential on antimicrobial propensity of ZnO nanoparticle. Sci Rep. 2015;5(1):1–10. doi:10.1038/srep09578
  • Kim JS, Kuk E, Yu KN, et al. Antimicrobial effects of silver nanoparticles. Nanomed Nanotechn Biol Med. 2007;3(1):95–101. doi:10.1016/J.NANO.2006.12.001
  • Khan SA, Shahid S, Shahid B, Fatima U, Abbasi SA. Green Synthesis of MnO Nanoparticles Using Abutilon indicum Leaf Extract for Biological, Photocatalytic, and Adsorption Activities. Biomolecules. 2020;10(5):785. doi:10.3390/biom10050785
  • Khan M, Shaik MR, Adil SF, et al. Plant extracts as green reductants for the synthesis of silver nanoparticles: lessons from chemical synthesis. Dalt Trans. 2018;47(35):11988–12010. doi:10.1039/C8DT01152D
  • Huang J, Zhan G, Zheng B, et al. Biogenic silver nanoparticles by Cacumen Platycladi extract: synthesis, formation mechanism, and antibacterial activity. Ind Eng Chem Res. 2011;50(15):9095–9106. doi:10.1021/ie200858y
  • Khan SA, Shahid S, Hanif S, Almoallim HS, Alharbi SA, Sellami H. Green Synthesis of Chromium Oxide Nanoparticles for Antibacterial, Antioxidant Anticancer, and Biocompatibility Activities. Int J Mol Sci. 2021;22(2):1–17. doi:10.3390/ijms22020502
  • Bindhu MR, Umadevi M. Antibacterial activities of green synthesized gold nanoparticles. Mater Lett. 2014;120:122–125. doi:10.1016/j.matlet.2014.01.108
  • Boomi P, Ganesan RM, Poorani G, Gurumallesh Prabu H, Ravikumar S, Jeyakanthan J. Biological synergy of greener gold nanoparticles by using Coleus aromaticus leaf extract. Mater Sci Eng C. 2019;99:202–210. doi:10.1016/j.msec.2019.01.105
  • Slavin YN, Asnis J, Häfeli UO, Bach H. Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnology. 2017;15(1):65. doi:10.1186/s12951-017-0308-z
  • Rizzello L, Pompa PP. Nanosilver-based antibacterial drugs and devices: mechanisms, methodological drawbacks, and guidelines. Chem Soc Rev. 2014;43(5):1501–1518. doi:10.1039/C3CS60218D
  • Ramalingam B, Parandhaman T, Das SK. Antibacterial Effects of Biosynthesized Silver Nanoparticles on Surface Ultrastructure and Nanomechanical Properties of Gram-Negative Bacteria viz. Escherichia coli and Pseudomonas aeruginosa. ACS Appl Mater Interfaces. 2016;8(7):4963–4976. doi:10.1021/ACSAMI.6B00161
  • Sher M, Khan SA, Shahid S, et al. Synthesis of novel ternary hybrid g-C3N4@Ag-ZnO nanocomposite with Z-scheme enhanced solar light‐driven methylene blue degradation and antibacterial activities. J Environ Chem Eng. 2021;9(4):105366. doi:10.1016/J.JECE.2021.105366
  • Sarwar MN, Khan SA, Shahid S, Jabin S, Zaman S. synthesis and characterization of un-doped and copper doped zinc oxide nanoparticles for their optical and antibacterial studies synthesis and characterization of un-doped and copper-doped zinc oxide nanoparticles for their optical and antibacterial studies. Dig J Nanomater Biostructures. 2018;13(1):285–297.
  • Shahid S, Fatima U, Shahid S, Fatima U, Sajjad R, Khan SA. Bioinspired Nanotheranostic Agent: zinc Oxide; Green Synthesis And Biomedical Potential. Dig J Nanomater Biostructures. 2014;14(4):1023–1031.
  • Shahid S, Khan SA, Ahmad W, Fatima U, Knawal S. Size-dependent Bacterial Growth Inhibition and Antibacterial Activity of Ag-doped ZnO Nanoparticles under Different Atmospheric Conditions. Indian J Pharm Sci. 2018;80(1):173–180. doi:10.4172/PHARMACEUTICAL-SCIENCES.1000342
  • Khan SA, Kanwal S, Rizwan K, Shahid S. Enhanced antimicrobial, antioxidant, in vivo antitumor and in vitro anticancer effects against breast cancer cell line by green synthesized un-doped SnO2 and Co-doped SnO2 nanoparticles from Clerodendrum inerme. Microb Pathog. 2018;125:366–384. doi:10.1016/J.MICPATH.2018.09.041
  • Khan SA, Noreen F, Kanwal S, Iqbal A, Hussain G. Green synthesis of ZnO and Cu-doped ZnO nanoparticles from leaf extracts of Abutilon indicum, Clerodendrum infortunatum, Clerodendrum inerme and investigation of their biological and photocatalytic activities. Mater Sci Eng C. 2018;82:46–59. doi:10.1016/J.MSEC.2017.08.071
  • Ijaz F, Shahid S, Khan SA, Ahmad W, Zaman S. Green synthesis of copper oxide nanoparticles using Abutilon indicum leaf extract: antimicrobial, antioxidant and photocatalytic dye degradation activities. Trop J Pharm Res. 2017;16(4):743–753. doi:10.4314/tjpr.v16i4.2
  • Fanoro OT, Oluwafemi OS. Bactericidal Antibacterial Mechanism of Plant Synthesized Silver, Gold and Bimetallic Nanoparticles. Pharm. 2020;12(11):1044. doi:10.3390/PHARMACEUTICS12111044
  • Cui Y, Zhao Y, Tian Y, Zhang W, Lü X, Jiang X. The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials. 2012;33(7):2327–2333. doi:10.1016/J.BIOMATERIALS.2011.11.057
  • Katoch M, Singh A, Singh G, Wazir P, Kumar R. Phylogeny, antimicrobial, antioxidant and enzyme-producing potential of fungal endophytes found in Viola odorata. Ann Microbiol. 2017;67(8):529–540. doi:10.1007/s13213-017-1283-1
  • Balasubramanian S, Kala SMJ, Pushparaj TL. Biogenic synthesis of gold nanoparticles using Jasminum auriculatum leaf extract and their catalytic, antimicrobial and anticancer activities. J Drug Deliv Sci Technol. 2020;57:101620. doi:10.1016/j.jddst.2020.101620
  • Dananjaya SHS, Thu Thao NT, Wijerathna HMSM, et al. In vitro and in vivo anticandidal efficacy of green synthesized gold nanoparticles using Spirulina maxima polysaccharide. Process Biochem. 2020;92:138–148. doi:10.1016/j.procbio.2020.03.003
  • Jayaseelan C, Ramkumar R, Rahuman AA, Perumal P. Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity. Ind Crops Prod. 2013;45:423–429. doi:10.1016/j.indcrop.2012.12.019
  • Muhammad N, Saeed M, Adhikari A, Khan KM, Khan H. Isolation of a new bioactive cinnamic acid derivative from the whole plant of Viola betonicifolia. J Enzyme Inhib Med Chem. 2013;28(5):997–1001. doi:10.3109/14756366.2012.702344
  • Mohd Adzim Khalili Rohin T. Total phenolic content and In vitro antioxidant activity of Vigna sinensis. Int Food Res J. 2012;19(4):1393–1400.
  • Huda-Faujan N, Noriham A, Norrakiah A, Babji A. Antioxidant activity of plants methanolic extracts containing phenolic compounds. African J Biotechnol. 2010;8(3):484–489. doi:10.4314/ajb.v8i3.59849
  • Muhammad N, Saeed M, Khan H, Haq I. Evaluation of n-hexane extract of Viola betonicifolia for its neuropharmacological properties. J Nat Med. 2013;67(1):1–8. doi:10.1007/s11418-012-0636-0
  • Thakur M, Poojary S, Swain N. Green Synthesis of Iron Oxide Nanoparticles and Its Biomedical Applications. In: Nanotechnology in the Life Sciences. Springer Science and Business Media B.V; 2021:83–109. doi:10.1007/978-3-030-64410-9_5
  • Khan SA, Shahid S, Mahmood T, Lee C-S. Contact lenses coated with hybrid multifunctional ternary nanocoatings (Phytomolecule-coated ZnO nanoparticles: gallicAcid: tobramycin)for the treatment of bacterial and fungal keratitis. Acta Biomater. 2021;128:262–276. doi:10.1016/j.actbio.2021.04.014
  • Choi K-H-H, Nam KC, Lee S-Y-Y, et al. Antioxidant Potential and Antibacterial Efficiency of Caffeic Acid-Functionalized ZnO Nanoparticles. Nanomaterials. 2017;7(6):148. doi:10.3390/nano7060148
  • Emam AN, Loutfy SA, Mostafa AA, Awad H, Mohamed MB. Cyto-toxicity, biocompatibility and cellular response of carbon dots-plasmonic based nano-hybrids for bioimaging. RSC Adv. 2017;7(38):23502–23514. doi:10.1039/c7ra01423f
  • Iqbal S, Bhanger MI, Anwar F. Antioxidant properties and components of some commercially available varieties of rice bran in Pakistan. Food Chem. 2005;93(2):265–272. doi:10.1016/j.foodchem.2004.09.024