149
Views
3
CrossRef citations to date
0
Altmetric
Original Research

Anti-Acid Biomimetic Dentine Remineralization Using Inorganic Silica Stabilized Nanoparticles Distributed Electronspun Nanofibrous Mats

, , , , &
Pages 8251-8264 | Published online: 21 Dec 2021

References

  • Favaro Zeola L, Soares PV, Cunha-Cruz J. Prevalence of dentin hypersensitivity: systematic review and meta-analysis. J Dent. 2019;81:1–6. doi:10.1016/j.jdent.2018.12.015
  • West N, Seong J, Davies M. Dentine hypersensitivity. Monogr Oral Sci. 2014;25:108–122. doi:10.1159/000360749
  • Thomas MS. Dentin hypersensitivity. J Evid Base Dent Pract. 2011;142:220–228. doi:10.1016/S1532-3382(12)70043-X
  • Brannstrom M. Dentin sensitivity and aspiration of odontoblasts. J Am Dent Assoc. 1963;66:366–370. doi:10.14219/jada.archive.1963.0104
  • Walters PA. Dentinal hypersensitivity: a review. J Contemp Dent Pract. 2005;6:107–117. doi:10.5005/jcdp-6-2-107
  • Yu J, Yang H, Li K, et al. A novel application of nanohydroxyapatite/mesoporous silica biocomposite on treating dentin hypersensitivity: an in vitro study. J Dent. 2016;50:21–29. doi:10.1016/j.jdent.2016.04.005
  • Liang K, Xiao S, Liu H, et al. 8DSS peptide induced effective dentinal tubule occlusion in vitro. Dent Mater. 2018;34(4):629–640. doi:10.1016/j.dental.2018.01.006
  • Niu LN, Zhang W, Pashley DH, et al. Biomimetic remineralization of dentin. Dent Mater. 2014;30:77–96. doi:10.1016/j.dental.2013.07.013
  • Poulsen S, Errboe M, Lescay Y, et al. Potassium containing toothpastes for dentine hypersensitivity. Cochrane Database Syst Rev. 2006;(3):CD001476. doi:10.1002/14651858.CD001476.pub2
  • Zhou YZ, Cao Y, Liu W, et al. Polydopamine-induced tooth remineralization. Acs Appl Mater Interfaces. 2012;4:6901–6910. doi:10.1021/am302041b
  • Liu Z, Shao C, Jin B, et al. Crosslinking ionic oligomers as conformable precursors to calcium carbonate. Nature. 2019;574(7778):394–398. doi:10.1038/s41586-019-1645-x
  • Gower LB. Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Cheminform. 2009;40(5):4551–4627. doi:10.1021/cr800443h
  • Xu Z, Long J, Zhang N, et al. Strong mineralization ability of strontium zinc silicate: formation of a continuous biomorphic mineralized layer with enhanced osteogenic activity. Colloids Surf B Biointerfaces. 2019;176:420–430. doi:10.1016/j.colsurfb.2019.01.026
  • Hyde ST, Carnerup AM, Larsson AK, et al. Self-assembly of carbonate-silica colloids: between living and non-living form. Phys A. 2004;339:24–33. doi:10.1016/j.physa.2004.03.045
  • Eiblmeier J, Kellermeier M, Deng M, et al. Bottom-up self-assembly of amorphous core–shell–shell nanoparticles and biomimetic crystal forms in inorganic silica–carbonate systems. Chem Mater. 2013;25:1842–1851. doi:10.1021/cm4003959
  • Kellermeier M, Melero-García E, Glaab F, et al. Stabilization of amorphous calcium carbonate in inorganic silica-rich environments. J Am Chem Soc. 2010;132(50):17859–17866. doi:10.1021/ja106959p
  • Kellermeier M, Melero-García E, Kunz W, et al. Local autocatalytic co-precipitation phenomena in self-assembled silica–carbonate materials. Colloids Surf B Biointerfaces. 2012;380:1–7. doi:10.1016/j.jcis.2012.05.009
  • Knaus J, Sommer M, Duchstein P, et al. Polar structure formation in solid solution of strontium-substituted fluorapatite–gelatin composites: from structural and morphogenetic aspects to pyroelectric properties. Chem Mater. 2020;32:8619–8632. doi:10.1021/acs.chemmater.0c02993
  • Ma KN, Huang D, Cai J, et al. Surface functionalization with strontium-containing nanocomposite coatings via EPD. Colloids Surf B Biointerfaces. 2016;146:97–106. doi:10.1016/j.colsurfb.2016.05.036
  • Deng H, Zhou X, Wang X, et al. Layer-by-layer structured polysaccharides film-coated cellulose nanofibrous mats for cell culture. Carbohydr Polym. 2010;80(2):474–479. doi:10.1016/j.carbpol.2009.12.004
  • Nakouzi E, Fares HM, Schlenoff JB, et al. Polyelectrolyte complex films influence the formation of polycrystalline micro-structures. Soft Matter. 2018;14(16):3164–3170. doi:10.1039/C7SM02466E
  • Wang Z, Sa Y, Sauro S, et al. Effect of desensitising toothpastes on dentinal tubule occlusion: a dentine permeability measurement and SEM in vitro study. J Dent. 2010;38:400–410. doi:10.1016/j.jdent.2010.01.007
  • João-Souza SH, Machado C, Lopes M, et al. Effectiveness and acid/tooth brushing resistance of in-office desensitizing treatments-A hydraulic conductance study. Arch Oral Biol. 2018;96:130–136. doi:10.1016/j.archoralbio.2018.09.004
  • Nudelman F, Pieterse K, George A. The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat Mater. 2010;9:1004–1009. doi:10.1038/nmat2875
  • Gan X, He KH, Qian BS, et al. The effect of glycine on the growth of calcium carbonate in alkaline silica gel. J Cryst Growth. 2017;458:60–65. doi:10.1016/j.jcrysgro.2016.11.027
  • Qin W, Liu P, Zhang R, et al. JNK MAPK is involved in BMP-2-induced odontoblastic differentiation of human dental pulp cells. Connect Tissue Res. 2014;55:217–224. doi:10.3109/03008207.2014.882331
  • Huang D, Ma K, Cai X, et al. Evaluation of antibacterial, angiogenic, and osteogenic activities of green synthesized gap-bridging copper-doped nanocomposite coatings. Int J Nanomedicine. 2017;12:7483–7500. doi:10.2147/IJN.S141272
  • Eiblmeier J, Dankesreiter S, Pfitzner A, et al. Crystallization of mixed alkaline-earth carbonates in silica solutions at high Ph. Cryst Growth Des. 2014;14:6177–6188. doi:10.1021/cg5004116
  • Nakouzi E, Rendina R, Palui G, et al. Effect of inorganic additives on the growth of silica–carbonate biomorphs. J Cryst Growth. 2016;452:166–171. doi:10.1016/j.jcrysgro.2015.12.042
  • Niu LN, Jee SE, Jiao K, et al. Collagen intrafibrillar mineralization as a result of the balance between osmotic equilibrium and electroneutrality. Nat Mater. 2017;16:370–378. doi:10.1038/nmat4789
  • Liu Y, Luo D, Kou XI, et al. Hierarchical intrafibrillar nanocarbonated apatite assembly improves the nanomechanics and cytocompatibility of mineralized collagen. Adv Funct Mater. 2012;23:1404–1411. doi:10.1002/adfm.201201611
  • Bittarello E, Massaro FR, Aquilano D. The epitaxial role of silica groups in promoting the formation of silica/carbonate biomorphs: a first hypothesis. J Cryst Growth. 2010;312(3):402–412. doi:10.1016/j.jcrysgro.2009.11.004
  • George S, Kishen A, Song P. The role of environmental changes on monospecies biofilm formation on root canal wall by enterococcus faecalis. J Endodontics. 2005;31:867–872. doi:10.1097/01.don.0000164855.98346.fc
  • Fan W, Li YY, Sun Q, et al. Calcium-silicate mesoporous nanoparticles loaded with chlorhexidine for both anti- Enterococcus faecalis and mineralization properties. J Nanobiotechnol. 2016;14(1). doi:10.1186/s12951-016-0224-7
  • Echezarreta-López MM, Landin M. Using machine learning for improving knowledge on antibacterial effect of bioactive glass. Int J Pharm. 2013;453:641–647. doi:10.1016/j.ijpharm.2013.06.036
  • Liu J, Rawlinson SC, Hill RG, et al. Strontium-substituted bioactive glasses in vitro osteogenic and antibacterial effects. Dent Mater. 2016;32:412–422. doi:10.1016/j.dental.2015.12.013
  • Aimaiti A, Maimaitiyiming A, Boyong X, et al. Low-dose strontium stimulates osteogenesis but high-dose doses cause apoptosis in human adipose-derived stem cells via regulation of the ERK1/2 signaling pathway. Stem Cell Res Ther. 2017;8:282. doi:10.1186/s13287-017-0726-8
  • Mohan BG, Suresh BS, Varma HK, et al. In vitro evaluation of bioactive strontium-based ceramic with rabbit adipose-derived stem cells for bone tissue regeneration. J Mater Sci Mater Med. 2013;24:2831–2844. doi:10.1186/s13287-017-0726-8
  • Huang M, Hill RG, Rawlinson SC. Strontium (Sr) elicits odontogenic differentiation of human dental pulp stem cells (hDPSCs): a therapeutic role for Sr in dentine repair? Acta Biomater. 2016;38:201–211. doi:10.1016/j.actbio.2016.04.037
  • Pokrowiecki R, Wojnarowicz J, Zareba T, et al. Nanoparticles and human saliva: a step towards drug delivery systems for dental and craniofacial biomaterials. Int J Nanomedicine. 2019;14:9235–9257. PMID: 31819427; PMCID: PMC6886554. doi:10.2147/IJN.S221608