289
Views
4
CrossRef citations to date
0
Altmetric
Review

Targeted PET/MRI Imaging Super Probes: A Critical Review of Opportunities and Challenges

, , , & ORCID Icon
Pages 8465-8483 | Published online: 01 Jan 2022

References

  • Leeflang MMG, Allerberger F. How to: evaluate a diagnostic test. Clin Microbiol Infect. 2019;25(1):54–59. doi:10.1016/j.cmi.2018.06.011
  • Chen Z-Y, Wang Y-X, Lin Y, et al. Advance of molecular imaging technology and targeted imaging agent in imaging and therapy. Biomed Res Int. 2014;2014:1–12. doi:10.1155/2014/819324
  • Picano E. Sustainability of medical imaging. Br Med J. 2004;328(7439):578–580. doi:10.1136/bmj.328.7439.578
  • Stucht D, Danishad KA, Schulze P, Godenschweger F, Zaitsev M, Speck O. Highest resolution in vivo human brain MRI using prospective motion correction. PLoS One. 2015;10(7):1–17. doi:10.1371/journal.pone.0133921
  • Kramer-Marek G, Capala J. Can PET imaging facilitate optimization of cancer therapies? Curr Pharm Des. 2012;18(18):2657–2669. doi:10.2174/138161212800492813
  • Davidson CL, Heldebrant DJ, Bearden MD, Horner JA, Freeman CJ. The IUPAC Compendium of Chemical Terminology. Vol. 114. Gold V ed. Research Triangle Park, NC: International Union of Pure and Applied Chemistry (IUPAC); 2019. doi:10.1351/goldbook
  • Weishaupt D, Köchli VD, Marincek B. How Does MRI Work? Berlin, Heidelberg: Springer Berlin Heidelberg; 2006. doi:10.1007/978-3-540-37845-7
  • Westbrook C, Talbot J. MRI in Practice. 5th ed. John Wiley & Sons Inc; 2018.
  • Dryzek J. Charakterystyki procesu anihilacji pozytonów w materii. 2000. doi:10.4103/0971-6203.25665
  • Wadsak W, Mitterhauser M. Basics and principles of radiopharmaceuticals for PET/CT. Eur J Radiol. 2010;73(3):461–469. doi:10.1016/j.ejrad.2009.12.022
  • Treglia G, Salsano M. PET imaging using radiolabelled antibodies: future direction in tumor diagnosis and correlate applications. Res Rep Nucl Med. 2013;9. doi:10.2147/rrnm.s35186
  • Yang CT, Ghosh KK, Padmanabhan P, et al. PET-MR and SPECT-MR multimodality probes: development and challenges. Theranostics. 2018;8(22):6210–6232. doi:10.7150/thno.26610
  • Lamb J, Holland JP. Advanced methods for radiolabeling multimodality nanomedicines for SPECT/MRI and PET/MRI. J Nucl Med. 2018;59(3):382–389. doi:10.2967/jnumed.116.187419
  • Dammes N, Peer D. Monoclonal antibody-based molecular imaging strategies and theranostic opportunities. Theranostics. 2020;10(2):938–955. doi:10.7150/thno.37443
  • Bulte JWM, Kraitchman DL. Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed. 2004;17(7):484–499. doi:10.1002/nbm.924
  • Estelrich J, Sánchez-Martín MJ, Busquets MA. Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents. Int J Nanomed. 2015;10:1727–1741. doi:10.2147/IJN.S76501
  • Na HB, Song IC, Hyeon T. Inorganic nanoparticles for MRI contrast agents. Adv Mater. 2009;21(21):2133–2148. doi:10.1002/adma.200802366
  • Wood ML, Hardy PA. Proton relaxation enhancement. J Magn Reson Imaging. 1993;3(1):149–156. doi:10.1002/jmri.1880030127
  • Bloembergen N. Proton relaxation times in paramagnetic solutions. J Chem Phys. 1957;27(2):572–573. doi:10.1063/1.1743771
  • Strandberg E, Westlund PO. 1H NMRD profile and ESR lineshape calculation for an isotropic electron spin system with S = 7/2. A generalized modified solomon-bloembergen-morgan theory for nonextreme-narrowing conditions. J Magn Reson. 1996;122(2):179–191. doi:10.1006/jmra.1996.0193
  • Lauffer RB. Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: theory and design. Chem Rev. 1987;87(5):901–927. doi:10.1021/cr00081a003
  • Terencio T, Roithová J, Brandès S, Rousselin Y, Penouilh MJ, Meyer M. A comparative IRMPD and DFT study of Fe3+ and UO22+ complexation with N-methylacetohydroxamic acid. Inorg Chem. 2018;57(3):1125–1135. doi:10.1021/acs.inorgchem.7b02567
  • Aryal S, Key J, Stigliano C, Landis MD, Lee DY, Decuzzi P. Positron emitting magnetic nanoconstructs for PET/MR imaging. Small. 2014;10(13):2688–2696. doi:10.1002/smll.201303933
  • Verwilst P, Park S, Yoon B, Kim JS. Recent advances in Gd-chelate based bimodal optical/MRI contrast agents. Chem Soc Rev. 2015;44(7):1791–1806. doi:10.1039/c4cs00336e
  • Caravan P, Ellison JJ, McMurry TJ, Lauffer RB. Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev. 1999;99(9):2293–2352. doi:10.1021/cr980440x
  • Rinck PA, Muller RN. Field strength and dose dependence of contrast enhancement by gadolinium-based MR contrast agents. Eur Radiol. 1999;9(5):998–1004. doi:10.1007/s003300050781
  • Kellar KE, Fujii DK, Gunther WHH, Briley-Sæbø K, Spiller M, Koenig SH. ‘NC100150ʹ, a preparation of iron oxide nanoparticles ideal for positive-contrast MR angiography. Magma Magn Reson Mater Phys Biol Med. 1999;8(3):207–213. doi:10.1007/BF02594600
  • Taboada E, Rodríguez E, Roig A, Oró J, Roch A, Muller RN. Relaxometric and magnetic characterization of ultrasmall iron oxide nanoparticles with high magnetization. Evaluation as potential T1 magnetic resonance imaging contrast agents for molecular imaging. Langmuir. 2007;23(8):4583–4588. doi:10.1021/la063415s
  • Das S, Parga K, Chakraborty I, et al. Magnetic resonance imaging contrast enhancement in vitro and in vivo by octanuclear iron-oxo cluster-based agents. J Inorg Biochem. 2018;186:176–186. doi:10.1016/j.jinorgbio.2018.06.005
  • Marangon I, Ménard-Moyon C, Kolosnjaj-Tabi J, et al. Covalent functionalization of multi-walled carbon nanotubes with a gadolinium chelate for efficient T1-weighted magnetic resonance imaging. Adv Funct Mater. 2014;24(45):7173–7186. doi:10.1002/adfm.201402234
  • Ananta JS, Matson ML, Tang AM, et al. Single-walled carbon nanotube materials as T2-weighted MRI contrast agents. J Phys Chem C. 2009;113(45):19369–19372. doi:10.1021/jp907891n
  • Engelking LR. Chapter 4 – protein structure. Textb Vet Physiol Chem. 2015;18–25. doi:10.1016/B978-0-12-391909-0.50004-9
  • Turgeon ML. Clinical Hematology: Theory and Procedures. 4th ed. Kraków: Lippincott Williams & Wilkins; 2004.
  • Kim S, Chae MK, Yim MS, et al. Hybrid PET/MR imaging of tumors using an oleanolic acid-conjugated nanoparticle. Biomaterials. 2013;34(33):8114–8121. doi:10.1016/j.biomaterials.2013.07.078
  • Chen F, Ellison PA, Lewis CM, et al. Chelator-free synthesis of a dual-modality PET/MRI agent. Angew Chem Int Ed Engl. 2013;23(1):1–7. doi:10.1002/anie.201306306.Chelator-Free
  • Lee HY, Li Z, Chen K, et al. PET/MRI dual-modality tumor imaging using arginine-glycine-aspartic (RGD)-conjugated radiolabeled iron oxide nanoparticles. J Nucl Med. 2008;49(8):1371–1379. doi:10.2967/jnumed.108.051243
  • Choi JS, Park JC, Nah H, et al. A hybrid nanoparticle probe for dual-modality positron emission tomography and magnetic resonance imaging. Angew Chemie. 2008;47(33):6259–6262. doi:10.1002/anie.200801369
  • Shi X, Shen L. Integrin α v β 3 receptor targeting PET/MRI dual-modal imaging probe based on the 64 Cu labeled manganese ferrite nanoparticles. J Inorg Biochem. 2018;186:257–263. doi:10.1016/j.jinorgbio.2018.06.004
  • Tu C, Ng TSC, Jacobs RE, Louie AY. Multimodality PET/MRI agents targeted to activated macrophages topical issue on metal-based MRI contrast agents. Guest editor: Valerie C. Pierre. J Biol Inorg Chem. 2014;19(2):247–258. doi:10.1007/s00775-013-1054-9
  • Frullano L, Catana C, Benner T, Sherry AD, Caravan P. Bimodal MR-PET agent for quantitative pH imaging. Angew Chemie. 2010;49(13):2382–2384. doi:10.1002/anie.201000075
  • Uppal R, Catana C, Ay I, Benner T, Sorensen AG, Caravan P. Bimodal thrombus imaging: simultaneous PET/MR imaging with a fibrin-targeted dual PET/MR probe—feasibility study in rat model. Radiology. 2011;258(3):812–820. doi:10.1148/radiol.10100881
  • Vologdin N, Rolla GA, Botta M, Tei L. Orthogonal synthesis of a heterodimeric ligand for the development of the GdIII-GaIII ditopic complex as a potential pH-sensitive MRI/PET probe. Org Biomol Chem. 2013;11(10):1683–1690. doi:10.1039/c2ob27200h
  • Devreux M, Henoumont C, Dioury F, et al. Bimodal probe for magnetic resonance imaging and photoacoustic imaging based on a PCTA-derived gadolinium(III) complex and ZW800-1. Eur J Inorg Chem. 2019;2019(29):3354–3365. doi:10.1002/ejic.201900387
  • Wang Y-XJ. Superparamagnetic iron oxide based MRI contrast agents: current status of clinical application. Quant Imaging Med Surg. 2011;1(1):35–40. doi:10.3978/j.issn.2223-4292.2011.08.03
  • Thorek DLJ, Ulmert D, Diop N-FM, et al. Non-invasive mapping of deep-tissue lymph nodes in live animals using a multimodal PET/MRI nanoparticle. Nat Commun. 2014;5(1):3097. doi:10.1038/ncomms4097
  • Knobloch G, Colgan T, Wiens CN, et al. Relaxivity of ferumoxytol at 1.5 T and 3.0 T. Invest Radiol. 2018;53(5):257–263. doi:10.1097/RLI.0000000000000434
  • Jarrett BR, Gustafsson B, Kukis DL, Louie AY. Synthesis of 64 Cu-labeled magnetic nanoparticles for multimodal imaging. Bioconjug Chem. 2008;19(7):1496–1504. doi:10.1021/bc800108v.Synthesis
  • Glaus C, Rossin R, Welch MJ, Bao G. In vivo evaluation of 64Cu-labeled magnetic nanoparticles as a dual-modality PET/MR imaging agent. Bioconjug Chem. 2010;21(4):715–722. doi:10.1021/bc900511j
  • Yang X, Hong H, Grailer JJ, et al. cRGD-functionalized, DOX-conjugated, and 64 Cu-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging. Biomaterials. 2011;32(17):4151. doi:10.1016/j.biomaterials.2011.02.006.cRGD-functionalized
  • Locatelli E, Gil L, Israel LL, et al. Biocompatible nanocomposite for PET/MRI hybrid imaging. Int J Nanomedicine. 2012;7:6021–6033. doi:10.2147/IJN.S38107
  • Wong RM, Gilbert DA, Liu K, Louie AY. Rapid size-controlled synthesis of oxide nanoparticles. ACS Nano. 2012;6(4):3461–3467. doi:10.1021/nn300494k
  • Chakravarty R, Valdovinos HF, Chen F, et al. Intrinsically germanium-69 labeled iron oxide nanoparticle: synthesis and in vivo dual-modality PET/MR imaging. Physiol Behav. 2014;176(1):100–106. doi:10.1002/adma.201401372.
  • Cui X, Belo S, Krüger D, et al. Aluminium hydroxide stabilised MnFe2O4 and Fe3O4 nanoparticles as dual-modality contrasts agent for MRI and PET imaging. Biomaterials. 2014;35(22):5840–5846. doi:10.1016/j.biomaterials.2014.04.004
  • Truillet C, Bouziotis P, Tsoukalas C, et al. Ultrasmall particles for Gd-MRI and 68Ga-PET dual imaging. Contrast Media Mol Imaging. 2015;10(4):309–319. doi:10.1002/cmmi.1633
  • Yang BY, Moon SH, Seelam SR, et al. Development of a multimodal imaging probe by encapsulating iron oxide nanoparticles with functionalized amphiphiles for lymph node imaging. Nanomedicine. 2015;10(12):1899–1910. doi:10.2217/nnm.15.41
  • Moon SH, Yang BY, Kim YJ, et al. Development of a complementary PET/MR dual-modal imaging probe for targeting prostate-specific membrane antigen (PSMA). Nanomed Nanotechnol Biol Med. 2016;12(4):871–879. doi:10.1016/j.nano.2015.12.368
  • Pellico J, Ruiz-Cabello J, Saiz-Alía M, et al. Fast synthesis and bioconjugation of 68Ga core-doped extremely small iron oxide nanoparticles for PET/MR imaging. Contrast Media Mol Imaging. 2016;11(3):203–210. doi:10.1002/cmmi.1681
  • Nguyen Pham TH, Lengkeek NA, Greguric I, et al. Tunable and noncytotoxic PET/SPECT-MRI multimodality imaging probes using colloidally stable ligand-free superparamagnetic iron oxide nanoparticles. Int J Nanomed. 2017;12:899–909. doi:10.2147/IJN.S127171
  • Zhu J, Li H, Xiong Z, et al. Polyethyleneimine-coated manganese oxide nanoparticles for targeted tumor PET/MR imaging. ACS Appl Mater Interfaces. 2018;10(41):34954–34964. doi:10.1021/acsami.8b12355
  • Thakare V, Tran VL, Natuzzi M, et al. Functionalization of theranostic AGuIX® nanoparticles for PET/MRI/optical imaging. RSC Adv. 2019;9(43):24811–24815. doi:10.1039/c9ra00365g
  • Gholami YH, Yuan H, Wilks MQ, et al. A radio-nano-platform for T1/T2 dual-mode PET-MR imaging. Int J Nanomed. 2020;15:1253–1266. doi:10.2147/IJN.S241971
  • Xu F, Li X, Chen H, et al. Synthesis of heteronanostructures for multimodality molecular imaging-guided photothermal therapy. J Mater Chem B. 2020;8(44):10136–10145. doi:10.1039/d0tb02136a
  • Shaw TB, Jeffree RL, Thomas P, et al. Diagnostic performance of 18F-fluorodeoxyglucose positron emission tomography in the evaluation of glioma. J Med Imaging Radiat Oncol. 2019;63(5):650–656. doi:10.1111/1754-9485.12929
  • Groult H, Ruiz-Cabello J, Pellico J, et al. Parallel multifunctionalization of nanoparticles: a one-step modular approach for in vivo imaging. Bioconjug Chem. 2015;26(1):153–160. doi:10.1021/bc500536y
  • Yang M, Fan Q, Zhang R, et al. Dragon fruit-like biocage as an iron trapping nanoplatform for high efficiency targeted cancer multimodality imaging. Biomaterials. 2015;69:30–37. doi:10.1016/j.biomaterials.2015.08.001
  • Thomas G, Boudon J, Maurizi L, et al. Innovative magnetic nanoparticles for PET/MRI bimodal imaging. ACS Omega. 2019;4(2):2637–2648. doi:10.1021/acsomega.8b03283
  • Boros E, Bowen AM, Josephson L, Vasdev N, Holland JP. Chelate-free metal ion binding and heat-induced radiolabeling of iron oxide nanoparticles. Chem Sci. 2015;6(1):225–236. doi:10.1039/c4sc02778g
  • Torres Martin de Rosales R, Tavaré R, Paul RL, et al. Synthesis of 64 Cu II -Bis(dithiocarbamatebisphosphonate) and its conjugation with superparamagnetic iron oxide nanoparticles: in vivo evaluation as dual-modality PET-MRI agent. Angew Chemie. 2011;50(24):5509–5513. doi:10.1002/anie.201007894
  • Abou DS, Thorek DLJ, Ramos NN, et al. 89Zr-labeled paramagnetic octreotide-liposomes for PET-MR imaging of cancer. Pharm Res. 2013;30(3):878–888. doi:10.1007/s11095-012-0929-8
  • Desbois N, Michelin C, Chang Y, et al. Synthetic strategy for preparation of a folate corrole DOTA heterobimetallic Cu-Gd complex as a potential bimodal contrast agent in medical imaging. Tetrahedron Lett. 2015;56(51):7128–7131. doi:10.1016/j.tetlet.2015.11.032
  • Notni J, Hermann P, Dregely I, Wester HJ. Convenient synthesis of 68Ga-labeled gadolinium(III) complexes: towards bimodal responsive probes for functional imaging with PET/MRI. Chem a Eur J. 2013;19(38):12602–12606. doi:10.1002/chem.201302751
  • Sharma R, Xu Y, Kim SW, et al. Carbon-11 radiolabeling of iron-oxide nanoparticles for dual-modality PET/MR imaging. Nanoscale. 2013;5(16):7476–7483. doi:10.1039/c3nr02519e
  • Naqvi S, Samim M, Abdin MZ, et al. Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress. Int J Nanomed. 2010;5(1):983–989. doi:10.2147/IJN.S13244
  • Naghavi N, Ghoddusi J, Sadeghnia HR, Asadpour E, Asgary S. Genotoxicity and cytotoxicity of mineral trioxide aggregate and calcium enriched mixture cements on L929 mouse fibroblast cells. Dent Mater J. 2014;33(1):64–69. doi:10.4012/dmj.2013-123
  • Abakumov MA, Semkina AS, Skorikov AS, et al. Toxicity of iron oxide nanoparticles: size and coating effects. J Biochem Mol Toxicol. 2018;32(12):1–6. doi:10.1002/jbt.22225
  • Wang Y, Alkasab TK, Narin O, et al. Incidence of nephrogenic systemic fibrosis after adoption of restrictive gadolinium-based contrast agent guidelines. Radiology. 2011;260(1):105–111. doi:10.1148/radiol.11102340
  • Kanda T, Ishii K, Kawaguchi H, Kitajima K, Takenaka D. High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadoliniumbased contrast material. Radiology. 2014;270(3):834–841. doi:10.1148/radiol.13131669
  • Rogosnitzky M, Branch S. Gadolinium-based contrast agent toxicity: a review of known and proposed mechanisms. BioMetals. 2016;29(3):365–376. doi:10.1007/s10534-016-9931-7
  • Harvey HB, Gowda V, Cheng G. Gadolinium deposition disease: a new risk management threat. J Am Coll Radiol. 2020;17(4):546–550. doi:10.1016/j.jacr.2019.11.009
  • Radbruch A, Haase R, Kieslich PJ, et al. No signal intensity increase in the dentate nucleus on unenhanced T1-weighted MR images after more than 20 serial injections of macrocyclic gadolinium-based contrast agents. Radiology. 2017;282(3):699–707. doi:10.1148/radiol.2016162241
  • Banerjee SR, Pomper MG. Clinical applications of Gallium-68. Appl Radiat Isot. 2013;76:2–13. doi:10.1016/j.apradiso.2013.01.039
  • Baum R, Rösch F. 1 st World Congress on Ga-68 and Peptide Receptor Radionuclide Therapy (PRRNT), June 23–26, 2011, Zentralklinik Bad Berka, Germany. World J Nucl Med. 2011;10(1):5. doi:10.4103/1450-1147.82105
  • Fani M, André JP, Maecke HR. 68Ga-PET: a powerful generator-based alternative to cyclotron-based PET radiopharmaceuticals. Contrast Media Mol Imaging. 2008;3(2):53–63. doi:10.1002/cmmi.232
  • Roesch F, Riss P. The renaissance of the 68Ge/68Ga radionuclide generator initiates new developments in 68Ga radiopharmaceutical chemistry. Curr Top Med Chem. 2012;10(16):1633–1668. doi:10.2174/156802610793176738
  • Wadas TJ, Wong EH, Weisman GR, Anderson CJ. Coordinating radiometals of copper, gallium, indium, yttrium, and zirconium for PET and SPECT imaging of disease. Chem Rev. 2010;110(5):2858–2902. doi:10.1021/cr900325h
  • Rösch F, Baum RP. Generator-based PET radiopharmaceuticals for molecular imaging of tumours: on the way to THERANOSTICS. Dalt Trans. 2011;40(23):6104. doi:10.1039/c0dt01504k
  • Szydlo M, Pogoda D, Kowalski T, Pociegiel M, Jadwinski M, Amico AD. Synthesis and quality control of 68Ga-PSMA PET/CT tracer used in prostate cancer imaging and comparison with 18F-fluorocholine as a reference point. J Pharm Sci Emerg Drugs. 2018;06(01). doi:10.4172/2380-9477.1000126
  • Pauwels E, Cleeren F, Bormans G, Deroose CM. Somatostatin receptor PET ligands - The next generation for clinical practice. Am J Nucl Mol Imaging. 2018;8(5):311–331.
  • Schuhmacher J, Zhang H, Doll J, et al. GRP receptor-targeted PET of a rat pancreas carcinoma xenograft in nude mice with a 68Ga-labeled bombesin (6–14) analog. J Nucl Med. 2005;46(4):691–699.
  • Froidevaux S, Calame-christe M, Schuhmacher J, et al. A gallium-labeled DOTA-α -melanocyte– stimulating hormone analog for PET imaging of melanoma metastases. J Nucl Med. 2004;45(1):116–123.
  • Fletcher JW, Djulbegovic B, Soares HP, et al. Recommendations on the use of 18F-FDG PET in oncology. J Nucl Med. 2008;49(3):480–508. doi:10.2967/jnumed.107.047787
  • Timmers HJ, Chen CC, Carrasquillo JA, et al. Comparison of 18F-fluoro-L-DOPA, 18F-fluoro- deoxyglucose, and18F-fluorodopamine PET and 123I-MIBG scintigraphy in the localization of pheochromocytoma and paraganglioma. J Clin Endocrinol Metab. 2009;94(12):4757–4767. doi:10.1210/jc.2009-1248
  • Dias GM, Ramogida CF, Rousseau J, et al. 89Zr for antibody labeling and in vivo studies – a comparison between liquid and solid target production. Nucl Med Biol. 2018;58:1–7. doi:10.1016/j.nucmedbio.2017.11.005
  • Farooq M, Chupp T, Grange J, et al. Absolute magnetometry with He 3. Phys Rev Lett. 2020;124(22):223001. doi:10.1103/PhysRevLett.124.223001
  • Chen D, Zhou Y, Yang D, et al. Positron emission tomography/magnetic resonance imaging of glioblastoma using a functionalized gadofullerene nanoparticle. ACS Appl Mater Interfaces. 2019;11(24):21343–21352. doi:10.1021/acsami.9b03542
  • Bourquin J, Milosevic A, Hauser D, et al. Biodistribution, clearance, and long-term fate of clinically relevant nanomaterials. Adv Mater. 2018;30(19):1704307. doi:10.1002/adma.201704307
  • Jarrett BR, Correa C, Ma KL, Louie AY. In vivo mapping of vascular inflammation using multimodal imaging. PLoS One. 2010;5(10):2–9. doi:10.1371/journal.pone.0013254
  • Uppal R, Ciesienski KL, Chonde DB, Loving GS, Caravan P. Discrete bimodal probes for thrombus imaging. J Am Chem Soc. 2012;134(26):10799–10802. doi:10.1021/ja3045635
  • Pierre VC, Allen MJ, Caravan P. Contrast agents for MRI: 30+ years and where are we going? Topical issue on metal-based MRI contrast agents. Guest editor: Valérie C. Pierre. J Biol Inorg Chem. 2014;19(2):127–131. doi:10.1007/s00775-013-1074-5
  • Morrow JR, Tóth É. Next-generation magnetic resonance imaging contrast agents. Inorg Chem. 2017;56(11):6029–6034. doi:10.1021/acs.inorgchem.7b01277
  • Duimstra JA, Femia FJ, Meade TJ. A gadolinium chelate for detection of β-glucuronidase: a self-immolative approach. J Am Chem Soc. 2005;127(37):12847–12855. doi:10.1021/ja042162r
  • Hingorani DV, Bernstein AS, Pagel MD. A review of responsive MRI contrast agents: 2005–2014. Contrast Media Mol Imaging. 2015;10(4):245–265. doi:10.1002/cmmi.1629
  • Kuźnik N, Wyskocka M. Iron(III) contrast agent candidates for MRI: a survey of the structure-effect relationship in the last 15 years of studies. Eur J Inorg Chem. 2016;2016(4):445–458. doi:10.1002/ejic.201501166
  • Wahsner J, Gale EM, Rodríguez-Rodríguez A, Caravan P. Chemistry of MRI contrast agents: current challenges and new frontiers. Chem Rev. 2019;119(2):957–1057. doi:10.1021/acs.chemrev.8b00363