2,012
Views
18
CrossRef citations to date
0
Altmetric
Review

Advancements in the Pharmaceutical Applications of Probiotics: Dosage Forms and Formulation Technology

, , &
Pages 7535-7556 | Published online: 12 Nov 2021

References

  • Singh B, Mal G, Marotta F. Designer probiotics: paving the way to living therapeutics. Trends Biotechnol. 2017;35(8):679–682. doi:10.1016/j.tibtech.2017.04.001
  • DeGruttola AK, Low D, Mizoguchi A, Mizoguchi E. Current understanding of dysbiosis in disease in human and animal models. Inflamm Bowel Dis. 2016;22(5):1137–1150. doi:10.1097/MIB.0000000000000750
  • Trush EA, Poluektova EA, Beniashvilli AG, Shifrin OS, Poluektov YM, Ivashkin VT. The evolution of human probiotics: challenges and prospects. Probiotics Antimicrob Proteins. 2020;12(4):1291–1299. doi:10.1007/s12602-019-09628-4
  • Malaguarnera G, Leggio F, Vacante M, et al. Probiotics in the gastrointestinal diseases of the elderly. J Nutr Health Aging. 2012;16(4):402–410. doi:10.1007/s12603-011-0357-1
  • Doron S, Gorbach SL. Probiotics: their role in the treatment and prevention of disease. Expert Review Anti Infect Ther. 2006;4(2):261–275. doi:10.1586/14787210.4.2.261
  • Monteagudo-Mera A, Rastall RA, Gibson GR, Charalampopoulos D, Chatzifragkou A. Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health. Appl Microbiol Biotechnol. 2019;103(16):6463–6472. doi:10.1007/s00253-019-09978-7
  • Sanders ME, Merenstein DJ, Reid G, Gibson GR, Rastall RA. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat Rev Gastroenterol Hepatol. 2019;16(10):605–616. doi:10.1038/s41575-019-0173-3
  • Vandenplas Y, Huys G, Daube G. Probiotics: an update. J Pediatr. 2015;91(1):6–21. doi:10.1016/j.jped.2014.08.005
  • Cordaillat-Simmons M, Rouanet A, Pot B. Live biotherapeutic products: the importance of a defined regulatory framework. Exp Mol Med. 2020;52(9):1397–1406. doi:10.1038/s12276-020-0437-6
  • Dreher-Lesnick SM, Stibitz S, Carlson PE. U.S. regulatory considerations for development of live biotherapeutic products as drugs. Microbiol Spectr. 2017;5(5). doi:10.1128/microbiolspec.BAD-0017-2017
  • Rodrigues D, Sousa S, Rocha-Santos T, et al. Influence of l-cysteine, oxygen and relative humidity upon survival throughout storage of probiotic bacteria in whey protein-based microcapsules. Int Dairy J. 2011;21(11):869–876. doi:10.1016/j.idairyj.2011.05.005
  • Kim J, Muhammad N, Jhun BH, Yoo J-W. Probiotic delivery systems: a brief overview. J Pharm Investig. 2016;46(4):377–386. doi:10.1007/s40005-016-0259-7
  • Amund OD. Exploring the relationship between exposure to technological and gastrointestinal stress and probiotic functional properties of lactobacilli and bifidobacteria. Can J Microbiol. 2016;62(9):715–725. doi:10.1139/cjm-2016-0186
  • Lee SH, Bajracharya R, Min JY, Han JW, Park BJ, Han HK. Strategic approaches for colon targeted drug delivery: an overview of recent advancements. Pharmaceutics. 2020;12(1):68.
  • Yao M, Xie J, Du H, McClements DJ, Xiao H, Li L. Progress in microencapsulation of probiotics: a review. Compre Rev Food Sci. 2020;19(2):857–874. doi:10.1111/1541-4337.12532
  • Urdaneta V, Casadesús J. Interactions between bacteria and bile salts in the gastrointestinal and hepatobiliary tracts. Front Med. 2017;4:163. doi:10.3389/fmed.2017.00163
  • Grenier D. Effect of proteolytic enzymes on the lysis and growth of oral bacteria. Oral Microbiol Immunol. 1994;9(4):224–228. doi:10.1111/j.1399-302X.1994.tb00062.x
  • Pliszczak D, Bourgeois S, Bordes C, et al. Improvement of an encapsulation process for the preparation of pro- and prebiotics-loaded bioadhesive microparticles by using experimental design. Eur J Pharm Sci. 2011;44(1):83–92. doi:10.1016/j.ejps.2011.06.011
  • Merkus FW, Verhoef JC, Schipper NG, Marttin E. Nasal mucociliary clearance as a factor in nasal drug delivery. Adv Drug Deliv Rev. 1998;29(1–2):13–38. doi:10.1016/S0169-409X(97)00059-8
  • Serralheiro A, Alves G, Sousa J, Fortuna A, Falcão A. Nose as a route for drug delivery. In: Önerci TM, editor. Nasal Physiology and Pathophysiology of Nasal Disorders. 1st ed. Berlin: Springer; 2013:191–215.
  • De Rudder C, Garcia-Tímermans C, De Boeck I, Lebeer S, Van de Wiele T, Calatayud Arroyo M. Lacticaseibacillus casei AMBR2 modulates the epithelial barrier function and immune response in a donor-derived nasal microbiota manner. Sci Rep. 2020;10(1):16939. doi:10.1038/s41598-020-73857-9
  • Terpou A, Papadaki A, Lappa IK, Kachrimanidou V, Bosnea LA, Kopsahelis N. Probiotics in food systems: significance and emerging strategies towards improved viability and delivery of enhanced beneficial value. Nutrients. 2019;11(7):1591. doi:10.3390/nu11071591
  • Stanbury PF, Whitaker A, Hall SJ. The recovery and purification of fermentation products. In: Stanbury PF, Whitaker A, Hall SJ, editors. Principles of Fermentation Technology. 3rd ed. Oxford: Butterworth-Heinemann; 2017:619–686.
  • Blair TC, Buckton G, Bloomfield SF. On the mechanism of kill of microbial contaminants during tablet compression. Int J Pharm. 1991;72(2):111–115. doi:10.1016/0378-5173(91)90048-S
  • Plumpton EJ, Gilbert P, Fell JT. The survival of microorganisms during tabletting. Int J Pharm. 1986;30(2–3):241–246. doi:10.1016/0378-5173(86)90086-4
  • Mills S, Stanton C, Fitzgerald GF, Ross RP. Enhancing the stress responses of probiotics for a lifestyle from gut to product and back again. Microb Cell Fact. 2011;10(Suppl 1):S19–S19. doi:10.1186/1475-2859-10-S1-S19
  • Baez A, Shiloach J. Effect of elevated oxygen concentration on bacteria, yeasts, and cells propagated for production of biological compounds. Microb Cell Fact. 2014;13:181. doi:10.1186/s12934-014-0181-5
  • Teruel AH, Gonzalez-Alvarez I, Bermejo M, et al. New insights of oral colonic drug delivery systems for inflammatory bowel disease therapy. Int J Mol Sci. 2020;21(18):6502. doi:10.3390/ijms21186502
  • Pech-Canul AD, Ortega D, García-Triana A, González-Silva N, Solis-Oviedo RL. A brief review of edible coating materials for the microencapsulation of probiotics. Coatings. 2020;10(3):197. doi:10.3390/coatings10030197
  • Kim W-S, Cho C-S, Hong L, et al. Oral delivery of probiotics using pH-sensitive phthalyl inulin tablets. J Microbiol Biotechnol. 2019;29(2):200–208. doi:10.4014/jmb.1811.11021
  • Irfan M, Rabel S, Bukhtar Q, Qadir MI, Jabeen F, Khan A. Orally disintegrating films: a modern expansion in drug delivery system. Saudi Pharm J. 2016;24(5):537–546. doi:10.1016/j.jsps.2015.02.024
  • Lee Y, Kim K, Kim M, Choi DH, Jeong SH. Orally disintegrating films focusing on formulation, manufacturing process, and characterization. J Pharm Investig. 2017;47(3):183–201. doi:10.1007/s40005-017-0311-2
  • Hoffmann EM, Breitenbach A, Breitkreutz J. Advances in orodispersible films for drug delivery. Expert Opin Drug Deliv. 2011;8(3):299–316. doi:10.1517/17425247.2011.553217
  • Heinemann RJB, Carvalho RA, Favaro-Trindade CS. Orally disintegrating film (ODF) for delivery of probiotics in the oral cavity -development of a novel product for oral health. Innov Food Sci Emerg Technol. 2013;19:227–232. doi:10.1016/j.ifset.2013.04.009
  • Lordello VB, Meneguin AB, de Annunzio SR, et al. Orodispersible film loaded with enterococcus faecium CRL183 presents anti-candida albicans biofilm activity in vitro. Pharmaceutics. 2021;13(7):998. doi:10.3390/pharmaceutics13070998
  • Dodoo CC, Stapleton P, Basit AW, Gaisford S. The potential of Streptococcus salivarius oral films in the management of dental caries: an inkjet printing approach. Int J Pharm. 2020;591:119962. doi:10.1016/j.ijpharm.2020.119962
  • Abruzzo A, Vitali B, Lombardi F, et al. Mucoadhesive buccal films for local delivery of Lactobacillus brevis. Pharmaceutics. 2020;12(3):241. doi:10.3390/pharmaceutics12030241
  • Barbosa de Souza Ferreira S, Fukase GO, Gomes RG, Bruschi ML. Mucoadhesive wafers for buccal delivery of probiotic bacteria: mechanical properties and enumeration. J Drug Deliv Sci Technol. 2021;61(102201):102201.
  • Capela P, Hay TKC, Shah NP. Effect of cryoprotectants, prebiotics and microencapsulation on survival of probiotic organisms in yoghurt and freeze-dried yoghurt. Food Res Int. 2006;39(2):203–211. doi:10.1016/j.foodres.2005.07.007
  • Her J-Y, Song C-S, Lee SJ, Lee K-G. Preparation of kanamycin powder by an optimized spray freeze-drying method. Powder Technol. 2010;199(2):159–164. doi:10.1016/j.powtec.2009.12.018
  • Lian W-C, Hsiao H-C, Chou -C-C. Survival of bifidobacteria after spray-drying. Int J Food Microbiol. 2002;74(1):79–86. doi:10.1016/S0168-1605(01)00733-4
  • Her J-Y, Kim MS, Lee K-G. Preparation of probiotic powder by the spray freeze-drying method. J Food Eng. 2015;150:70–74. doi:10.1016/j.jfoodeng.2014.10.029
  • Iaconelli C, Lemetais G, Kechaou N, et al. Drying process strongly affects probiotics viability and functionalities. J Biotechnol. 2015;214:17–26. doi:10.1016/j.jbiotec.2015.08.022
  • Shanmugam S. Granulation techniques and technologies: recent progresses. Bioimpacts. 2015;5(1):55–63. doi:10.15171/bi.2015.04
  • Pyar H, Peh KK. Enteric coating of granules containing the probiotic Lactobacillus acidophilus. Acta Pharm. 2014;64(2):247–256. doi:10.2478/acph-2014-0011
  • Aponte M, Ungaro F, d’Angelo I, et al. Improving in vivo conversion of oleuropein into hydroxytyrosol by oral granules containing probiotic Lactobacillus plantarum 299v and an Olea europaea standardized extract. Int J Pharm. 2018;543(1–2):73–82. doi:10.1016/j.ijpharm.2018.03.013
  • Kim YI, Poudel BK, Pradhan R, et al. Development of a novel bi-coated combination capsule containing mosapride and probiotics for irritable bowel syndrome. Pharma Dev Technol. 2015;20(8):949–956. doi:10.3109/10837450.2014.954723
  • Dodoo CC, Wang J, Basit AW, Stapleton P, Gaisford S. Targeted delivery of probiotics to enhance gastrointestinal stability and intestinal colonisation. Int J Pharm. 2017;530(1–2):224–229. doi:10.1016/j.ijpharm.2017.07.068
  • Ibekwe VC, Khela MK, Evans DF, Basit AW. A new concept in colonic drug targeting: a combined pH-responsive and bacterially-triggered drug delivery technology. Aliment Pharmacol Ther. 2008;28(7):911–916. doi:10.1111/j.1365-2036.2008.03810.x
  • Yucel Falco C, Sotres J, Rascón A, Risbo J, Cárdenas M. Design of a potentially prebiotic and responsive encapsulation material for probiotic bacteria based on chitosan and sulfated β-glucan. J Colloid Interface. 2017;487:97–106. doi:10.1016/j.jcis.2016.10.019
  • Hoffmann A, Fischer JT, Daniels R. Development of probiotic orodispersible tablets using mucoadhesive polymers for buccal mucoadhesion. Drug Dev Ind Pharm. 2020;46(11):1753–1762. doi:10.1080/03639045.2020.1831013
  • Khodaverdi E, Maftouhian S, Aliabadi A, et al. Casein-based hydrogel carrying insulin: preparation, in vitro evaluation and in vivo assessment. J Pharm Investig. 2019;49(6):635–641. doi:10.1007/s40005-018-00422-y
  • Sacco P, Paoletti S, Cok M, et al. Insight into the ionotropic gelation of chitosan using tripolyphosphate and pyrophosphate as cross-linkers. Int J Biol Macromol. 2016;92:476–483. doi:10.1016/j.ijbiomac.2016.07.056
  • Kwiecień I, Kwiecień M. Application of polysaccharide-based hydrogels as probiotic delivery systems. Gels. 2018;4(2):47. doi:10.3390/gels4020047
  • Liu H, Xie M, Nie S. Recent trends and applications of polysaccharides for microencapsulation of probiotics. Food Front. 2020;1(1):45–59. doi:10.1002/fft2.11
  • Dafe A, Etemadi H, Dilmaghani A, Mahdavinia GR. Investigation of pectin/starch hydrogel as a carrier for oral delivery of probiotic bacteria. Int J Biol Macromol. 2017;97:536–543. doi:10.1016/j.ijbiomac.2017.01.060
  • Cook MT, Tzortzis G, Khutoryanskiy VV, Charalampopoulos D. Layer-by-layer coating of alginate matrices with chitosan-alginate for the improved survival and targeted delivery of probiotic bacteria after oral administration. J Mater Chem B. 2013;1(1):52–60. doi:10.1039/C2TB00126H
  • Bashir S, Hina M, Iqbal J, et al. Fundamental concepts of hydrogels: synthesis, properties, and their applications. Polymers. 2020;12(11):2702. doi:10.3390/polym12112702
  • Reddy MSB, Ponnamma D, Choudhary R, Sadasivuni KK. A comparative review of natural and synthetic biopolymer composite scaffolds. Polymers. 2021;13(7):1105. doi:10.3390/polym13071105
  • Kumar AC, Erothu H. Synthetic polymer hydrogels. In: Francis R, Kumar DS, editors. Biomedical Applications of Polymeric Materials and Composites. Weinheim: Wiley; 2016:141–162.
  • Ragupathy S, Esmaeili F, Paschoud S, Sublet E, Citi S, Borchard G. Toll-like receptor 2 regulates the barrier function of human bronchial epithelial monolayers through atypical protein kinase C zeta, and an increase in expression of claudin-1. Tissue Barriers. 2014;2(2):e29166. doi:10.4161/tisb.29166
  • Martens K, Pugin B, De Boeck I, et al. Probiotics for the airways: potential to improve epithelial and immune homeostasis. Allergy. 2018;73(10):1954–1963. doi:10.1111/all.13495
  • Kitazawa H, Villena J, Alvarez S. Probiotics: Immunobiotics and Immunogenics. CRC Press; 2013.
  • Kim JY, Park MS, Ji GE. Probiotic modulation of dendritic cells co-cultured with intestinal epithelial cells. World J Gastroenterol. 2012;18(12):1308–1318. doi:10.3748/wjg.v18.i12.1308
  • Xu J, Tao J, Wang J. Design and application in delivery system of intranasal antidepressants. Front Bioeng Biotechnol. 2020;8(1450):626882. doi:10.3389/fbioe.2020.626882
  • Erdő F, Bors LA, Farkas D, Bajza Á, Gizurarson S. Evaluation of intranasal delivery route of drug administration for brain targeting. Brain Res Bull. 2018;143:155–170. doi:10.1016/j.brainresbull.2018.10.009
  • Chaturvedi M, Kumar M, Pathak K. A review on mucoadhesive polymer used in nasal drug delivery system. J Adv Pharm Technol Res. 2011;2(4):215–222. doi:10.4103/2231-4040.90876
  • Marchisio P, Santagati M, Scillato M, et al. Streptococcus salivarius 24SMB administered by nasal spray for the prevention of acute otitis media in otitis-prone children. Eur J Clin Microbiol Infect Dis. 2015;34(12):2377–2383. doi:10.1007/s10096-015-2491-x
  • Cantarutti A, Rea F, Donà D, et al. Preventing recurrent acute otitis media with Streptococcus salivarius 24SMB and Streptococcus oralis 89a five months intermittent treatment: an observational prospective cohort study. Int J of Pediatr Otorhinolaryngol. 2020;132:109921. doi:10.1016/j.ijporl.2020.109921
  • La Mantia I, Varricchio A, Ciprandi G. Bacteriotherapy with Streptococcus salivarius 24SMB and Streptococcus oralis 89a nasal spray for preventing recurrent acute otitis media in children: a real-life clinical experience. Int J Gen Med. 2017;10:171–175. doi:10.2147/IJGM.S137614
  • Jokicevic K, Kiekens S, Byl E, et al. Probiotic nasal spray development by spray drying. Eur J Pharm Biopharm. 2021;159:211–220. doi:10.1016/j.ejpb.2020.11.008
  • Ammar HO, Mohamed MI, Tadros MI, Fouly AA. High frequency ultrasound mediated transdermal delivery of ondansetron hydrochloride employing bilosomal gel systems: ex-vivo and in-vivo characterization studies. J Pharm Investig. 2020;50(6):613–624. doi:10.1007/s40005-020-00491-y
  • Byrd AL, Belkaid Y, Segre JA. The human skin microbiome. Nat Rev Microbiol. 2018;16(3):143–155. doi:10.1038/nrmicro.2017.157
  • Proksch E. pH in nature, humans and skin. J Dermatol. 2018;45(9):1044–1052. doi:10.1111/1346-8138.14489
  • Cinque B, La Torre C, Melchiorre E, et al. Use of probiotics for dermal applications. In: Liong MT, editor. Probiotics. Berlin: Springer; 2011:221–241.
  • Finnin BC, Morgan TM. Transdermal penetration enhancers: applications, limitations, and potential. J Pharm Sci. 1999;88(10):955–958. doi:10.1021/js990154g
  • Akhtar N, Singh V, Yusuf M, Khan RA. Non-invasive drug delivery technology: development and current status of transdermal drug delivery devices, techniques and biomedical applications. Biomed Eng. 2020;65(3):243–272.
  • Larrañeta E, Lutton REM, Woolfson AD, Donnelly RF. Microneedle arrays as transdermal and intradermal drug delivery systems: materials science, manufacture and commercial development. Mater Sci Eng R Rep. 2016;104:1–32. doi:10.1016/j.mser.2016.03.001
  • Cho lee A-R. Microneedle-mediated delivery of cosmeceutically relevant nucleoside and peptides in human skin: challenges and strategies for dermal delivery. J Pharm Investig. 2019;49(6):587–601. doi:10.1007/s40005-019-00438-y
  • Donnelly RF, Raj Singh TR, Woolfson AD. Microneedle-based drug delivery systems: microfabrication, drug delivery, and safety. Drug Deliv. 2010;17(4):187–207. doi:10.3109/10717541003667798
  • Waghule T, Singhvi G, Dubey SK, et al. Microneedles: a smart approach and increasing potential for transdermal drug delivery system. Biomedicine & Pharmacotherapy. 2019;109:1249–1258. doi:10.1016/j.biopha.2018.10.078
  • Chen H-J, Lin D-A, Liu F, et al. Transdermal delivery of living and biofunctional probiotics through dissolvable microneedle patches. ACS Applied Biomater. 2018;1(2):374–381. doi:10.1021/acsabm.8b00102
  • van de Wijgert J, Verwijs MC. Lactobacilli-containing vaginal probiotics to cure or prevent bacterial or fungal vaginal dysbiosis: a systematic review and recommendations for future trial designs. BJOG. 2020;127(2):287–299. doi:10.1111/1471-0528.15870
  • Ma L, Su J, Su Y, Sun W, Zeng Z. Probiotics administered intravaginally as a complementary therapy combined with antibiotics for the treatment of bacterial vaginosis: a systematic review protocol. BMJ Open. 2017;7(10):e019301. doi:10.1136/bmjopen-2017-019301
  • Kim JM, Park YJ. Probiotics in the prevention and treatment of postmenopausal vaginal infections: review article. J Menopausal Med. 2017;23(3):139–145. doi:10.6118/jmm.2017.23.3.139
  • Reid G, Charbonneau D, Erb J, et al. Oral use of Lactobacillus rhamnosus GR-1 and L. fermentum RC-14 significantly alters vaginal flora: randomized, placebo-controlled trial in 64 healthy women. FEMS Immunol Med Microbiol. 2003;35(2):131–134. doi:10.1016/S0928-8244(02)00465-0
  • Sarwal A, Singh G, Singh S, Singh K, Sinha VR. Novel and effectual delivery of an antifungal agent for the treatment of persistent vulvovaginal candidiasis. J Pharm Investig. 2019;49(1):135–147. doi:10.1007/s40005-018-0395-3
  • Sánchez MT, Ruiz MA, Castán H, Morales ME. A novel double-layer mucoadhesive tablet containing probiotic strain for vaginal administration: design, development and technological evaluation. Eur J Pharm Sci. 2018;112:63–70. doi:10.1016/j.ejps.2017.11.006
  • Palmeira-de-oliveira R, Palmeira-de-oliveira A, Martinez-de-oliveira J. New strategies for local treatment of vaginal infections. Adv Drug Deliv Rev. 2015;92:105–122. doi:10.1016/j.addr.2015.06.008
  • Vigani B, Faccendini A, Rossi S, et al. Development of a mucoadhesive in situ gelling formulation for the delivery of Lactobacillus gasseri into vaginal cavity. Pharmaceutics. 2019;11(10):511. doi:10.3390/pharmaceutics11100511
  • Vigani B, Rossi S, Sandri G, Bonferino MC, Caramella MC, Ferrari F. Recent advances in the development of in situ gelling drug delivery systems for non-parenteral administration routes. Pharmaceutics. 2020;12(9):859. doi:10.3390/pharmaceutics12090859
  • Fakhari A, Corcoran M, Schwarz A. Thermogelling properties of purified poloxamer 407. Heliyon. 2017;3(8):e00390. doi:10.1016/j.heliyon.2017.e00390
  • Caramella CM, Rossi S, Ferrari F, Bonferoni MC, Sandri G. Mucoadhesive and thermogelling systems for vaginal drug delivery. Adv Drug Deliv Rev. 2015;92:39–52. doi:10.1016/j.addr.2015.02.001
  • Garg S, Goldman D, Krumme M, Rohan LC, Smoot S, Friend DR. Advances in development, scale-up and manufacturing of microbicide gels, films, and tablets. Antiviral Res. 2010;88:S19–S29. doi:10.1016/j.antiviral.2010.09.010
  • Vicariotto F, Mogna L, Del Piano M. Effectiveness of the two microorganisms Lactobacillus fermentum LF15 and Lactobacillus plantarum LP01, formulated in slow-release vaginal tablets, in women affected by bacterial vaginosis: a pilot study. J Clin Gastroenterol. 2014;48:S106–S112. doi:10.1097/MCG.0000000000000226
  • Maggi L, Mastromarino P, Macchia S, et al. Technological and biological evaluation of tablets containing different strains of lactobacilli for vaginal administration. Eur J Pharm Biopharm. 2000;50(3):389–395. doi:10.1016/S0939-6411(00)00121-1
  • Mastromarino P, Macchia S, Meggiorini L, et al. Effectiveness of Lactobacillus-containing vaginal tablets in the treatment of symptomatic bacterial vaginosis. Clin Microbiol Infect. 2009;15(1):67–74. doi:10.1111/j.1469-0691.2008.02112.x
  • Ham AS, Buckheit RW. Designing and developing suppository formulations for anti-HIV drug delivery. Ther Deliv. 2017;8(9):805–817. doi:10.4155/tde-2017-0056
  • Haas S, Woerdenbag H, Sznitowska M. Rectal and vaginal. In: Bouwman-Boer Y, Fenton-May V, Le Brun P, editors. Practical Pharmaceutics. New York: Springer; 2015:189–227.
  • Darwish AM, Farah E, Gadallah WA, Mohammad II. Superiority of newly developed vaginal suppositories over vaginal use of commercial bromocriptine tablets: a randomized controlled clinical trial. Reprod Sci. 2007;14(3):280–285. doi:10.1177/1933719107301056
  • Rodrigues F, Maia MJ, Das Neves J, Sarmento B, Amaral MH, Oliveira MB. Vaginal suppositories containing Lactobacillus acidophilus: development and characterization. Drug Dev Ind Pharm. 2015;41(9):1518–1525. doi:10.3109/03639045.2014.963864
  • Camilletti AL, Ruiz FO, Pascual LM, Barberis IL. First steps towards the pharmaceutical development of ovules containing Lactobacillus strains: viability and antimicrobial activity as basic first parameters in vaginal formulations. AAPS PharmSciTech. 2018;19(2):886–895. doi:10.1208/s12249-017-0895-x
  • Kale VV, Trivedi RV, Wate SP, Bhusari KP. Development and evaluation of a suppository formulation containing Lactobacillus and its application in vaginal diseases. Ann N Y Acad Sci. 2005;1056:359–365. doi:10.1196/annals.1352.017
  • Verdenelli MC, Coman MM, Cecchini C, Silvi S, Orpianesi C, Cresci A. Evaluation of antipathogenic activity and adherence properties of human Lactobacillus strains for vaginal formulations. J Appl Microbiol. 2014;116(5):1297–1307. doi:10.1111/jam.12459
  • Ghouri YA, Richards DM, Rahimi EF, Krill JT, Jelinek KA, DuPont AW. Systematic review of randomized controlled trials of probiotics, prebiotics, and synbiotics in inflammatory bowel disease. Clin Exp Gastroenterol. 2014;7:473–487.
  • Rioux KP, Fedorak RN. Probiotics in the treatment of inflammatory bowel disease. J Clin Gastroenterol. 2006;40(3):260–263. doi:10.1097/00004836-200603000-00019
  • Heselmans M, Reid G, Akkermans LM, Savelkoul H, Timmerman H, Rombouts FM. Gut flora in health and disease: potential role of probiotics. Curr Issues Intest Microbiol. 2005;6(1):1–7.
  • Guarner F, Malagelada JR. Gut flora in health and disease. Lancet. 2003;361(9356):512–519. doi:10.1016/S0140-6736(03)12489-0
  • D’Incà R, Barollo M, Scarpa M, et al. Rectal administration of Lactobacillus casei DG modifies flora composition and Toll-like receptor expression in colonic mucosa of patients with mild ulcerative colitis. Dig Dis Sci. 2011;56(4):1178–1187. doi:10.1007/s10620-010-1384-1
  • Amit-Romach E, Uni Z, Friedman M, Aizenberg I, Berkovich Z, Reifen R. A new mode of probiotic therapy: specific targeting. J Funct Foods. 2015;16:386–392. doi:10.1016/j.jff.2015.04.029
  • Oliva S, Di Nardo G, Ferrari F, et al. Randomised clinical trial: the effectiveness of Lactobacillus reuteri ATCC 55730 rectal enema in children with active distal ulcerative colitis. Aliment Pharmacol Ther. 2012;35(3):327–334. doi:10.1111/j.1365-2036.2011.04939.x
  • Šipailienė A, Petraitytė S. Encapsulation of probiotics: proper selection of the probiotic strain and the influence of encapsulation technology and materials on the viability of encapsulated microorganisms. Probiotics Antimicrob Proteins. 2018;10(1):1–10. doi:10.1007/s12602-017-9347-x
  • Chávarri M, Marañón I, Villarán MC. Encapsulation technology to protect probiotic bacteria. In: Rigobeleo EC, editor. Probiotics. London: IntechOpen; 2012.
  • Fazilah NF, Hamidon NH, Ariff AB, Khayat ME, Wasoh H, Halim M. Microencapsulation of Lactococcus lactis Gh1 with gum arabic and synsepalum dulcificum via spray drying for potential inclusion in functional yogurt. Molecules. 2019;24(7):1422. doi:10.3390/molecules24071422
  • Zheng X, Fu N, Duan M, Woo MW, Selomulya C, Chen XD. The mechanisms of the protective effects of reconstituted skim milk during convective droplet drying of lactic acid bacteria. Food Res Int. 2015;76(Pt 3):478–488. doi:10.1016/j.foodres.2015.07.045
  • Khem S, Woo MW, Small DM, Chen XD, May BK. Agent selection and protective effects during single droplet drying of bacteria. Food Chem. 2015;166:206–214. doi:10.1016/j.foodchem.2014.06.010
  • e Silva JPS, Sousa SC, Costa P, et al. Development of probiotic tablets using microparticles: viability studies and stability studies. AAPS PharmSciTech. 2013;14(1):121–127. doi:10.1208/s12249-012-9898-9
  • Perdana J, Bereschenko L, Fox MB, et al. Dehydration and thermal inactivation of Lactobacillus plantarum WCFS1: comparing single droplet drying to spray and freeze drying. Food Res Int. 2013;54(2):1351–1359. doi:10.1016/j.foodres.2013.09.043
  • Ré I. Microencapsulation by spray drying. Dry Technol. 1998;16(6):1195–1236. doi:10.1080/07373939808917460
  • Goderska K. Different methods of probiotics stabilization. In: Rigobelo EC, editor. Probiotics. London: IntechOpen; 2012.
  • Farahmandi K, Rajab S, Tabandeh F, Shahraky MK, Maghsoudi A, Ashengroph M. Efficient spray-drying of Lactobacillus rhamnosus PTCC 1637 using total CFU yield as the decision factor. Food Biosci. 2021;40:100816. doi:10.1016/j.fbio.2020.100816
  • Strasser S, Neureiter M, Geppl M, Braun R, Danner H. Influence of lyophilization, fluidized bed drying, addition of protectants, and storage on the viability of lactic acid bacteria. J Appl Microbiol. 2009;107(1):167–177. doi:10.1111/j.1365-2672.2009.04192.x
  • Fowler A, Toner M. Cryo-injury and biopreservation. Ann N Y Acad Sci. 2005;1066:119–135. doi:10.1196/annals.1363.010
  • Smirnoff N, Cumbes QJ. Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry. 1989;28(4):1057–1060. doi:10.1016/0031-9422(89)80182-7
  • Coulibaly I, Dubois-Dauphin R, Destain J, Fauconnier M-L, Lognay G, Thonart P. The resistance to freeze-drying and to storage was determined as the cellular ability to recover its survival rate and acidification activity. Int J Microbiol. 2010;2010:625239. doi:10.1155/2010/625239
  • Champagne CP, Mondou F, Raymond Y, Roy D. Effect of polymers and storage temperature on the stability of freeze-dried lactic acid bacteria. Food Res Int. 1996;29(5):555–562. doi:10.1016/0963-9969(95)00050-X
  • Broeckx G, Vandenheuvel D, Claes IJJ, Lebeer S, Kiekens F. Drying techniques of probiotic bacteria as an important step towards the development of novel pharmabiotics. Int J Pharm. 2016;505(1):303–318. doi:10.1016/j.ijpharm.2016.04.002
  • Martín MJ, Lara-Villoslada F, Ruiz MA, Morales ME. Microencapsulation of bacteria: a review of different technologies and their impact on the probiotic effects. Innov Food Sci Emerg Technol. 2015;27:15–25. doi:10.1016/j.ifset.2014.09.010
  • Santivarangkna C, Kulozik U, Foerst P. Alternative drying processes for the industrial preservation of lactic acid starter cultures. Biotechnol Prog. 2007;23(2):302–315. doi:10.1021/bp060268f
  • Zaghari L, Basiri A, Rahimi S. Preparation and characterization of double-coated probiotic bacteria via a fluid-bed process: a case study on Lactobacillus reuteri. Int J Food Eng. 2020;16(9). doi:10.1515/ijfe-2019-0384
  • Wu W-H, Roe WS, Gimino VG, Seriburi V, Martin DE, Knapp SE. Low melt encapsulation with high laurate canola oil. United States Patent US 6153256; 2000.
  • Burgain J, Gaiani C, Linder M, Scher J. Encapsulation of probiotic living cells: from laboratory scale to industrial applications. J Food Eng. 2011;104(4):467–483. doi:10.1016/j.jfoodeng.2010.12.031
  • Rokka S, Rantamäki P. Protecting probiotic bacteria by microencapsulation: challenges for industrial applications. Eur Food Res Technol. 2010;231(1):1–12. doi:10.1007/s00217-010-1246-2
  • Lee Y, Ji YR, Lee S, Choi MJ, Cho Y. Microencapsulation of probiotic Lactobacillus acidophilus KBL409 by extrusion technology to enhance survival under simulated intestinal and freeze-drying conditions. J Microbiol Biotechnol. 2019;29(5):721–730. doi:10.4014/jmb.1903.03018
  • Shah NP, Ravula RR. Microencapsulation of probiotic bacteria and their survival in frozen fermented desserts. Aust J Dairy Technol. 2000;55:139–144.
  • Krasaekoopt W, Bhandari B, Deeth H. Evaluation of encapsulation techniques of probiotics for yoghurt. Int Dairy J. 2003;13(1):3–13. doi:10.1016/S0958-6946(02)00155-3
  • Hou RC, Lin MY, Wang MM, Tzen JT. Increase of viability of entrapped cells of Lactobacillus delbrueckii ssp. bulgaricus in artificial sesame oil emulsions. J Dairy Sci. 2003;86(2):424–428. doi:10.3168/jds.S0022-0302(03)73620-0
  • Qi W, Liang X, Yun T, Guo W. Growth and survival of microencapsulated probiotics prepared by emulsion and internal gelation. J Food Sci Technol. 2019;56(3):1398–1404. doi:10.1007/s13197-019-03616-w
  • Poncelet D, Lencki R, Beaulieu C, Halle JP, Neufeld RJ, Fournier A. Production of alginate beads by emulsification/internal gelation. I. Methodology. Appl Microbiol Biotechnol. 1992;38(1):39–45. doi:10.1007/BF00169416
  • Song H, Yu W, Gao M, Liu X, Ma X. Microencapsulated probiotics using emulsification technique coupled with internal or external gelation process. Carbohydr Polym. 2013;96(1):181–189. doi:10.1016/j.carbpol.2013.03.068
  • Crittenden R, Weerakkody R, Sanguansri L, Augustin M. Synbiotic microcapsules that enhance microbial viability during nonrefrigerated storage and gastrointestinal transit. Appl Environ Microbiol. 2006;72(3):2280–2282. doi:10.1128/AEM.72.3.2280-2282.2006
  • Özer B, Kirmaci HA, Şenel E, Atamer M, Hayaloğlu A. Improving the viability of Bifidobacterium bifidum BB-12 and Lactobacillus acidophilus LA-5 in white-brined cheese by microencapsulation. Int Dairy J. 2009;19(1):22–29. doi:10.1016/j.idairyj.2008.07.001
  • Pimentel-González DJ, Campos-Montiel RG, Lobato-Calleros C, Pedroza-Islas R, Vernon-Carter EJ. Encapsulation of Lactobacillus rhamnosus in double emulsions formulated with sweet whey as emulsifier and survival in simulated gastrointestinal conditions. Food Res Int. 2009;42(2):292–297. doi:10.1016/j.foodres.2008.12.002
  • Zhang Y, Lin J, Zhong Q. The increased viability of probiotic Lactobacillus salivarius NRRL B-30514 encapsulated in emulsions with multiple lipid-protein-pectin layers. Food Res Int. 2015;71:9–15. doi:10.1016/j.foodres.2015.02.017
  • de Kruif CG, Weinbreck F, de Vries R. Complex coacervation of proteins and anionic polysaccharides. Curr Opin Colloid Interface Sci. 2004;9(5):340–349. doi:10.1016/j.cocis.2004.09.006
  • Goin S. Microencapsulation: industrial appraisal of existing technologies. Food Sci Technol. 2004;15:330–347. doi:10.1016/j.tifs.2003.10.005
  • Bosnea LA, Moschakis T, Biliaderis CG. Complex coacervation as a novel microencapsulation technique to improve viability of probiotics under different stresses. Food Bioprocess Technol. 2014;7(10):2767–2781. doi:10.1007/s11947-014-1317-7
  • Schmitt C, Sanchez C, Desobry-Banon S, Hardy J. Structure and technofunctional properties of protein-polysaccharide complexes: a review. Crit Rev Food Sci Nutr. 1998;38(8):689–753. doi:10.1080/10408699891274354
  • Oliveira AC, Moretti TS, Boschini C, Baliero JC, Freitas O, Favaro-Trindade CS. Stability of microencapsulated B. lactis (BI 01) and L. acidophilus (LAC 4) by complex coacervation followed by spray drying. J Microencapsul. 2007;24(7):673–681. doi:10.1080/02652040701532908
  • Zhao M, Huang X, Zhang H, et al. Probiotic encapsulation in water-in-water emulsion via heteroprotein complex coacervation of type-A gelatin/sodium caseinate. Food Hydrocoll. 2020;105:105790. doi:10.1016/j.foodhyd.2020.105790
  • Razavi S, Janfaza S, Tasnim N, Gibson DL, Hoorfar M. Nanomaterial-based encapsulation for controlled gastrointestinal delivery of viable probiotic bacteria. Nanoscale Adv. 2021;3(10):2699–2709. doi:10.1039/D0NA00952K
  • Stojanov S, Berlec A. Electrospun nanofibers as carriers of microorganisms, stem cells, proteins, and nucleic acids in therapeutic and other applications. Front Bioeng Biotechnol. 2020;8:130. doi:10.3389/fbioe.2020.00130
  • Silva JA, De Gregorio PR, Rivero G, Abraham GA, Nader-Macías MEF. Immobilization of vaginal Lactobacillus in polymeric nanofibers for its incorporation in vaginal probiotic products. Eur J Pharm Sci. 2021;156:105563. doi:10.1016/j.ejps.2020.105563
  • López-Rubio A, Sanchez E, Sanz Y, Lagaron JM. Encapsulation of living bifidobacteria in ultrathin PVOH electrospun fibers. Biomacromolecules. 2009;10(10):2823–2829. doi:10.1021/bm900660b
  • Hirsch E, Pantea E, Vass P, et al. Probiotic bacteria stabilized in orally dissolving nanofibers prepared by high-speed electrospinning. Food Bioprod Process. 2021;128:84–94. doi:10.1016/j.fbp.2021.04.016
  • Yang J, Jia C, Yang J. Designing nanoparticle-based drug delivery systems for precision medicine. Int J Med Sci. 2021;18(13):2943–2949. doi:10.7150/ijms.60874
  • Kashapov R, Ibragimova A, Pavlov R, et al. Nanocarriers for biomedicine: from lipid formulations to inorganic and hybrid nanoparticles. Int J Mol Sci. 2021;22(13):7055. doi:10.3390/ijms22137055
  • Ebrahimnezhad P, Khavarpour M, Khalili S. Survival of Lactobacillus acidophilus as probiotic bacteria using chitosan nanoparticles. Int J Eng. 2017;30(4):456–463.
  • Ghibaudo F, Gerbino E, Copello GJ, Campo Dall’ Orto V, Gómez-Zavaglia A. Pectin-decorated magnetite nanoparticles as both iron delivery systems and protective matrices for probiotic bacteria. Colloids Surf B Biointerfaces. 2019;180:193–201. doi:10.1016/j.colsurfb.2019.04.049
  • Andretto V, Rosso A, Briançon S, Lollo G. Nanocomposite systems for precise oral delivery of drugs and biologics. Drug Deliv Transl Res. 2021;11(2):445–470. doi:10.1007/s13346-021-00905-w
  • Patarroyo JL, Fonseca E, Cifuentes J, Salcedo F, Cruz JC, Reyes LH. Gelatin-graphene oxide nanocomposite hydrogels for kluyveromyces lactis encapsulation: potential applications in probiotics and bioreactor packings. Biomolecules. 2021;11(7):922. doi:10.3390/biom11070922
  • Zhang H, Yang C, Zhou W, et al. A pH-responsive gel macrosphere based on sodium alginate and cellulose nanofiber for potential intestinal delivery of probiotics. ACS Sustain Chem Eng. 2018;6(11):13924–13931. doi:10.1021/acssuschemeng.8b02237
  • Li W, Zhu Y, Ye F, Li B, Luo X, Liu S. Probiotics in cellulose houses: enhanced viability and targeted delivery of Lactobacillus plantarum. Food Hydrocoll. 2017;62:66–72. doi:10.1016/j.foodhyd.2016.07.019