282
Views
14
CrossRef citations to date
0
Altmetric
Original Research

Fruit Derived Potentially Bioactive Bioengineered Silver Nanoparticles

, , , , , ORCID Icon, & show all
Pages 7711-7726 | Published online: 18 Nov 2021

References

  • Ovais M, Khalil AT, Ayaz M, Ahmad I, Nethi SK, Mukherjee S. Biosynthesis of metal nanoparticles via microbial enzymes: a mechanistic approach. Int J Mol Sci. 2018;19(12):4100. doi:10.3390/ijms19124100
  • Ahmad SA, Das SS, Khatoon A, et al. Bactericidal activity of silver nanoparticles: a mechanistic review. Mater Sci Energy Technol. 2020;3:756–759.
  • Sim W, Barnard RT, Blaskovich MAT, Ziora ZM. Antimicrobial silver in medicinal and consumer applications: a patent review of the past decade (2007–2017). Antibiotics. 2018;7(4):93. doi:10.3390/antibiotics7040093
  • Deore SL, Khadabadi SS, Patel QR, et al. In vitro antioxidant activity and quantitative estimation of phenolic content of Lagenaria siceraria. Rasayan J Chem. 2009;2(1):129–132.
  • Pinzaru I, Coricovac D, Dehelean C, et al. Stable PEG-coated silver nanoparticles–A comprehensive toxicological profile. Food Chem Toxicol. 2018;111:546–556. doi:10.1016/j.fct.2017.11.051
  • Guzmán MG, Dille J, Godet S. Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity. Int J Chem Biomol Eng. 2009;2(3):104–111.
  • Van Dong P, Ha CH, Kasbohm J. Chemical synthesis and antibacterial activity of novel-shaped silver nanoparticles. Int Nano Lett. 2012;2(1):1–9. doi:10.1186/2228-5326-2-9
  • Tortella GR, Rubilar O, Durán N, et al. Silver nanoparticles: toxicity in model organisms as an overview of its hazard for human health and the environment. J Hazard Mater. 2020;390:121974. doi:10.1016/j.jhazmat.2019.121974
  • Elbeshehy EKF, Elazzazy AM, Aggelis G. Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against Bean Yellow Mosaic Virus and human pathogens. Front Microbiol. 2015;6:453. doi:10.3389/fmicb.2015.00453
  • Gao Y, Chen Y, Cao Y, Mo A, Peng Q. Potentials of nanotechnology in treatment of methicillin-resistant Staphylococcus aureus. Eur J Med Chem. 2020;113056. doi:10.1016/j.ejmech.2020.113056
  • Zhao Y, Chen L, Wang Y, et al. Nanomaterial-based strategies in antimicrobial applications: progress and perspectives. Nano Res. 2021;14:1–25.
  • Chen Y, Gao Y, Chen Y, Liu L, Mo A, Peng Q. Nanomaterials-based photothermal therapy and its potentials in antibacterial treatment. J Control Release. 2020;328:251–262. doi:10.1016/j.jconrel.2020.08.055
  • Yu C-H, Chen G-Y, Xia M-Y, et al. Understanding the sheet size-antibacterial activity relationship of graphene oxide and the nano-bio interaction-based physical mechanisms. Colloids Surf B Biointerfaces. 2020;191:111009. doi:10.1016/j.colsurfb.2020.111009
  • Phull A-R, Ali A, Ali A, et al. Synthesis of silver nanoparticles using euphorbia wallichii extract and assessment of their bio-functionalities. Med Chem (Los Angeles). 2020;16(4):495–506.
  • Ganguly S, Mondal S, Das P, et al. Natural saponin stabilized nano-catalyst as efficient dye-degradation catalyst. Nano-Struct Nano-Objects. 2018;16:86–95. doi:10.1016/j.nanoso.2018.05.002
  • Khan S, Rizvi SMD, Avaish M, Arshad M, Bagga P, Khan MS. A novel process for size controlled biosynthesis of gold nanoparticles using bromelain. Mater Lett. 2015;159:373–376. doi:10.1016/j.matlet.2015.06.118
  • Khan S, Rizvi SM, Saeed M, Srivastava AK, Khan M, Novel A. Approach for the synthesis of gold nanoparticles using trypsin. Adv Sci Lett. 2014;20(5–6):1061–1065. doi:10.1166/asl.2014.5481
  • Xu X, Man L. Papain mediated synthesized gold nanoparticles encore the potency of bioconjugated Flutamide. Curr Pharm Biotechnol. 2021;22(4):557–568. doi:10.2174/1389201021666200227121144
  • Jayasree T, Kishore KK, Vinay M, et al. Diuretic effect of chloroform extract of Benincasa hispida rind (pericarp) in Sprague-Dawley rats. Int J Appl Biol Pharm Technol. 2011;22:94–99.
  • Dong MY, Lu M, Yin Q, Feng W, Xu J, Xu W. Study of Benincasa hispida contents effective for protection of kidney. Liangsu J Agr Sci. 1995;11:46–52.
  • Shih C-YT, Wu J, Jia S, Khan AA, Ting K-LH, Shih DS. Purification of an osmotin-like protein from the seeds of Benincasa hispida and cloning of the gene encoding this protein. Plant Sci. 2001;160(5):817–826. doi:10.1016/S0168-9452(00)00450-7
  • Atiwetin P, Harada S, Kamei K. Serine proteinase inhibitor from wax gourd (Benincasa hispida [Thunb] Cogn.) seeds. Biosci Biotechnol Biochem. 2006;70(3):743–745. doi:10.1271/bbb.70.743
  • Zaini NAM, Anwar F, Hamid AA, Saari N. Kundur [Benincasa hispida (Thunb.) Cogn.]: a potential source for valuable nutrients and functional foods. Food Res Int. 2011;44(7):2368–2376. doi:10.1016/j.foodres.2010.10.024
  • Qadrie ZL, Hawisa NT, Khan M, Ali W, Samuel M, Anandan R. Antinociceptive and anti-pyretic activity of Benincasa hispida (Thunb.) cogn. in Wistar albino rats. Pak J Pharm Sci. 2009;22(3):45.
  • Shakya A, Bhat HR, Ghosh SK. Assessment of neurobehavioral properties of hydroalcoholic extract of Benincasa hispida (Thunb.) Cogn. Fruit Pulp in Mice. J Biol Act Prod Nat. 2019;9(4):299–310.
  • Sabale V, Kunjwani H, Sabale P. Formulation and in vitro evaluation of the topical antiageing preparation of the fruit of Benincasa hispida. J Ayurveda Integr Med. 2011;2(3):124. doi:10.4103/0975-9476.85550
  • Jiang X, Kuang F, Kong F, Yan C. Prediction of the antiglycation activity of polysaccharides from Benincasa hispida using a response surface methodology. Carbohydr Polym. 2016;151:358–363. doi:10.1016/j.carbpol.2016.05.079
  • Nadhiya K, Vijayalakshmi K, Gaddam ARG, Reddy G. Antiobesity effect of Benincasa hispidaFruit extract in high fat diet fed Wistar albino rats. Int J Pharm Clin Res. 2016;8(12):1590–1599.
  • Gill NS, Dhiman K, Sharma P, et al. Evaluation of free radical scavenging and antiulcer potential of methanolic extract of Benincasa hispida seeds. Res J Med Plant. 2011;5(5):596–604. doi:10.3923/rjmp.2011.596.604
  • Yenda B, Rao BV, Rao BG. In vitro antioxidant activity studies on leaves of Benincasa hispida (Thunb.) Cogn. Res J Pharm Biol Chem Sci. 2014;5:141–147.
  • Huang H, Huang J, Tso TK, Tsai Y, Chang C. Antioxidant and angiotension‐converting enzyme inhibition capacities of various parts of Benincasa hispida (wax gourd). Food/Nahrung. 2004;48(3):230–233. doi:10.1002/food.200300428
  • Varghese HS, Kotagiri S, Vrushabendra SBM, Archana SP, Raj GG. Nephroprotective activity of Benincasa hispida (Thunb.) Cogn. fruit extract against paracetamol induced nephrotoxicity in rats. Res J Pharm Biol Chem Sci. 2013;4(1):322–332.
  • Lee K-H, Choi H-R, Kim C-H. Anti-angiogenic effect of the seed extract of Benincasa hispida Cogniaux. J Ethnopharmacol. 2005;97(3):509–513. doi:10.1016/j.jep.2004.12.008
  • Natarajan D, Lavarasan RJ. Antimicrobial studies on methanol extract of Benincasa hispida cogn., fruit. Anc Sci Life. 2003;22(3):98.
  • Moon MK, Kang DG, Lee YJ, Kim JS, Lee HS. Effect of Benincasa hispida Cogniaux on high glucose-induced vascular inflammation of human umbilical vein endothelial cells. Vascul Pharmacol. 2009;50(3–4):116–122. doi:10.1016/j.vph.2008.11.007
  • Wingfield PT. Protein precipitation using ammonium sulfate. Curr Protoc Protein Sci. 2016;84(1):A–3F. doi:10.1002/0471140864.psa03fs84
  • Khan S, Ahmad K, Ahmad A, et al. Biogenic pentagonal silver nanoparticles for safer and more effective antibacterial therapeutics. Int J Nanomedicine. 2018;13:7789. doi:10.2147/IJN.S168224
  • Iram S, Zahera M, Wahid I, et al. Cisplatin bioconjugated enzymatic GNPs amplify the effect of cisplatin with acquiescence. Sci Rep. 2019;9(1):1–16. doi:10.1038/s41598-019-50215-y
  • Khan MS, Siddiqui SA, Siddiqui MSRA, Goswami U, Srinivasan KV, Khan MI. Antibacterial activity of synthesized 2, 4, 5‐trisubstituted imidazole derivatives. Chem Biol Drug Des. 2008;72(3):197–204. doi:10.1111/j.1747-0285.2008.00691.x
  • Baker A, Syed A, Alyousef AA, et al. Sericin-functionalized GNPs potentiate the synergistic effect of levofloxacin and balofloxacin against MDR bacteria. Microb Pathog. 2020;148:104467. doi:10.1016/j.micpath.2020.104467
  • Kalishwaralal K, BarathManiKanth S, Pandian SRK, Deepak V, Gurunathan S. Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids Surf B Biointerfaces. 2010;79(2):340–344. doi:10.1016/j.colsurfb.2010.04.014
  • Baker A, Wahid I, Hassan Baig M, et al. Silk cocoon-derived protein bioinspired gold nanoparticles as a formidable anticancer agent. J Biomed Nanotechnol. 2021;17(4):615–626.
  • Leite FL, Bueno CC, Da Róz AL, Ziemath EC, Oliveira ON. Theoretical models for surface forces and adhesion and their measurement using atomic force microscopy. Int J Mol Sci. 2012;13(10):12773–12856.
  • Huang J, Li Q, Sun D, et al. Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology. 2007;18(10):105104. doi:10.1088/0957-4484/18/10/105104
  • Soliman WE, Khan S, Rizvi SMD, et al. Therapeutic applications of biostable silver nanoparticles synthesized using peel extract of Benincasa hispida: antibacterial and anticancer activities. Nanomaterials. 2020;10(10):1954. doi:10.3390/nano10101954
  • Krutyakov YA, Kudrinskiy AA, Olenin AY, Lisichkin GV. Synthesis and properties of silver nanoparticles: advances and prospects. Russ Chem Rev. 2008;77(3):233. doi:10.1070/RC2008v077n03ABEH003751
  • Jena P, Bhattacharya M, Bhattacharjee G, et al. Bimetallic gold–silver nanoparticles mediate bacterial killing by disrupting the actin cytoskeleton MreB. Nanoscale. 2020;12(6):3731–3749. doi:10.1039/C9NR10700B
  • Rai MK, Deshmukh SD, Ingle AP, Gade AK. Silver nanoparticles: the powerful nanoweapon against multidrug‐resistant bacteria. J Appl Microbiol. 2012;112(5):841–852. doi:10.1111/j.1365-2672.2012.05253.x
  • Liao S, Zhang Y, Pan X, et al. Antibacterial activity and mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aeruginosa. Int J Nanomedicine. 2019;14:1469. doi:10.2147/IJN.S191340
  • Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology. 2007;18(22):225103. doi:10.1088/0957-4484/18/22/225103
  • Mirzajani F, Ghassempour A, Aliahmadi A, Esmaeili MA. Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Res Microbiol. 2011;162(5):542–549. doi:10.1016/j.resmic.2011.04.009
  • Joo H-S, Otto M. Molecular basis of in vivo biofilm formation by bacterial pathogens. Chem Biol. 2012;19(12):1503–1513. doi:10.1016/j.chembiol.2012.10.022
  • Park H-J, Kim HY, Cha S, et al. Removal characteristics of engineered nanoparticles by activated sludge. Chemosphere. 2013;92(5):524–528. doi:10.1016/j.chemosphere.2013.03.020
  • Ehrlich GD, Arciola CR. From Koch’s postulates to biofilm theory. the lesson of bill costerton. Int J Artif Organs. 2012;35:695–699. doi:10.5301/ijao.5000169
  • Maira-Litrán T, Bentancor LV, Bozkurt-Guzel C, O’Malley JM, Cywes-Bentley C, Pier GB. Synthesis and evaluation of a conjugate vaccine composed of Staphylococcus aureus poly-N-acetyl-glucosamine and clumping factor A. PLoS One. 2012;7(9):e43813. doi:10.1371/journal.pone.0043813
  • Al-Sheddi ES, Farshori NN, Al-Oqail MM, et al. Anticancer potential of green synthesized silver nanoparticles using extract of nepeta deflersiana against human cervical cancer cells (HeLA). Bioinorg Chem Appl. 2018;2018:1–12. doi:10.1155/2018/9390784
  • Gurunathan S, Lee K-J, Kalishwaralal K, Sheikpranbabu S, Vaidyanathan R, Eom SH. Antiangiogenic properties of silver nanoparticles. Biomaterials. 2009;30(31):6341–6350. doi:10.1016/j.biomaterials.2009.08.008
  • Mollick MMR, Rana D, Dash SK, et al. Studies on green synthesized silver nanoparticles using Abelmoschus esculentus (L.) pulp extract having anticancer (in vitro) and antimicrobial applications. Arab J Chem. 2019;12(8):2572–2584. doi:10.1016/j.arabjc.2015.04.033
  • Chithrani BD, Ghazani AA, Chan WCW. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006;6(4):662–668. doi:10.1021/nl052396o
  • Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44–84.
  • Yan L, Gu Z, Zhao Y. Chemical mechanisms of the toxicological properties of nanomaterials: generation of intracellular reactive oxygen species. Chem Asian J. 2013;8(10):2342–2353. doi:10.1002/asia.201300542
  • Sharma P, Jha AB, Dubey RS, Pessarakli M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot. 2012;2012. 55