529
Views
25
CrossRef citations to date
0
Altmetric
Review

Ten Years of Knowledge of Nano-Carrier Based Drug Delivery Systems in Ophthalmology: Current Evidence, Challenges, and Future Prospective

, ORCID Icon, , , ORCID Icon, , & ORCID Icon show all
Pages 6497-6530 | Published online: 22 Sep 2021

References

  • Ensign LM, Cone R, Hanes J. Nanoparticle-based drug delivery to the vagina: a review. J Controlled Release. 2014;190:500–514. doi:10.1016/j.jconrel.2014.04.033
  • Adelli GR, Bhagav P, Taskar P, et al. Development of a Δ9-tetrahydrocannabinol amino acid-dicarboxylate prodrug with improved ocular bioavailability. Invest Ophthalmol Vis Sci. 2017;58:2167–2179. doi:10.1167/iovs.16-20757
  • Weinreb RN, Robinson MR, Dibas M, Stamer WD. Matrix metalloproteinases and glaucoma treatment. J Ocul Pharmacol Ther. 2020;36:208–228. doi:10.1089/jop.2019.0146
  • DeSantis L. Preclinical Overview of Brinzolamide. Surv Ophthalmol. 2000;44:S119–S29. doi:10.1016/S0039-6257(99)00108-3
  • Mehta M, Deeksha SN, Vyas M, et al. Interactions with the macrophages: an emerging targeted approach using novel drug delivery systems in respiratory diseases. Chem Biol Interact. 2019;304:10–19. doi:10.1016/j.cbi.2019.02.021
  • Drescher S, van Hoogevest P. The phospholipid research center: current research in phospholipids and their use in drug delivery. Pharmaceutics. 2020;1:12.
  • Zheng B, McClements DJ. Formulation of more efficacious curcumin delivery systems using colloid science: enhanced solubility, stability, and bioavailability. Molecules. 2020;1:25.
  • Yavuz B, Pehlivan SB, Unlü N. Dendrimeric systems and their applications in ocular drug delivery. ScientificWorldJournal. 2013;2013:732340. doi:10.1155/2013/732340
  • Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomedicine. 2015;975–999. doi:10.2147/IJN.S68861
  • Baujat B, Krastinova D, Bach CA, Coquille F, Chabolle F. Orbital morphology in exophthalmos and exorbitism. Plast Reconstr Surg. 2006;117:542. doi:10.1097/01.prs.0000200773.00268.56
  • Gupta A, Kafetzis KN, Tagalakis AD, Yu-Wai-Man C. RNA therapeutics in ophthalmology - translation to clinical trials. Exp Eye Res. 2021;205:108482. doi:10.1016/j.exer.2021.108482
  • Fischer N, Narayanan R, Loewenstein A, Kuppermann BD. Drug Delivery to the posterior segment of the eye. Eur J Ophthalmol. 2010;21:20–26. doi:10.5301/EJO.2010.6051
  • Braakhuis AJ, Donaldson CI, Lim JC, Donaldson PJ. Nutritional Strategies to Prevent Lens Cataract: current Status and Future Strategies. Nutrients. 2019;1:11.
  • Xu X, Al-Ghabeish M, Rahman Z, et al. Formulation and process factors influencing product quality and in vitro performance of ophthalmic ointments. Int J Pharm. 2015;493:412–425. doi:10.1016/j.ijpharm.2015.07.066
  • Shi XH, Wei WB. [Research progress of treatment strategies for choroidal neovascularization secondary to pathological myopia]. Zhonghua Yan Ke Za Zhi. 2019;55:791–795. Chinese.
  • Stewart MW. Extended duration vascular endothelial growth factor inhibition in the eye: failures, successes, and future possibilities. Pharmaceutics. 2018;10.
  • Kiser PD, Zhang J, Badiee M, et al. Rational tuning of visual cycle modulator pharmacodynamics. J Pharmacol Exp Ther. 2017;362:131–145. doi:10.1124/jpet.117.240721
  • Kesav NP, Young CEC, Ertel MK, Seibold LK, Kahook MY. Sustained-release drug delivery systems for the treatment of glaucoma. Int J Ophthalmol. 2021;14:148–159. doi:10.18240/ijo.2021.01.21
  • Sharaf MG, Cetinel S, Heckler L, Damji K, Unsworth L, Montemagno C. Nanotechnology-Based approaches for ophthalmology applications: therapeutic and diagnostic strategies. Asia Pac J Ophthalmol. 2014;3:172–180. doi:10.1097/APO.0000000000000059
  • Yetisgin AA, Cetinel S, Zuvin M, Kosar A, Kutlu O. Therapeutic Nanoparticles and Their Targeted Delivery Applications. Molecules. 2020;25.
  • Vaishya RD, Khurana V, Patel S, Mitra AK. Controlled ocular drug delivery with nanomicelles. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2014;6:422–437. doi:10.1002/wnan.1272
  • Honda M, Asai T, Oku N, Araki Y, Tanaka M, Ebihara N. Liposomes and nanotechnology in drug development: focus on ocular targets. Int J Nanomedicine. 2013;8:495–503. doi:10.2147/IJN.S30725
  • Yasukawa T, Ogura Y, Tabata Y, Kimura H, Wiedemann P, Honda Y. Drug delivery systems for vitreoretinal diseases. Prog Retin Eye Res. 2004;23:253–281. doi:10.1016/j.preteyeres.2004.02.003
  • Liu YC, Lin MT, Ng AHC, Wong TT, Mehta JS. Nanotechnology for the Treatment of Allergic Conjunctival Diseases. Pharmaceuticals. 2020;2:13.
  • Li Y, Dong H, Tao Q, et al. Enhancing the magnetic relaxivity of MRI contrast agents via the localized superacid microenvironment of graphene quantum dots. Biomaterials. 2020;250:120056. doi:10.1016/j.biomaterials.2020.120056
  • Srinivasarao DA, Lohiya G, Katti DS. Fundamentals, challenges, and nanomedicine-based solutions for ocular diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019;11:e1548. doi:10.1002/wnan.1548
  • Liu B, Kang C, Fang F. Biometric Measurement of Anterior Segment: a Review. Sensors. 2020;20.
  • Khiev D, Mohamed ZA, Vichare R, et al. Emerging nano-formulations and nanomedicines applications for ocular drug delivery. Nanomaterials. 2021;11.
  • Man D, Słota R, Kawecka A, Engel G, Dyrda G. Liposomes modified by mono- and bis-phthalocyanines: a comprehensive EPR study. Eur Phys J E Soft Matter. 2017;40:63. doi:10.1140/epje/i2017-11550-4
  • Almeida B, Nag OK, Rogers KE, Delehanty JB. Recent progress in bioconjugation strategies for liposome-mediated drug delivery. Molecules. 2020;25.
  • Man D, Słota R, Broda MA, Mele G, Li J. Metalloporphyrin intercalation in liposome membranes: ESR study. J Biol Inorg Chem. 2011;16:173–181. doi:10.1007/s00775-010-0715-1
  • Almeida B, Nag OK, Rogers KE, Delehanty JB. Recent Progress in Bioconjugation Strategies for Liposome-Mediated Drug Delivery. Molecules. 2020;25(23):5672. doi:10.3390/molecules25235672
  • Jensen GM, Hodgson DF. Opportunities and challenges in commercial pharmaceutical liposome applications. Adv Drug Deliv Rev. 2020;154:2–12. doi:10.1016/j.addr.2020.07.016
  • Lajunen T, Nurmi R, Kontturi L, et al. Light activated liposomes: functionality and prospects in ocular drug delivery. J Control Release. 2016;244:157–166. doi:10.1016/j.jconrel.2016.08.024
  • Ebrahim S, Peyman GA, Lee PJ. Applications of liposomes in ophthalmology. Surv Ophthalmol. 2005;50:167–182. doi:10.1016/j.survophthal.2004.12.006
  • Smolin G, Okumoto M, Feiler S, Condon D. Idoxuridine-liposome therapy for herpes simplex keratitis. Am J Ophthalmol. 1981;91:220–225. doi:10.1016/0002-9394(81)90177-X
  • Magin RL, Hunter JM, Niesman MR, Bark GA. Effect of vesicle size on the clearance, distribution, and tumor uptake of temperature-sensitive liposomes. Cancer Drug Deliv. 1986;3:223–237. doi:10.1089/cdd.1986.3.223
  • Barza M, Stuart M, Szoka F. Effect of size and lipid composition on the pharmacokinetics of intravitreal liposomes. Invest Ophthalmol Vis Sci. 1987;28:893–900.
  • Arroyo CM, Quinteros D, Cózar-Bernal MJ, Palma SD, Rabasco AM, González-Rodríguez ML. Ophthalmic administration of a 10-fold-lower dose of conventional nanoliposome formulations caused levels of intraocular pressure similar to those induced by marketed eye drops. Eur J Pharmaceutical Sci. 2018;111:186–194. doi:10.1016/j.ejps.2017.09.024
  • Lai S, Wei Y, Wu Q, et al. Liposomes for effective drug delivery to the ocular posterior chamber. J Nanobiotechnology. 2019;17:64. doi:10.1186/s12951-019-0498-7
  • Zhang R, Qian J, Li X, Yuan Y. Treatment of experimental autoimmune uveoretinitis with intravitreal injection of infliximab encapsulated in liposomes. Br J Ophthalmol. 2017;101:1731–1738. doi:10.1136/bjophthalmol-2016-310044
  • Tan G, Yu S, Pan H, et al. Bioadhesive chitosan-loaded liposomes: a more efficient and higher permeable ocular delivery platform for timolol maleate. Int J Biol Macromol. 2017;94:355–363. doi:10.1016/j.ijbiomac.2016.10.035
  • Pontillo ARN, Detsi A. Nanoparticles for ocular drug delivery: modified and non-modified chitosan as a promising biocompatible carrier. Nanomedicine. 2019;14:1889–1909. doi:10.2217/nnm-2019-0040
  • Wang Y, Rajala A, Rajala RVS. Nanoparticles as Delivery Vehicles for the Treatment of Retinal Degenerative Diseases. Adv Exp Med Biol. 2018;1074:117–123.
  • Wang X, Wang S, Zhang Y. Advance of the application of nano-controlled release system in ophthalmic drug delivery. Drug Deliv. 2016;23:2897–2901. doi:10.3109/10717544.2015.1116025
  • Xu J, Zheng S, Hu X, et al. Advances in the Research of Bioinks Based on Natural Collagen, Polysaccharide and Their Derivatives for Skin 3D Bioprinting. Polymers. 2020;12(6):1237. doi:10.3390/polym12061237
  • Xu J, Zheng S, Hu X, et al. Advances in the research of bioinks based on natural collagen, polysaccharide and their derivatives for skin 3d bioprinting. Polymers. 2020;12.
  • Varshochian R, Riazi-Esfahani M, Jeddi-Tehrani M, et al. Albuminated PLGA nanoparticles containing bevacizumab intended for ocular neovascularization treatment. J Biomed Mater Res A. 2015;103:3148–3156. doi:10.1002/jbm.a.35446
  • Mahaling B, Srinivasarao DA, Raghu G, Kasam RK, Bhanuprakash Reddy G, Katti DS. A non-invasive nanoparticle mediated delivery of triamcinolone acetonide ameliorates diabetic retinopathy in rats. Nanoscale. 2018;10:16485–16498. doi:10.1039/C8NR00058A
  • Wang B, Tang Y, Oh Y, et al. Controlled release of dexamethasone sodium phosphate with biodegradable nanoparticles for preventing experimental corneal neovascularization. Nanomed. 2019;17:119–123. doi:10.1016/j.nano.2019.01.001
  • Luschmann C, Herrmann W, Strauss O, Luschmann K, Goepferich A. Ocular delivery systems for poorly soluble drugs: an in-vivo evaluation. Int J Pharm. 2013;455:331–337. doi:10.1016/j.ijpharm.2013.07.002
  • Ali HSM, York P, Ali AMA, Blagden N. Hydrocortisone nanosuspensions for ophthalmic delivery: a comparative study between microfluidic nanoprecipitation and wet milling. J Control Release. 2011;149:175–181. doi:10.1016/j.jconrel.2010.10.007
  • Abrego G, Alvarado HL, Egea MA, Gonzalez-Mira E, Calpena AC, Garcia ML. Design of nanosuspensions and freeze-dried PLGA nanoparticles as a novel approach for ophthalmic delivery of pranoprofen. J Pharm Sci. 2014;103:3153–3164. doi:10.1002/jps.24101
  • García-Millán E, Quintáns-Carballo M, Otero-Espinar FJ. Improved release of triamcinolone acetonide from medicated soft contact lenses loaded with drug nanosuspensions. Int J Pharm. 2017;525:226–236. doi:10.1016/j.ijpharm.2017.03.082
  • Mudgil M, Pawar PK. Preparation and in vitro/ex vivo evaluation of moxifloxacin-loaded plga nanosuspensions for ophthalmic application. Sci Pharm. 2013;81:591–606. doi:10.3797/scipharm.1204-16
  • Kamaleddin MA. Nano-ophthalmology: applications and considerations. Nanomedicine. 2017;13:1459–1472. doi:10.1016/j.nano.2017.02.007
  • Li X, Zhang Z, Li J, Sun S, Weng Y, Chen H. Diclofenac/biodegradable polymer micelles for ocular applications. Nanoscale. 2012;4:4667–4673. doi:10.1039/c2nr30924f
  • Grimaudo MA, Pescina S, Padula C, et al. Poloxamer 407/TPGS Mixed micelles as promising carriers for cyclosporine ocular delivery. Mol Pharm. 2018;15:571–584. doi:10.1021/acs.molpharmaceut.7b00939
  • Wu W, He Z, Zhang Z, Yu X, Song Z, Li X. Intravitreal injection of rapamycin-loaded polymeric micelles for inhibition of ocular inflammation in rat model. Int J Pharm. 2016;513:238–246. doi:10.1016/j.ijpharm.2016.09.013
  • Cholkar K, Gilger BC, Mitra AK. Topical, aqueous, clear cyclosporine formulation design for anterior and posterior ocular delivery. Transl Vis Sci Technol. 2015;4:1. doi:10.1167/tvst.4.3.1
  • Stefanek A, Leczycka-Wilk K, Czarnocka-Sniadala S, et al. Fluorosurfactants for medical nanoemulsions, their surface-active and biological properties. Colloids Surf B Biointerfaces. 2021;200:111603. doi:10.1016/j.colsurfb.2021.111603
  • Spaglova M, Cuchorova M, Cierna M, Ponist S, Bauerova K. Microemulsions as solubilizers and penetration enhancers for minoxidil release from gels. Gels. 2021;7.
  • Araújo J, Gonzalez E, Egea MA, Garcia ML, Souto EB. Nanomedicines for ocular NSAIDs: safety on drug delivery. Nanomed. 2009;5:394–401. doi:10.1016/j.nano.2009.02.003
  • Sahoo SK, Dilnawaz F, Krishnakumar S. Nanotechnology in ocular drug delivery. Drug Discov Today. 2008;13:144–151. doi:10.1016/j.drudis.2007.10.021
  • Damiani G, Eggenhöffner R, Pigatto PDM, Bragazzi NL. Nanotechnology meets atopic dermatitis: current solutions, challenges and future prospects. Insights and implications from a systematic review of the literature. Bioact Mater. 2019;4:380–386. doi:10.1016/j.bioactmat.2019.11.003
  • Kalam MA, Alshamsan A, Aljuffali IA, Mishra AK, Sultana Y. Delivery of gatifloxacin using microemulsion as vehicle: formulation, evaluation, transcorneal permeation and aqueous humor drug determination. Drug Deliv. 2016;23:896–907. doi:10.3109/10717544.2014.920432
  • Kesavan K, Kant S, Singh PN, Pandit JK. Mucoadhesive chitosan-coated cationic microemulsion of dexamethasone for ocular delivery: in vitro and in vivo evaluation. Curr Eye Res. 2013;38:342–352. doi:10.3109/02713683.2012.745879
  • Vigani B, Rossi S, Sandri G, Bonferoni MC, Caramella CM, Ferrari F. Recent advances in the development of in situ gelling drug delivery systems for non-parenteral administration routes. Pharmaceutics. 2020;12.
  • Al-Kinani AA, Zidan G, Elsaid N, Seyfoddin A, Alani AWG, Alany RG. Ophthalmic gels: past, present and future. Adv Drug Deliv Rev. 2018;126:113–126. doi:10.1016/j.addr.2017.12.017
  • Lin S, Ge C, Wang D, et al. Overcoming the anatomical and physiological barriers in topical eye surface medication using a peptide-decorated polymeric micelle. ACS Appl Mater Interfaces. 2019;11:39603–39612. doi:10.1021/acsami.9b13851
  • Ammar HO, Salama HA, Ghorab M, Mahmoud AA. Development of dorzolamide hydrochloride in situ gel nanoemulsion for ocular delivery. Drug Dev Ind Pharm. 2010;36:1330–1339. doi:10.3109/03639041003801885
  • Göttel B. Electrospun nanofibers - A promising solid in-situ gelling alternative for ocular drug delivery. Eur J Pharm Biopharm. 2020;146:125–132. doi:10.1016/j.ejpb.2019.11.012
  • Li H, Xin HL, Muller DA, Estroff LA. Visualizing the 3D internal structure of calcite single crystals grown in agarose hydrogels. Science. 2009;326:1244–1247. doi:10.1126/science.1178583
  • Gottel B, de Souza ESJM. Electrospun nanofibers - A promising solid in-situ gelling alternative for ocular drug delivery. Eur J Pharm Biopharm. 2020;146:125–132.
  • Ryder EC, Benson S. Conjunctivitis. Treasure Island (FL): StatPearls; 2021.
  • Ryder EC, Benson S. Conjunctivitis. Treasure Island (FL): StatPearls Publishing; 2020.
  • Yasin MN, Hussain S, Malik F, et al. Preparation and characterization of chloramphenicol niosomes and comparison with chloramphenicol eye drops (0.5%w/v) in experimental conjunctivitis in albino rabbits. Pak J Pharm Sci. 2012;25:117–121.
  • Skevaki CL, Galani IE, Pararas MV, Giannopoulou KP, Tsakris A. Treatment of viral conjunctivitis with antiviral drugs. Drugs. 2011;71:331–347. doi:10.2165/11585330-000000000-00000
  • Bourcier T, Sauer A, Dory A, Denis J, Sabou M. Fungal keratitis. J Fr Ophtalmol. 2017;40:e307–e13. doi:10.1016/j.jfo.2017.08.001
  • Fan P-S, Sun M-J, Qin D, Yuan C-S, Chen X-G, Liu Y. Nanosystems as curative platforms for allergic disorder management. J Mater Chem B. 2021;9(7):1729–1744. doi:10.1039/D0TB02590A
  • Chhonker YS, Prasad YD, Chandasana H, et al. Amphotericin-B entrapped lecithin/chitosan nanoparticles for prolonged ocular application. Int J Biol Macromol. 2015;72:1451–1458. doi:10.1016/j.ijbiomac.2014.10.014
  • Chen H, Pan H, Li P, et al. The potential use of novel chitosan-coated deformable liposomes in an ocular drug delivery system. Colloids Surf B Biointerfaces. 2016;143:455–462. doi:10.1016/j.colsurfb.2016.03.061
  • Sánchez-López E, Esteruelas G, Ortiz A, et al. Dexibuprofen Biodegradable nanoparticles: one step closer towards a better ocular interaction study. Nanomaterials. 2020;10.
  • Xu Y, Zhang C, Zhu X, et al. Chloramphenicol/sulfobutyl ether-β-cyclodextrin complexes in an ophthalmic delivery system: prolonged residence time and enhanced bioavailability in the conjunctival sac. Expert Opin Drug Deliv. 2019;16:657–666. doi:10.1080/17425247.2019.1609447
  • Garg V, Suri R, Jain GK, Kohli K. Proglycosomes: a novel nano-vesicle for ocular delivery of tacrolimus. Colloids Surf B Biointerfaces. 2017;157:40–47. doi:10.1016/j.colsurfb.2017.05.049
  • Singh P, Gupta A, Tripathy K. Keratitis. Treasure Island (FL): StatPearls Publishing; 2020.
  • Zorzi GK, Schuh RS, Maschio VJ, Brazil NT, Rott MB, Teixeira HF. Box Behnken design of siRNA-loaded liposomes for the treatment of a murine model of ocular keratitis caused by Acanthamoeba. Colloids Surf B Biointerfaces. 2019;173:725–732. doi:10.1016/j.colsurfb.2018.10.044
  • Agarwal P, Craig JP, Rupenthal ID. Formulation Considerations for the management of dry eye disease. Pharmaceutics. 2021;13.
  • Chu LL, Cui K, Pope JE. Meta-Analysis of Treatment for Primary Sjögren’s Syndrome. Arthritis Care Res. 2020;72:1011–1021. doi:10.1002/acr.23917
  • Grimaudo MA, Pescina S, Padula C, et al. Topical application of polymeric nanomicelles in ophthalmology: a review on research efforts for the noninvasive delivery of ocular therapeutics. Expert Opin Drug Deliv. 2019;16:397–413. doi:10.1080/17425247.2019.1597848
  • Kang H, Cha KH, Cho W, et al. Cyclosporine Amicellar delivery system for dry eyes. Int J Nanomedicine. 2016;11:2921–2933.
  • Li Y-J, Luo L-J, Harroun SG, et al. Synergistically dual-functional nano eye-drops for simultaneous anti-inflammatory and anti-oxidative treatment of dry eye disease. Nanoscale. 2019;11:5580–5594. doi:10.1039/C9NR00376B
  • Nagai N, Ishii M, Seiriki R, et al. Novel sustained-release drug delivery system for dry eye therapy by rebamipide nanoparticles. Pharmaceutics. 2020;12.
  • Tham Y-C, Li X, Wong TY, Quigley HA, Aung T, Cheng C-Y. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014;121:2081–2090. doi:10.1016/j.ophtha.2014.05.013
  • Diekmann H, Fischer D. Glaucoma and optic nerve repair. Cell Tissue Res. 2013;353:327–337. doi:10.1007/s00441-013-1596-8
  • Munemasa Y, Kitaoka Y. Molecular mechanisms of retinal ganglion cell degeneration in glaucoma and future prospects for cell body and axonal protection. Front Cell Neurosci. 2012;6:60.
  • Wong TT, Novack GD, Natarajan JV, Ho CL, Htoon HM, Venkatraman SS. Nanomedicine for glaucoma: sustained release latanoprost offers a new therapeutic option with substantial benefits over eyedrops. Drug Deliv Transl Res. 2014;4:303–309. doi:10.1007/s13346-014-0196-9
  • Rodriguez-Aller M, Guinchard S, Guillarme D, et al. New prostaglandin analog formulation for glaucoma treatment containing cyclodextrins for improved stability, solubility and ocular tolerance. Eur J Pharm Biopharm. 2015;95:203–214. doi:10.1016/j.ejpb.2015.04.032
  • Bravo-Osuna I, Vicario-de-la-torre M, Andrés-Guerrero V, et al. Novel water-soluble mucoadhesive carbosilane dendrimers for ocular administration. Mol Pharm. 2016;13:2966–2976. doi:10.1021/acs.molpharmaceut.6b00182
  • Davis BM, Crawley L, Pahlitzsch M, Javaid F, Cordeiro MF. Glaucoma: the retina and beyond. Acta Neuropathol. 2016;132:807–826. doi:10.1007/s00401-016-1609-2
  • Cordeiro MF, Migdal C, Bloom P, Fitzke FW, Moss SE. Imaging apoptosis in the eye. Eye. 2011;25:545–553. doi:10.1038/eye.2011.64
  • Sánchez-López E, Egea MA, Davis BM, et al. Memantine-loaded pegylated biodegradable nanoparticles for the treatment of glaucoma. Small. 2018;14.
  • Seo Y, Kim S, Lee HS, et al. Femtosecond laser induced nano-textured micropatterning to regulate cell functions on implanted biomaterials. Acta Biomater. 2020;116:138–148. doi:10.1016/j.actbio.2020.08.044
  • Wu K-Y, Lai Y-H, Yang Y-C, Wu W-C, Hong S-J. 5-Fluorouracil-Induced Apoptosis Changes in Cultured Corneal Epithelial Cells. J Ocul Pharmacol Ther. 2016;32:155–162. doi:10.1089/jop.2015.0109
  • Pandey SK, Cochener B, Apple DJ, et al. Intracapsular ring sustained 5-fluorouracil delivery system for the prevention of posterior capsule opacification in rabbits: a histological study. J Cataract Refract Surg. 2002;28:139–148. doi:10.1016/S0886-3350(01)01069-0
  • Nibourg LM, Gelens E, Kuijer R, Hooymans JM, van Kooten TG, Koopmans SA. Prevention of posterior capsular opacification. Exp Eye Res. 2015;136:100–115. doi:10.1016/j.exer.2015.03.011
  • Drinkwater JJ, Davis WA, Davis TME. A systematic review of risk factors for cataract in type 2 diabetes. Diabetes Metab Res Rev. 2019;35:e3073. doi:10.1002/dmrr.3073
  • Kato S, Oshika T, Numaga J, Kawashima H, Kitano S, Kaiya T. Influence of rapid glycemic control on lens opacity in patients with diabetes mellitus. Am J Ophthalmol. 2000;130:354–355. doi:10.1016/S0002-9394(00)00546-8
  • Zhang J, Yan H, Lou MF. Does oxidative stress play any role in diabetic cataract formation? —-Re-evaluation using a thioltransferase gene knockout mouse model. Exp Eye Res. 2017;161:36–42. doi:10.1016/j.exer.2017.05.014
  • Yang J, Gong X, Fang L, et al. Potential of CeCl3@mSiO2 nanoparticles in alleviating diabetic cataract development and progression. Nanomed. 2017;13:1147–1155. doi:10.1016/j.nano.2016.12.021
  • Zhou Y, Li L, Li S, et al. Autoregenerative redox nanoparticles as an antioxidant and glycation inhibitor for palliation of diabetic cataracts. Nanoscale. 2019;11:13126–13138. doi:10.1039/C9NR02350J
  • Hammer SS, Busik JV. The role of dyslipidemia in diabetic retinopathy. Vision Res. 2017;139:228–236. doi:10.1016/j.visres.2017.04.010
  • Shi G-J, Li Y, Cao Q-H, et al. In vitro and in vivo evidence that quercetin protects against diabetes and its complications: a systematic review of the literature. Biomed Pharmacother. 2019;109:1085–1099. doi:10.1016/j.biopha.2018.10.130
  • Sun S, Wang Y, Wu A, Ding Z, Liu X. Influence Factors of the pharmacokinetics of herbal resourced compounds in clinical practice. Evid Based Complement Alternat Med. 2019;2019:1983780. doi:10.1155/2019/1983780
  • Wang S, Du S, Wang W, Zhang F. Therapeutic investigation of quercetin nanomedicine in a zebrafish model of diabetic retinopathy. Biomed Pharmacother. 2020;130:110573. doi:10.1016/j.biopha.2020.110573
  • Wang Y, Rajala A, Cao B, et al. Cell-specific promoters enable lipid-based nanoparticles to deliver genes to specific cells of the retina in vivo. Theranostics. 2016;6:1514–1527. doi:10.7150/thno.15230
  • Skaf AR, Mahmoud T. Surgical treatment of age-related macular degeneration. Semin Ophthalmol. 2011;26:181–191. doi:10.3109/08820538.2011.577133
  • Li M, Xu Z, Zhang L, et al. Targeted Noninvasive treatment of choroidal neovascularization by hybrid cell-membrane-cloaked biomimetic nanoparticles. ACS Nano. 2021;15:9808–9819. doi:10.1021/acsnano.1c00680
  • Jin J, Zhou KK, Park K, et al. Anti-inflammatory and antiangiogenic effects of nanoparticle-mediated delivery of a natural angiogenic inhibitor. Invest Ophthalmol Vis Sci. 2011;52:6230–6237. doi:10.1167/iovs.10-6229
  • Brown AC, Nwanyanwu K. Retinopathy of Prematurity. Treasure Island (FL): StatPearls Publishing; 2020.
  • Kim JH, Kim MH, Jo DH, Yu YS, Lee TG, Kim JH. The inhibition of retinal neovascularization by gold nanoparticles via suppression of VEGFR-2 activation. Biomaterials. 2011;32:1865–1871.
  • Committee for the National Registry of R. The National Registry of Retinoblastoma in Japan (1983–2014). Jpn J Ophthalmol. 2018;62:409–423. doi:10.1007/s10384-018-0597-2
  • Qu W, Meng B, Yu Y, Wang S. Folic acid-conjugated mesoporous silica nanoparticles for enhanced therapeutic efficacy of topotecan in retina cancers. Int J Nanomedicine. 2018;13:4379–4389. doi:10.2147/IJN.S142668
  • Delrish E, Jabbarvand M, Ghassemi F, et al. Efficacy of topotecan nanoparticles for intravitreal chemotherapy of retinoblastoma. Exp Eye Res. 2021;204:108423. doi:10.1016/j.exer.2020.108423
  • You Y, Gupta VK, Li JC, Klistorner A, Graham SL. Optic neuropathies: characteristic features and mechanisms of retinal ganglion cell loss. Rev Neurosci. 2013;24:301–321.
  • Quigley HA. Neuronal death in glaucoma. Prog Retin Eye Res. 1999;18:39–57. doi:10.1016/S1350-9462(98)00014-7
  • Yao A, van Wijngaarden P. Metabolic pathways in context: mTOR signalling in the retina and optic nerve - A review. Clin Exp Ophthalmol. 2020;48:1072–1084. doi:10.1111/ceo.13819
  • Li N, Wang F, Zhang Q, et al. Rapamycin mediates mTOR signaling in reactive astrocytes and reduces retinal ganglion cell loss. Exp Eye Res. 2018;176:10–19. doi:10.1016/j.exer.2018.06.014
  • Eriksen AZ, Eliasen R, Oswald J, et al. Multifarious biologic loaded liposomes that stimulate the mammalian target of rapamycin signaling pathway show retina neuroprotection after retina damage. ACS Nano. 2018;12:7497–7508. doi:10.1021/acsnano.8b00596
  • Burkholder BM, Jabs DA. Uveitis for the non-ophthalmologist. BMJ. 2021;372:m4979. doi:10.1136/bmj.m4979
  • Nirbhavane P, Sharma G, Singh B, et al. Triamcinolone acetonide loaded-cationic nano-lipoidal formulation for uveitis: evidences of improved biopharmaceutical performance and anti-inflammatory activity. Colloids Surf B Biointerfaces. 2020;190:110902. doi:10.1016/j.colsurfb.2020.110902
  • Mehra N, Aqil M, Sultana Y. A grafted copolymer-based nanomicelles for topical ocular delivery of everolimus: formulation, characterization, ex-vivo permeation, in-vitro ocular toxicity, and stability study. Eur J Pharm Sci. 2021;159:105735. doi:10.1016/j.ejps.2021.105735
  • Kim H, Sung J, Chang Y, Alfeche A, Leal C. Microfluidics Synthesis of Gene Silencing Cubosomes. ACS Nano. 2018;12:9196–9205. doi:10.1021/acsnano.8b03770
  • Gaballa SA, El Garhy OH, Moharram H, Abdelkader H. Preparation and evaluation of cubosomes/cubosomal gels for ocular delivery of beclomethasone dipropionate for management of uveitis. Pharm Res. 2020;37:198. doi:10.1007/s11095-020-02857-1
  • Ryan EH. Current treatment strategies for symptomatic vitreous opacities. Curr Opin Ophthalmol. 2021;32:198–202. doi:10.1097/ICU.0000000000000752
  • Sauvage F, Fraire JC, Remaut K, et al. Photoablation of Human vitreous opacities by light-induced vapor nanobubbles. ACS Nano. 2019;13:8401–8416. doi:10.1021/acsnano.9b04050
  • Fogli S, Del Re M, Rofi E, Posarelli C, Figus M, Danesi R. Clinical pharmacology of intravitreal anti-VEGF drugs. Eye. 2018;32:1010–1020. doi:10.1038/s41433-018-0021-7
  • Androudi S, Dastiridou A, Pharmakakis N, et al. Guidelines for the management of wet age-related macular degeneration: recommendations from a panel of Greek experts. Adv Ther. 2016;33:715–726. doi:10.1007/s12325-016-0332-7
  • Ng DSC, Fung NSK, Yip FLT, Lai TYY. Ranibizumab for myopic choroidal neovascularization. Expert Opin Biol Ther. 2020;20:1385–1393. doi:10.1080/14712598.2021.1830969
  • Villegas VM, Schwartz SG. Current and future pharmacologic therapies for diabetic retinopathy. Curr Pharm Des. 2018;24:4903–4910. doi:10.2174/1381612825666190130140717
  • Enriquez AB, Avery RL, Baumal CR. Update on Anti-Vascular Endothelial Growth Factor Safety for Retinopathy of Prematurity. Asia Pac J Ophthalmol. 2020;9:358–368. doi:10.1097/APO.0000000000000302
  • Andres-Guerrero V, Perucho-Gonzalez L, Garcia-Feijoo J, et al. Current Perspectives on the use of anti-VEGF Drugs as adjuvant therapy in glaucoma. Adv Ther. 2017;34:378–395. doi:10.1007/s12325-016-0461-z
  • Kovach JL, Schwartz SG, Flynn HW, Scott IU. Anti-VEGF treatment strategies for wet AMD. J Ophthalmol. 2012;2012:786870. doi:10.1155/2012/786870
  • Danyliv A, Glanville J, McCool R, Ferreira A, Skelly A, Jacob RP. The Clinical effectiveness of ranibizumab treat and extend regimen in nAMD: systematic review and network meta-analysis. Adv Ther. 2017;34:611–619. doi:10.1007/s12325-017-0484-0
  • Alexandru MR, Alexandra NM. Wet age related macular degeneration management and follow-up. Rom J Ophthalmol. 2016;60:9–13.
  • Bazvand F, Khalili Pour E, Gharehbaghi G, et al. Hypertension and ischemic stroke after aflibercept for retinopathy of prematurity. Int Med Case Rep J. 2020;13:243–247. doi:10.2147/IMCRJ.S258881
  • Formica ML, Legeay S, Bejaud J, et al. Novel hybrid lipid nanocapsules loaded with a therapeutic monoclonal antibody - Bevacizumab - and Triamcinolone acetonide for combined therapy in neovascular ocular pathologies. Mater Sci Eng C Mater Biol Appl. 2021;119:111398. doi:10.1016/j.msec.2020.111398
  • Zarbin MA. Anti-VEGF agents and the risk of arteriothrombotic events. Asia Pac J Ophthalmol. 2018;7:63–67.
  • Sun JG, Jiang Q, Zhang XP, et al. Mesoporous silica nanoparticles as a delivery system for improving antiangiogenic therapy. Int J Nanomedicine. 2019;14:1489–1501. doi:10.2147/IJN.S195504
  • Luis de Redin I, Boiero C, Recalde S, et al. In vivo effect of bevacizumab-loaded albumin nanoparticles in the treatment of corneal neovascularization. Exp Eye Res. 2019;185:107697. doi:10.1016/j.exer.2019.107697
  • Mennillo E, Krokje A, Pretti C, Meucci V, Arukwe A. Biotransformation and oxidative stress responses in rat hepatic cell-line (H4IIE) exposed to racemic ketoprofen (RS-KP) and its enantiomer, dexketoprofen (S(+)-KP). Environ Toxicol Pharmacol. 2018;59:199–207. doi:10.1016/j.etap.2018.03.018
  • Barar J, Aghanejad A, Fathi M, Omidi Y. Advanced drug delivery and targeting technologies for the ocular diseases. Bioimpacts. 2016;6:49–67. doi:10.15171/bi.2016.07
  • Formica ML, Awde Alfonso HG, Palma SD. Biological drug therapy for ocular angiogenesis: anti-VEGF agents and novel strategies based on nanotechnology. Pharmacol Res Perspect. 2021;9:e00723. doi:10.1002/prp2.723
  • Baird PN, Saw S-M, Lanca C, et al. Myopia. Nat Rev Dis Primers. 2020;99.
  • Pineles SL, Kraker RT, VanderVeen DK, et al. Atropine for the prevention of myopia progression in children: a report by the American Academy of Ophthalmology. Ophthalmology. 2017;124:1857–1866. doi:10.1016/j.ophtha.2017.05.032
  • Walline JJ. Myopia Control: a Review. Eye Contact Lens. 2016;42:3–8. doi:10.1097/ICL.0000000000000207
  • Walline JJ, Lindsley KB, Vedula SS, et al. Interventions to slow progression of myopia in children. Cochrane Database Syst Rev. 2020;CD004916.
  • Huang J, Wen D, Wang Q, et al. Efficacy comparison of 16 interventions for myopia control in children: a network meta-analysis. Ophthalmology. 2016;123:697–708. doi:10.1016/j.ophtha.2015.11.010
  • Sanchez-Lopez E, Esteruelas G, Ortiz A, et al. Dexibuprofen Biodegradable Nanoparticles: one Step Closer towards a Better Ocular Interaction Study. Nanomaterials. 2020;10.
  • Gai X, Cheng L, Li T, et al. In vitro and in vivo studies on a novel bioadhesive colloidal system: cationic liposomes of ibuprofen. AAPS PharmSciTech. 2018;19:700–709. doi:10.1208/s12249-017-0872-4
  • Yu F, Zheng M, Zhang AY, Han Z. A cerium oxide loaded glycol chitosan nano-system for the treatment of dry eye disease. J Control Release. 2019;315:40–54. doi:10.1016/j.jconrel.2019.10.039
  • Huang HY, Wang MC, Chen ZY, et al. Gelatin-epigallocatechin gallate nanoparticles with hyaluronic acid decoration as eye drops can treat rabbit dry-eye syndrome effectively via inflammatory relief. Int J Nanomedicine. 2018;13:7251–7273. doi:10.2147/IJN.S173198
  • Di Tommaso C, Torriglia A, Furrer P, Behar-Cohen F, Gurny R, Moller M. Ocular biocompatibility of novel Cyclosporin A formulations based on methoxy poly(ethylene glycol)-hexylsubstituted poly(lactide) micelle carriers. Int J Pharm. 2011;416:515–524. doi:10.1016/j.ijpharm.2011.01.004
  • Schnichels S, Hurst J, de Vries JW, et al. Self-assembled DNA nanoparticles loaded with travoprost for glaucoma-treatment. Nanomedicine. 2020;29:102260. doi:10.1016/j.nano.2020.102260
  • Orasugh JT, Sarkar G, Saha NR, et al. Effect of cellulose nanocrystals on the performance of drug loaded in situ gelling thermo-responsive ophthalmic formulations. Int J Biol Macromol. 2019;124:235–245. doi:10.1016/j.ijbiomac.2018.11.217
  • Fahmy HM, Saad E, Sabra NM, El-Gohary AA, Mohamed FF, Gaber MH. Treatment merits of Latanoprost/Thymoquinone - Encapsulated liposome for glaucomatus rabbits. Int J Pharm. 2018;548:597–608. doi:10.1016/j.ijpharm.2018.07.012
  • Wang F, Bao X, Fang A, et al. Nanoliposome-encapsulated brinzolamide-hydropropyl-beta-cyclodextrin inclusion complex: a potential therapeutic ocular drug-delivery system. Front Pharmacol. 2018;9:91. doi:10.3389/fphar.2018.00091
  • Rathod LV, Kapadia R, Sawant KK. A novel nanoparticles impregnated ocular insert for enhanced bioavailability to posterior segment of eye: in vitro, in vivo and stability studies. Mater Sci Eng C Mater Biol Appl. 2017;71:529–540. doi:10.1016/j.msec.2016.10.017
  • Ikuta Y, Aoyagi S, Tanaka Y, et al. Creation of nano eye-drops and effective drug delivery to the interior of the eye. Sci Rep. 2017;7:44229. doi:10.1038/srep44229
  • Kouchak M, Bahmandar R, Bavarsad N, Farrahi F. Ocular dorzolamide nanoliposomes for prolonged IOP reduction: in-vitro and in-vivo evaluation in rabbits. Iran J Pharm Res. 2016;15:205–212.
  • Yu S, Wang QM, Wang X, et al. Liposome incorporated ion sensitive in situ gels for opthalmic delivery of timolol maleate. Int J Pharm. 2015;480:128–136. doi:10.1016/j.ijpharm.2015.01.032
  • Singh J, Chhabra G, Pathak K. Development of acetazolamide-loaded, pH-triggered polymeric nanoparticulate in situ gel for sustained ocular delivery: in vitro. ex vivo evaluation and pharmacodynamic study. Drug Dev Ind Pharm. 2014;40:1223–1232. doi:10.3109/03639045.2013.814061
  • Tuomela A, Liu P, Puranen J, et al. Brinzolamide nanocrystal formulations for ophthalmic delivery: reduction of elevated intraocular pressure in vivo. Int J Pharm. 2014;467:34–41. doi:10.1016/j.ijpharm.2014.03.048
  • Mishra V, Jain NK. Acetazolamide encapsulated dendritic nano-architectures for effective glaucoma management in rabbits. Int J Pharm. 2014;461:380–390. doi:10.1016/j.ijpharm.2013.11.043
  • Jung HJ, Abou-Jaoude M, Carbia BE, Plummer C, Chauhan A. Glaucoma therapy by extended release of timolol from nanoparticle loaded silicone-hydrogel contact lenses. J Control Release. 2013;165:82–89. doi:10.1016/j.jconrel.2012.10.010
  • Wu W, Li J, Wu L, et al. Ophthalmic delivery of brinzolamide by liquid crystalline nanoparticles: in vitro and in vivo evaluation. AAPS PharmSciTech. 2013;14:1063–1071. doi:10.1208/s12249-013-9997-2
  • Natarajan JV, Ang M, Darwitan A, Chattopadhyay S, Wong TT, Venkatraman SS. Nanomedicine for glaucoma: liposomes provide sustained release of latanoprost in the eye. Int J Nanomedicine. 2012;7:123–131.
  • Tang M, Ji X, Xu H, et al. Photostable and biocompatible fluorescent silicon nanoparticles-based theranostic probes for simultaneous imaging and treatment of ocular neovascularization. Anal Chem. 2018;90:8188–8195. doi:10.1021/acs.analchem.8b01580
  • Huu VA, Luo J, Zhu J, et al. Light-responsive nanoparticle depot to control release of a small molecule angiogenesis inhibitor in the posterior segment of the eye. J Control Release. 2015;200:71–77. doi:10.1016/j.jconrel.2015.01.001
  • Luo L, Zhang X, Hirano Y, et al. Targeted intraceptor nanoparticle therapy reduces angiogenesis and fibrosis in primate and murine macular degeneration. ACS Nano. 2013;7:3264–3275. doi:10.1021/nn305958y
  • Iwase T, Fu J, Yoshida T, et al. Sustained delivery of a HIF-1 antagonist for ocular neovascularization. J Control Release. 2013;172:625–633. doi:10.1016/j.jconrel.2013.10.008
  • Kyosseva SV, Chen L, Seal S, McGinnis JF. Nanoceria inhibit expression of genes associated with inflammation and angiogenesis in the retina of Vldlr null mice. Exp Eye Res. 2013;116:63–74. doi:10.1016/j.exer.2013.08.003
  • Yandrapu SK, Upadhyay AK, Petrash JM, Kompella UB. Nanoparticles in porous microparticles prepared by supercritical infusion and pressure quench technology for sustained delivery of bevacizumab. Mol Pharm. 2013;10:4676–4686. doi:10.1021/mp400487f
  • Jo DH, Kim JH, Yu YS, Lee TG, Kim JH. Antiangiogenic effect of silicate nanoparticle on retinal neovascularization induced by vascular endothelial growth factor. Nanomedicine. 2012;8:784–791. doi:10.1016/j.nano.2011.09.003
  • Iezzi R, Guru BR, Glybina IV, Mishra MK, Kennedy A, Kannan RM. Dendrimer-based targeted intravitreal therapy for sustained attenuation of neuroinflammation in retinal degeneration. Biomaterials. 2012;33:979–988. doi:10.1016/j.biomaterials.2011.10.010
  • Liu HA, Liu YL, Ma ZZ, Wang JC, Zhang Q. A lipid nanoparticle system improves siRNA efficacy in RPE cells and a laser-induced murine CNV model. Invest Ophthalmol Vis Sci. 2011;52:4789–4794. doi:10.1167/iovs.10-5891
  • Zhang C, Wang YS, Wu H, et al. Inhibitory efficacy of hypoxia-inducible factor 1alpha short hairpin RNA plasmid DNA-loaded poly (D, L-lactide-co-glycolide) nanoparticles on choroidal neovascularization in a laser-induced rat model. Gene Ther. 2010;17:338–351. doi:10.1038/gt.2009.158
  • Garg V, Nirmal J, Riadi Y, Kesharwani P, Kohli K, Jain GK. Amelioration of endotoxin-induced uveitis in rabbit by topical administration of tacrolimus proglycosome nano-vesicles. J Pharm Sci. 2021;110:871–875. doi:10.1016/j.xphs.2020.10.060
  • Coburn PS, Miller FC, LaGrow AL, et al. Disarming Pore-forming toxins with biomimetic nanosponges in intraocular infections. mSphere. 2019;4.
  • Chennamaneni SR, Mamalis C, Archer B, Oakey Z, Ambati BK. Development of a novel bioerodible dexamethasone implant for uveitis and postoperative cataract inflammation. J Control Release. 2013;167:53–59. doi:10.1016/j.jconrel.2013.01.007
  • Elbialy NS, Abdol-Azim BM, Shafaa MW, El Shazly LH, El Shazly AH, Khalil WA. Enhancement of the ocular therapeutic effect of prednisolone acetate by liposomal entrapment. J Biomed Nanotechnol. 2013;9:2105–2116. doi:10.1166/jbn.2013.1711
  • Liu J, Zhang X, Li G, et al. Anti-angiogenic activity of bevacizumab-bearing dexamethasone-loaded plga nanoparticles for potential intravitreal applications. Int J Nanomedicine. 2019;14:8819–8834. doi:10.2147/IJN.S217038
  • Savin CL, Popa M, Delaite C, Costuleanu M, Costin D, Peptu CA. Chitosan grafted-poly(ethylene glycol) methacrylate nanoparticles as carrier for controlled release of bevacizumab. Mater Sci Eng C Mater Biol Appl. 2019;98:843–860. doi:10.1016/j.msec.2019.01.036
  • Urlu N, Asik MD, Cakmak HB, Tuncer S, Turk M. Transscleral Delivery of Bevacizumab-Loaded Chitosan Nanoparticles. J Biomed Nanotechnol. 2019;15:830–838. doi:10.1166/jbn.2019.2716
  • Llabot JM, Luis de Redin I, Agüeros M. In vitro characterization of new stabilizing albumin nanoparticles as a potential topical drug delivery system in the treatment of corneal neovascularization (CNV). J Drug Deliv Sci Technol. 2019;52:379–385. doi:10.1016/j.jddst.2019.04.042
  • Zhang XP, Sun JG, Yao J, et al. Effect of nanoencapsulation using poly (lactide-co-glycolide) (PLGA) on anti-angiogenic activity of bevacizumab for ocular angiogenesis therapy. Biomed Pharmacother. 2018;107:1056–1063. doi:10.1016/j.biopha.2018.08.092
  • Yan J, Peng X, Cai Y, Cong W. Development of facile drug delivery platform of ranibizumab fabricated PLGA-PEGylated magnetic nanoparticles for age-related macular degeneration therapy. J Photochem Photobiol B. 2018;183:133–136. doi:10.1016/j.jphotobiol.2018.04.033
  • Karumanchi DK, Skrypai Y, Thomas A, Gaillard ER. Rational design of liposomes for sustained release drug delivery of bevacizumab to treat ocular angiogenesis. J Drug Deliv Sci Technol. 2018;47:275–282. doi:10.1016/j.jddst.2018.07.003
  • Mu H, Wang Y, Chu Y, et al. Multivesicular liposomes for sustained release of bevacizumab in treating laser-induced choroidal neovascularization. Drug Deliv. 2018;25:1372–1383. doi:10.1080/10717544.2018.1474967
  • Pandit J, Sultana Y, Aqil M. Chitosan-coated PLGA nanoparticles of bevacizumab as novel drug delivery to target retina: optimization, characterization, and in vitro toxicity evaluation. Artif Cells Nanomed Biotechnol. 2017;45:1397–1407. doi:10.1080/21691401.2016.1243545
  • Sousa F, Cruz A, Fonte P, Pinto IM, Neves-Petersen MT, Sarmento B. A new paradigm for antiangiogenic therapy through controlled release of bevacizumab from PLGA nanoparticles. Sci Rep. 2017;7:3736. doi:10.1038/s41598-017-03959-4
  • Elsaid N, Jackson TL, Elsaid Z, Alqathama A, Somavarapu S. PLGA microparticles entrapping chitosan-based nanoparticles for the ocular delivery of ranibizumab. Mol Pharm. 2016;13:2923–2940. doi:10.1021/acs.molpharmaceut.6b00335
  • Lu Y, Zhou N, Huang X, et al. Effect of intravitreal injection of bevacizumab-chitosan nanoparticles on retina of diabetic rats. Int J Ophthalmol. 2014;7:1–7.