214
Views
2
CrossRef citations to date
0
Altmetric
Original Research

Egr1/HSP70 Promoter-Driven Activation of Gene Expression for Synergistic Anti-Hepatoma Using PEI-MZF Nanoparticles and Radiation

, , , , , , , , & ORCID Icon show all
Pages 423-441 | Published online: 26 Jan 2022

References

  • Kaufmann KB, Büning H, Galy A, et al. Gene therapy on the move. EMBO Mol Med. 2013;5(11):1642–1661. doi:10.1002/emmm.201202287
  • Zhang H, Liang C, Hou XX, et al. Study of the combined treatment of lung cancer using gene-loaded immunomagnetic albumin nanospheres in vitro and in vivo. Int J Nanomedicine. 2016;1:1039–1050. doi:10.2147/IJN.S98519
  • Stackhouse MA, Buchsbaum DJ. Radiation to control gene expression. Gene Ther. 2000;7(13):1085–1086.e. doi:10.1038/sj.gt.3301233
  • Ding M, Li R, He R, et al. p53 activated by AND gate genetic circuit under radiation and hypoxia for targeted cancer gene therapy. Cancer Sci. 2015;106(9):1163–1173. doi:10.1111/cas.12739
  • Wang Y, Mo L, Wei W, Shi X. Efficacy and safety of dendrimer nanoparticles with coexpression of tumor necrosis factor-α and herpes simplex virus thymidine kinase in gene radiotherapy of the human uveal melanoma OCM-1 cell line. Int J Nanomedicine. 2013;8:3805–3816. doi:10.2147/IJN.S48950
  • Talaat RM, Abo-Zeid TM, Abo-Elfadl MT, et al. Combined hyperthermia and radiation therapy for treatment of hepatocellular carcinoma. Asian Pac J Cancer Prev. 2019;20(8):2303–2310. doi:10.31557/APJCP.2019.20.8.2303
  • Hildebrandt B, Wust P, Ahlers O, et al. The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol. 2002;43:33–56. doi:10.1016/S1040-8428(01)00179-2
  • Madio DP, Van Gelderen P, Despres D, et al. On the feasibility of MRI-guided focused ultrasound for local induction of gene expression. J Magn Reson Imaging. 1998;8:101–104. doi:10.1002/jmri.1880080120
  • Wang Y, Shengliang L, Zhang P, et al. Photothermal-responsive conjugated polymer nanoparticles for remote control of gene expression in living cells. Adv Mater. 2018;30(8). doi:10.1002/adma.201705418
  • Tang QS, Zhang DS, Cong XM, et al. Using thermal energy produced by irradiation of Mn-Zn ferrite magnetic nanoparticles (MZF-NPs) for heat-inducible gene expression. J Biomater. 2008;29:2673–2679. doi:10.1016/j.biomaterials.2008.01.038
  • Isomoto H, Ohtsuru A, Braiden V, et al. Heat-directed suicide gene therapy mediated by heat shock protein promoter for gastric cancer. Oncol Rep. 2006;15:629–635.
  • Zhang J, Zhang DS, Wang L, et al. A magnetic nano-vector of gene and drug for heat-inducible gene expression. Proceedings of the 3rd IEEE international Conference on Nano/ Molecular Medicine and Engineering; October 18–21; 2009; Taiwan:307–312.
  • Zhang J, Zhang DS. The biocompatibility of the temperature sensitive pHsp-HSV-TK/As2O3 magnetic complex and its anti-tumor effect on HepG2 cells. IEEE International Nano Electornics Conference 2010 (INEC 2010); January 5–7; 2010; Hong Kong.
  • Öztürk S, Ergün BG, Çalık P. Double promoter expression systems for recombinant protein production by industrial microorganisms. Appl Microbiol Biotechnol. 2017;101(20):7459–7475. doi:10.1007/s00253-017-8487-y
  • Rao Y, Cai D, Wang H, et al. Construction and application of a dual promoter system for efficient protein production and metabolic pathway enhancement in Bacillus licheniformis. J Biotechnol. 2020;312:1–10. doi:10.1016/j.jbiotec.2020.02.015
  • Mirzaie V, Eslaminejad T, Babaei H, et al. Enhancing the butyrylcholinesterase activity in HEK-293 cell line by dual-promoter vector decorated on lipofectamine. Drug Des Devel Ther. 2020;14:3589–3599. doi:10.2147/DDDT.S260419
  • Gutiérrez CL, Muñoz C, San Martín M, et al. Chloroplast dual divergent promoter plasmid for heterologous protein expression in tetraselmis suecica (chlorophyceae, chlorodendrales). J Phycol. 2020;56(4):1066–1076. doi:10.1111/jpy.13013
  • Zhang K, Su L, Duan X, Liu L, Wu J. High-level extracellular protein production in Bacillus subtilis using an optimized dual-promoter expression system. Microb Cell Fact. 2017;16(1):32. doi:10.1186/s12934-017-0649-1
  • Liu G, Zhang Y, Xing M. Dual promoters enhance heterologous enzyme production from bacterial phage based recombinant Bacillus subtilis. Chin J Biotechonol. 2006;22(2):191–197. doi:10.1016/S1872-2075(06)60023-X
  • Finn, J., Lee, A., MacLacchlan,I., et al. An enhanced autogene-based dual promoter cytoplasmic expression system yeilds increased gene expression.Gene Ther, 2004;11:276-283. doi:10.1038/sj.gt.3302172
  • Fan W, Yung B, Huang P, et al. Nanotechnology for multimodal synergistic cancer therapy. Chem Rev. 2017;117:13566–13638. doi:10.1021/acs.chemrev.7b00258
  • Lin M, Zhang DS, Huang JX, et al. An evaluation on transfection efficiency of pHRE-Egr1-EGFP in hepatocellular carcinoma cells Bel-7402 mediated by PEI-MZF-NPs. J Nanomater. 2011:1–10. doi:10.1155/2011/910539
  • Tyrrell ZL, Shen Y, Radosz M. Fabrication of micellar nanoparticles for drug delivery through the self-assembly of block copolymers. Prog Polym Sci. 2010;35:1128–1143. doi:10.1016/j.progpolymsci.2010.06.003
  • Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev. 2016;116(4):2602–2663. doi:10.1021/acs.chemrev.5b00346
  • Aigner A, Malek A, Czubayko F. PEG grafting of polyethylenimine (PEI) exerts different effects on DNA transfection and siRNA-induced gene targeting efficacy. J Drug Target. 2008;16(2):124–139.
  • Boussif O, Lezoualc’h F, Zanta MA, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: poly-ethylenimine. PNAS. 1995;92(16):7297–7301. doi:10.1073/pnas.92.16.7297
  • Behr J-P. The proton sponge: a trick to enter cells the viruses did not exploit. CHIMIA Int J Chem. 1997;51(1–2):34–36.