433
Views
8
CrossRef citations to date
0
Altmetric
Review

Strategies to Improve Photodynamic Therapy Efficacy of Metal-Free Semiconducting Conjugated Polymers

, & ORCID Icon
Pages 247-271 | Published online: 19 Jan 2022

References

  • Hu JJ, Lei Q, Zhang X-Z. Recent advances in photonanomedicines for enhanced cancer photodynamic therapy. Prog Mater Sci. 2020;114:100685.doi:10.1016/j.pmatsci.2020.100685
  • Zhang G, Lan ZA, Wang X. Conjugated polymers: catalysts for photocatalytic hydrogen evolution. Angew Chem Int. 2016;55(51):15712–15727. doi:10.1002/anie.201607375
  • Wu W, Bazan GC, Liu B. Conjugated-polymer-amplified sensing, imaging, and therapy. Chem. 2017;2(6):760–790. doi:10.1016/j.chempr.2017.05.002
  • Fu X, Bai H, Lyu F, Liu L, Wang S. Conjugated polymer nanomaterials for phototherapy of cancer. Chem Res Chin Univ. 2020;36(2):237–242. doi:10.1007/s40242-020-0012-7
  • Meng Z, Hou W, Zhou H, Zhou L, Chen H, Wu C. Therapeutic considerations and conjugated polymer-based photosensitizers for photodynamic. Therapy Macromol Rapid Commun. 2018;39(5). doi:10.1002/marc.201700614
  • Zuo J, Tu L, Li Q, et al. Near infrared light sensitive ultraviolet-blue nanophotoswitch for imaging-guided “off-on” therapy. ACS Nano. 2018;12(4):3217–3225. doi:10.1021/acsnano.7b07393
  • Martynenko IV, Kuznetsova VA, Orlova АO, et al. Chlorin e6-ZnSe/ZnS quantum dots based system as reagent for photodynamic therapy. Nanotechnology. 2015;26(5):055102. doi:10.1088/0957-4484/26/5/055102
  • Qi ZD, Li DW, Jiang P, Jiang FL, Cheah C. Biocompatible CdSe quantum dot-based photosensitizer under two-photon excitation for photodynamic therapy. J Mater Chem. 2011;21(8):2455–2458.
  • Jiang Y, Pu K. Multimodal biophotonics of semiconducting polymer nanoparticles. Acc Chem Res. 2018;51(8):1840–1849. doi:10.1021/acs.accounts.8b00242
  • Lan M, Zhao S, Xie Y, et al. Water-soluble polythiophene for two-photon excitation fluorescence imaging and photodynamic therapy of cancer. ACS Appl Mater Interfaces. 2017;9(17):14590–14595. doi:10.1021/acsami.6b15537
  • Guo L, Ge J, Liu Q, et al. Versatile polymer nanoparticles as two-photon-triggered photosensitizers for simultaneous cellular, deep-tissue imaging, and photodynamic therapy. Adv Healthcare Mater. 2017;6(12):1601431. doi:10.1002/adhm.201601431
  • Han HH, Wang CZ, Zang Y, Li J, James TD, He XP. Supramolecular core-glycoshell polythiophene nanodots for targeted imaging and photodynamic therapy. Chem Commun. 2017;53(70):9793–9796. doi:10.1039/C7CC04525E
  • Wu P, Xu N, Tan C, et al. Light-induced translocation of a conjugated polyelectrolyte in cells: from fluorescent probe to anticancer agent. ACS Appl Mater Interfaces. 2017;9(12):10512–10518. doi:10.1021/acsami.7b00540
  • Feng G, Fang Y, Liu J, Geng J, Ding D, Liu B. Multifunctional conjugated polymer nanoparticles for image-guided photodynamic and photothermal therapy. Small. 2017;13(3):1602807. doi:10.1002/smll.201602807
  • Zheng Z, Jia Z, Qin Y, et al. All-in-one zeolite–carbon-based nanotheranostics with adjustable NIR-II window photoacoustic/fluorescence imaging performance for precise NIR-II photothermal-synergized catalytic antitumor therapy. Small. 2021;17(41):2103252. doi:10.1002/smll.202103252
  • Li R, Niu R, Qi J, et al. Conjugated polythiophene for rapid, simple, and high-throughput screening of antimicrobial photosensitizers. ACS Appl Mater Interfaces. 2015;7(27):14569–14572. doi:10.1021/acsami.5b04552
  • Yuan H, Zhan Y, Rowan AE, Xing C, Kouwer PHJ. Biomimetic networks with enhanced photodynamic antimicrobial activity from conjugated polythiophene/polyisocyanide hybrid hydrogels. Angew Chem Int. 2020;59(7):2720–2724. doi:10.1002/anie.201910979
  • Tabata Y, Murakami Y, Ikada Y. Photodynamic effect of polyethylene glycol-modified fullerene on tumor. Jpn J Cancer Res. 1997;88(11):1108–1116. doi:10.1111/j.1349-7006.1997.tb00336.x
  • Chen Y, Tan C, Zhang H, Wang L. Two-dimensional graphene analogues for biomedical applications. Chem Soc Rev. 2015;44(9):2681–2701. doi:10.1039/C4CS00300D
  • Luo Y, Li Z, Zhu C, et al. Graphene-like metal-free 2D nanosheets for cancer imaging and theranostics. Trends Biotechnol. 2018;36(11):1145–1156. doi:10.1016/j.tibtech.2018.05.012
  • Chen J, Wu W, Zhang F, et al. Graphene quantum dots in photodynamic therapy. Nanoscale Adv. 2020;2(10):4961–4967. doi:10.1039/D0NA00631A
  • Fan HY, Yu XH, Wang K, et al. Graphene quantum dots (GQDs)-based nanomaterials for improving photodynamic therapy in cancer treatment. Eur J Med Chem. 2019;182:111620. doi:10.1016/j.ejmech.2019.111620
  • MacFarlane LR, Shaikh H, Garcia-Hernandez JD, Vespa M, Fukui T, Manners I. Functional nanoparticles through π-conjugated polymer self-assembly. Nat Rev Mater. 2021;6:7–26. doi:10.1038/s41578-020-00233-4
  • Xue F, Shi M, Yan Y, Yang H, Zhou Z, Yang S. Iridium complex loaded polypyrrole nanoparticles for NIR laser induced photothermal effect and generation of singlet oxygen. RSC Adv. 2016;6(19):15509–15512. doi:10.1039/C5RA22092K
  • Xing C, Liu L, Tang H, et al. Design guidelines for conjugated polymers with light-activated anticancer activity. Adv Funct Mater. 2011;21(21):4058–4067. doi:10.1002/adfm.201100840
  • Mao D, Liu J, Ji S, et al. Amplification of near-infrared fluorescence in semiconducting polymer nanoprobe for grasping the behaviors of systemically administered endothelial cells in ischemia treatment. Biomaterials. 2017;143:109–119. doi:10.1016/j.biomaterials.2017.07.038
  • He F, Ren X, Shen X, Xu Q-H. Water-soluble conjugated polymers for amplification of one- and two-photon properties of photosensitizers. Macromolecules. 2011;44(13):5373–5380. doi:10.1021/ma2008805
  • Xiang Z, Zhu L, Qi L, et al. Two-dimensional fully conjugated polymeric photosensitizers for advanced photodynamic therapy. Chem Mater. 2016;28(23):8651–8658. doi:10.1021/acs.chemmater.6b03619
  • Chen D, Yu Q, Huang X, et al. A highly-efficient type I photosensitizer with robust vascular-disruption activity for hypoxic-and-metastatic tumor specific photodynamic therapy. Small. 2020;16:2001059. doi:10.1002/smll.202001059
  • Rahman M, Tian H, Edvinsson T. Revisiting the limiting factors for overall water-splitting on organic photocatalysts. Angew Chem Int. 2020;59(38):16278–16293. doi:10.1002/anie.202002561
  • She X, Wu J, Xu H, et al. High efficiency photocatalytic water splitting using 2D α-Fe2O3 /g-C3N4 Z-scheme catalysts. Adv Energy Mater. 2017;7(17):1700025. doi:10.1002/aenm.201700025
  • Mo Z, Di J, Yan P, et al. An all-organic D-a system for visible-light-driven overall water splitting. Small. 2020;16(48):e2003914. doi:10.1002/smll.202003914
  • Sarmah CP. Microstructure and optical properties of ultra thin film of gold nanocomposite polyaniline. Indian J Pure Appl Phys. 2016;54:401–405.
  • Pesant S, Boulanger P, Côté M, et al. Ab initio study of ladder-type polymers polythiophene and polypyrrole. Chem Phys Lett. 2006;450:329–334. doi:10.1016/j.cplett.2007.11.023
  • Hariharan A, Subramanian K, Alagar M, Dinakaran K. Conjugated donor-acceptor copolymers derived from phenylenevinylene and tri substituted pyridine units: synthesis, optical and electrochemical properties. High Perform Polym. 2014;27(6):724–733. doi:10.1177/0954008314559312
  • Hou Q, Xu X, Guo T, Zeng X, Luo S, Yang L. Synthesis and photovoltaic properties of fluorene-based copolymers with narrow band-gap units on the side chain. Eur Polym J. 2010;46(12):2365–2371. doi:10.1016/j.eurpolymj.2010.09.015
  • Atwani O, Baristiran C, Erden A, Sonmez G. A stable, low band gap electroactive polymer: poly(4,7-dithien-2-yl-2,1,3-benzothiadiazole). Synth Met. 2008;158(3–4):83–89. doi:10.1016/j.synthmet.2007.12.013
  • Ge B, Wei Q, Sun A, et al. A 3D iodoplumbate semiconducting open framework with visible-light-induced photocatalytic performance. Chem Asian J. 2019;14(12):2086–2090. doi:10.1002/asia.201900392
  • Shaktawat V, Jain N, Saxena R, Saxena NS, Sharma TP. Electrical conductivity and optical band gap studies of polypyrrole doped with different acids. Optoelectron Adv Mater Rapid Commun. 2007;9:2130–2132.
  • Ji E, Corbitt TS, Parthasarathy A, Schanze KS, Whitten DG. Light and dark-activated biocidal activity of conjugated polyelectrolytes. ACS Appl Mater Interfaces. 2011;3(8):2820–2829. doi:10.1021/am200644g
  • Bingshe X, Peide H, Liping W, et al. Optical properties in 2D photonic crystal structure using fullerene and azafullerene thin films. Opt Commun. 2005;250(1–3):120–125. doi:10.1016/j.optcom.2005.02.017
  • Li S, Wang P, Zhao H, Wang R, Li Z. Fabrication of black phosphorus nanosheets/BiOBr visible light photocatalysts via the co-precipitation method. Colloids Surf a Physicochem Eng Aspects. 2020;612:125967. doi:10.1016/j.colsurfa.2020.125967
  • Wen J, Xie J, Chen X, Li X. A review on g-C3N4 -based photocatalysts. Appl Surf Sci. 2017;391:72–123. doi:10.1016/j.apsusc.2016.07.030
  • Ma X, Pang C, Li S, et al. Synthesis of Zr-coordinated amide porphyrin-based two-dimensional covalent organic framework at liquid-liquid interface for electrochemical sensing of tetracycline. Biosens Bioelectron. 2019;146:111734. doi:10.1016/j.bios.2019.111734
  • Foote CS. Definition of type I and type II photosensitized oxidation. Photochem Photobiol. 1991;54(5):659. doi:10.1111/j.1751-1097.1991.tb02071.x
  • Sheu C, Kang P, Khan S, Foote CS. Low-temperature photosensitized oxidation of a guanosine derivative and formation of an imidazole ring-opened product. J Am Chem Soc. 2002;124(15):3905–3913. doi:10.1021/ja011696e
  • Liao JC, Roider J, Jay DG. Chromophore-assisted laser inactivation of proteins is mediated by the photogeneration of free radicals. Proc Natl Acad Sci U S A. 1994;91(7):2659–2663. doi:10.1073/pnas.91.7.2659
  • Huang Y, Pappas HC, Zhang L, et al. Selective imaging and inactivation of bacteria over mammalian cells by imidazolium-substituted polythiophene. Chem Mater. 2017;29(15):6389–6395. doi:10.1021/acs.chemmater.7b01796
  • Lichon L, Kotras C, Myrzakhmetov B, et al. Polythiophenes with cationic phosphonium groups as vectors for imaging, siRNA delivery, and photodynamic therapy. Nanomaterials. 2020;10(8):1432. doi:10.3390/nano10081432
  • Wang B, Yuan H, Zhu C, et al. Polymer-drug conjugates for intracellar molecule-targeted photoinduced inactivation of protein and growth inhibition of cancer cells. Sci Rep. 2012;2:766. doi:10.1038/srep00766
  • Khatoon SS, Chen Y, Zhao H, Lv F, Liu L, Wang S. In situ self-assembly of conjugated polyelectrolytes for cancer targeted imaging and photodynamic therapy. Biomater Sci. 2020;8(8):2156–2163. doi:10.1039/C9BM01912J
  • Schmidt K, Brovelli S, Coropceanu V, et al. Intersystem crossing processes in nonplanar aromatic heterocyclic molecules. J Phys Chem A. 2007;111(42):10490. doi:10.1021/jp075248q
  • Cekli S, Winkel RW, Schanze KS. Effect of oligomer length on photophysical properties of platinum acetylide donor–acceptor–donor oligomers. J Phys Chem A. 2016;120(28):5512–5521. doi:10.1021/acs.jpca.6b03977
  • Zhou W, Chen Y, Zhang Y, et al. Iodine-rich semiconducting polymer nanoparticles for CT/fluorescence dual-modal imaging-guided enhanced photodynamic therapy. Small. 2020;16(5):e1905641. doi:10.1002/smll.201905641
  • Cekli S, Winkel RW, Alarousu E, Mohammed OF, Schanze KS. Triplet excited state properties in variable gap π-conjugated donor-acceptor-donor chromophores. Chem Sci. 2016;7(6):3621–3631. doi:10.1039/C5SC04578A
  • Xu S, Wu W, Cai X, et al. Highly efficient photosensitizers with aggregation-induced emission characteristics obtained through precise molecular design. Chem Commun. 2017;53(62):8727–8730. doi:10.1039/C7CC04864E
  • Wang S, Wu W, Manghnani P, et al. Polymerization-enhanced two-photon photosensitization for precise photodynamic therapy. ACS Nano. 2019;13(3):3095–3105. doi:10.1021/acsnano.8b08398
  • Feng G, Zhang GQ, Ding D. Design of superior phototheranostic agents guided by Jablonski diagrams. Chem Soc Rev. 2020;49(22):8179–8234. doi:10.1039/D0CS00671H
  • Yang T, Liu L, Deng Y, et al. Ultrastable near-infrared conjugated-polymer nanoparticles for dually photoactive tumor inhibition. Adv Mater. 2017;29(31):1700487. doi:10.1002/adma.201700487
  • Zhang X, Zhang A, Feng J, et al. A heavy atom free semiconducting polymer with high singlet oxygen quantum yield for photodynamic and photothermal synergistic therapy. Mater Des. 2021;197:109263. doi:10.1016/j.matdes.2020.109263
  • Wang H, Guo L, Wang Y, Feng L. Bactericidal activity-tunable conjugated polymers as a human-friendly bactericide for the treatment of wound infections. Biomater Sci. 2019;7(9):3788–3794. doi:10.1039/C9BM00695H
  • Hu L, Chen Z, Liu Y, et al. In vivo bioimaging and photodynamic therapy based on two-photon fluorescent conjugated polymers containing dibenzothiophene-S,S-dioxide derivatives. ACS Appl Mater Interfaces. 2020;12(51):57281–57289. doi:10.1021/acsami.0c12955
  • Hu L, Zhang Y, Guo T, Ying L, Xiong J, Yang W. Synthesis and properties of blue-light-emitting Oligo(fluorene-co-dibenzothiophene-S,S-dioxide)s. Dyes Pigments. 2019;166:502–514. doi:10.1016/j.dyepig.2019.03.059
  • Zhai L, Zhang Z, Zhao Y, Tang Y. Efficient antibacterial performance and effect of structure on property based on cationic conjugated polymers. Macromolecules. 2018;51(18):7239–7247. doi:10.1021/acs.macromol.8b01530
  • Liu S, Zhang H, Li Y, et al. Strategies to enhance the photosensitization: polymerization and the donor-acceptor even-odd effect. Angew Chem Int. 2018;57(46):15189–15193. doi:10.1002/anie.201810326
  • Wu M, Wu L, Li J, et al. Self-luminescing theranostic nanoreactors with intraparticle relayed energy transfer for tumor microenvironment activated imaging and photodynamic therapy. Theranostics. 2019;9(1):20–33. doi:10.7150/thno.28857
  • Zhang Z, Cao Y, Zhu X, Li Y, Cai X. Zwitterionic conjugated polymer as the single component for photoacoustic-imaging-guided dual-modal near-infrared phototherapy. ACS Biomater Sci Eng. 2020;6(7):4005–4011. doi:10.1021/acsbiomaterials.0c00206
  • Chang K, Tang Y, Fang X, Yin S, Xu H, Wu C. Incorporation of porphyrin to π-conjugated backbone for polymer-dot-sensitized photodynamic therapy. Biomacromolecules. 2016;17(6):2128–2136. doi:10.1021/acs.biomac.6b00356
  • Xing C, Xu Q, Tang H, Liu L, Wang S. Conjugated polymer/porphyrin complexes for efficient energy transfer and improving light-activated antibacterial activity. J Am Chem Soc. 2009;131(36):13117–13124. doi:10.1021/ja904492x
  • Li S, Chang K, Sun K, et al. Amplified singlet oxygen generation in semiconductor polymer dots for photodynamic cancer therapy. ACS Appl Mater Interfaces. 2016;8(6):3624–3634. doi:10.1021/acsami.5b07995
  • Sprick RS, Jiang JX, Bonillo B, et al. Tunable organic photocatalysts for visible-light-driven hydrogen evolution. J Am Chem Soc. 2015;137(9):3265–3270. doi:10.1021/ja511552k
  • Yao H, Dai J, Zhuang Z, et al. Red AIE conjugated polyelectrolytes for long-term tracing and image-guided photodynamic therapy of tumors. Sci China Chem. 2020;63(12):1815–1824. doi:10.1007/s11426-020-9824-2
  • Huang Y, Qiu F, Shen L, et al. Combining two-photon-activated fluorescence resonance energy transfer and near-infrared photothermal effect of unimolecular micelles for enhanced photodynamic therapy. ACS Nano. 2016;10(11):10489–10499. doi:10.1021/acsnano.6b06450
  • Moan J, Berg K. The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen. Photochem Photobiol. 1991;53(4):549–553. doi:10.1111/j.1751-1097.1991.tb03669.x
  • Yuan Y, Liu J, Liu B. Conjugated-polyelectrolyte-based polyprodrug: targeted and image-guided photodynamic and chemotherapy with on-demand drug release upon irradiation with a single light source. Angew Chem Int. 2014;53(28):7163–7168. doi:10.1002/anie.201402189
  • Cui D, Huang J, Zhen X, Li J, Jiang Y, Pu K. A semiconducting polymer nano-prodrug for hypoxia-activated photodynamic cancer therapy. Angew Chem Int. 2019;58(18):5920–5924. doi:10.1002/anie.201814730
  • Qian C, Yu J, Chen Y, et al. Light-activated hypoxia-responsive nanocarriers for enhanced anticancer therapy. Adv Mater. 2016;28(17):3313–3320. doi:10.1002/adma.201505869
  • Zeng Z, Zhang C, Li J, Cui D, Jiang Y, Pu K. Activatable polymer nanoenzymes for photodynamic immunometabolic cancer therapy. Adv Mater. 2020;33:e2007247. doi:10.1002/adma.202007247
  • Zhu H, Fang Y, Miao Q, et al. Regulating near-infrared photodynamic properties of semiconducting polymer nanotheranostics for optimized cancer therapy. ACS Nano. 2017;11(9):8998–9009. doi:10.1021/acsnano.7b03507
  • Liang Y, Zhang H, Yuan H, et al. Conjugated polymer and triphenylamine derivative codoped nanoparticles for photothermal and photodynamic antimicrobial therapy. ACS Appl Bio Mater. 2020;3(6):3494–3499. doi:10.1021/acsabm.0c00320
  • Liao G, He F, Li Q, et al. Emerging graphitic carbon nitride-based materials for biomedical applications. Prog Mater Sci. 2020;112:100666. doi:10.1016/j.pmatsci.2020.100666
  • Hu T, Mei X, Wang Y, Weng X, Liang R, Wei M. Two-dimensional nanomaterials: fascinating materials in biomedical field. Sci Bull. 2019;64(22):1707–1727. doi:10.1016/j.scib.2019.09.021
  • Zhou Z, Song J, Nie L, Chen X. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chem Soc Rev. 2016;45(23):6597–6626.
  • Wu X, Yang L, Luo L, Shi G, Wei X, Wang F. Engineered g-C 3 N 4 quantum dots for tunable two-photon imaging and photodynamic therapy. ACS Appl Bio Mater. 2019;2(5):1998–2005. doi:10.1021/acsabm.9b00055
  • Chu X, Li K, Guo H. Exploration of graphitic-C3N4 quantum dots for microwave induced photodynamic therapy. ACS Biomater Sci Eng. 2017;2:1998–2005.
  • Liu X, Xing S, Xu Y, Chen R, Lin C, Guo L. 3-Amino-1,2,4-triazole-derived graphitic carbon nitride for photodynamic therapy. Spectrochim Acta A Mol Biomol Spectrosc. 2021;250:119363. doi:10.1016/j.saa.2020.119363
  • Wu Y, Yang D, Xu W, et al. Tunable water-soluble carbon nitride by alkali-metal cations modification: enhanced ROS-evolving and adsorption band for photodynamic therapy. Appl Cat B. 2020;269:118848. doi:10.1016/j.apcatb.2020.118848
  • Ong WJ, Tan LL, Ng YH, Yong ST, Chai SP. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem Rev. 2016;116(12):7159–7329. doi:10.1021/acs.chemrev.6b00075
  • Wang H, Lin Q, Yin L, et al. Biomimetic design of hollow flower-like g-C3N4@PDA organic framework nanospheres for realizing an efficient photoreactivity. Small. 2019;15(16):e1900011. doi:10.1002/smll.201900011
  • Huang YF, Zhang M, Zhao LB, Feng JM, Wu DY. Activation of oxygen on gold and silver nanoparticles assisted by surface plasmon resonances. Angew Chem Int Ed. 2014;126:2353–2357. doi:10.1002/anie.201310097
  • Dai J, Song J, Qiu Y, et al. Gold nanoparticle-decorated g-C3N4 nanosheets for controlled generation of reactive oxygen species upon 670 nm laser illumination. ACS Appl Mater Interfaces. 2019;11(11):10589–10596. doi:10.1021/acsami.9b01307
  • Chan CF, Zhou Y, Guo H, et al. pH-dependent cancer-directed photodynamic therapy by a water-soluble graphitic-phase carbon nitride-porphyrin nanoprobe. ChemPlusChem. 2016;81(6):535–540. doi:10.1002/cplu.201600085
  • Huang Q, Chen Y, Hao L, et al. Pegylated carbon nitride nanosheets for enhanced reactive oxygen species generation and photodynamic therapy under hypoxic conditions. Nanomedicine. 2020;25:102167. doi:10.1016/j.nano.2020.102167
  • Li RQ, Zhang C, Xie BR, et al. A two-photon excited O2-evolving nanocomposite for efficient photodynamic therapy against hypoxic tumor. Biomaterials. 2019;194:84–93. doi:10.1016/j.biomaterials.2018.12.017
  • Lin LS, Cong ZX, Li J, et al. Graphitic-phase C3N4 nanosheets as efficient photosensitizers and pH-responsive drug nanocarriers for cancer imaging and therapy. J Mater Chem B. 2014;2(8):1031–1037. doi:10.1039/c3tb21479f
  • Chen R, Zhang J, Wang Y, Chen X, Zapien JA, Lee CS. Graphitic carbon nitride nanosheet@metal-organic framework core-shell nanoparticles for photo-chemo combination therapy. Nanoscale. 2015;7(41):17299–17305. doi:10.1039/C5NR04436G
  • Huang Y, Tian Y, Shu J, Wang F, Wei X. Oxygen self-enriched single-component “black carbon nitride” for near-infrared phototheranostics. Nanoscale. 2020;12(42):21812–21820. doi:10.1039/D0NR05871H
  • Zhang Y, Cheng Y, Yang F, et al. Near-infrared triggered Ti3C2/g-C3N4 heterostructure for mitochondria-targeting multimode photodynamic therapy combined photothermal therapy. Nano Today. 2020;34:100919. doi:10.1016/j.nantod.2020.100919
  • Kou L, Chen C, Smith SC. Phosphorene: fabrication, properties, and applications. J Phys Chem Lett. 2015;6(14):2794–2805. doi:10.1021/acs.jpclett.5b01094
  • Xu Y, Wang Z, Guo Z, et al. Solvothermal synthesis and ultrafast photonics of black phosphorus quantum dots. Adv Opt Mater. 2016;4(8):1223–1229. doi:10.1002/adom.201600214
  • Wang H, Yang X, Shao W, et al. Ultrathin black phosphorus nanosheets for efficient singlet oxygen generation. J Am Chem Soc. 2015;137(35):11376–11382. doi:10.1021/jacs.5b06025
  • Chen J, Fan T, Xie Z, et al. Advances in nanomaterials for photodynamic therapy applications: status and challenges. Biomaterials. 2020;237:119827. doi:10.1016/j.biomaterials.2020.119827
  • Tian J, Huang B, Nawaz MH, Zhang W. Recent advances of multi-dimensional porphyrin-based functional materials in photodynamic therapy. Coord Chem Rev. 2020;420:213410. doi:10.1016/j.ccr.2020.213410
  • Guo T, Wu Y, Lin Y, et al. Black phosphorus quantum dots with renal clearance property for efficient photodynamic therapy. Small. 2018;14(4):1702815. doi:10.1002/smll.201702815
  • Li Z, Fu Q, Ye J, et al. Ag+ -coupled black phosphorus vesicles with emerging NIR-II photoacoustic imaging performance for cancer immune-dynamic therapy and fast wound healing. Angew Chem Int. 2020;59(49):22202–22209. doi:10.1002/anie.202009609
  • Huang J, He B, Zhang Z, et al. Aggregation-induced emission luminogens married to 2D black phosphorus nanosheets for highly efficient multimodal theranostics. Adv Mater. 2020;32(37):e2003382. doi:10.1002/adma.202003382
  • Liu Y, Zhu D, Zhu X, et al. Enhancing the photodynamic therapy efficacy of black phosphorus nanosheets by covalently grafting fullerene C60. Chem Sci. 2020;11(42):11435–11442. doi:10.1039/D0SC03349A
  • Xu D, Liu J, Wang Y, Jian Y, Wu W, Lv R. Black phosphorus nanosheet with high thermal conversion efficiency for photodynamic/photothermal/immunotherapy. ACS Biomater Sci Eng. 2020;6(9):4940–4948. doi:10.1021/acsbiomaterials.0c00984
  • Dibaba ST, Wei R, Xi W, et al. Theranostic nanocomposite from upconversion luminescent nanoparticles and black phosphorus nanosheets. RSC Adv. 2018;8(62):35706–35718. doi:10.1039/C8RA07441K
  • Yang X, Wang D, Zhu J, et al. Functional black phosphorus nanosheets for mitochondria-targeting photothermal/photodynamic synergistic cancer therapy. Chem Sci. 2019;10(13):3779–3785. doi:10.1039/C8SC04844D
  • Jana D, Jia S, Bindra AK, Xing P, Ding D, Zhao Y. Clearable black phosphorus nanoconjugate for targeted cancer phototheranostics. ACS Appl Mater Interfaces. 2020;12(16):18342–18351. doi:10.1021/acsami.0c02718
  • Yang D, Yang G, Yang P, et al. Assembly of Au plasmonic photothermal agent and iron oxide nanoparticles on ultrathin black phosphorus for targeted photothermal and photodynamic cancer therapy. Adv Funct Mater. 2017;27(18):1700371. doi:10.1002/adfm.201700371
  • Wang J, Zhang H, Xiao X, et al. Gold nanobipyramid-loaded black phosphorus nanosheets for plasmon-enhanced photodynamic and photothermal therapy of deep-seated orthotopic lung tumors. Acta Biomater. 2020;107:260–271. doi:10.1016/j.actbio.2020.03.001
  • Zhang D, Lin X, Lan S, et al. Localized surface plasmon resonance enhanced singlet oxygen generation and light absorption based on black phosphorus@AuNPs nanosheet for tumor photodynamic/thermal therapy. Part Part Syst Char. 2018;35(4):1800010. doi:10.1002/ppsc.201800010
  • Zheng T, Zhou T, Feng X, Shen J, Zhang M, Sun Y. Enhanced Plasmon-Induced Resonance Energy Transfer (PIRET)-mediated photothermal and photodynamic therapy guided by photoacoustic and magnetic resonance imaging. ACS Appl Mater Interfaces. 2019;11(35):31615–31626. doi:10.1021/acsami.9b09296
  • Xu M, Yang G, Bi H, et al. An intelligent nanoplatform for imaging-guided photodynamic/photothermal/chemo-therapy based on upconversion nanoparticles and CuS integrated black phosphorus. Chem Eng J. 2020;382:122822. doi:10.1016/j.cej.2019.122822
  • Li R, Shan L, Yao Y, et al. Black phosphorus nanosheets and docetaxel micelles co-incorporated thermoreversible hydrogel for combination chemo-photodynamic therapy. Drug Deliv Transl Res. 2021;11(3):1133–1143. doi:10.1007/s13346-020-00836-y
  • Hai L, Zhang A, Wu X, et al. Liposome-stabilized black phosphorus for photothermal drug delivery and oxygen self-enriched photodynamic therapy. ACS Appl Nano Mater. 2019;3:563–575. doi:10.1021/acsanm.9b02119
  • Chen L, Chen C, Chen W, et al. Biodegradable black phosphorus nanosheets mediate specific delivery of hTERT siRNA for synergistic cancer therapy. ACS Appl Mater Interfaces. 2018;10(25):21137–21148. doi:10.1021/acsami.8b04807
  • Li L, Yang Z, Fan W, et al. In situ polymerized hollow mesoporous organosilica biocatalysis nanoreactor for enhancing ROS-mediated anticancer therapy. Adv Funct Mater. 2020;30(4):1905758. doi:10.1002/adfm.201905758
  • Zheng XT, Ananthanarayanan A, Luo KQ, et al. Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small. 2015;11(14):1620–1636. doi:10.1002/smll.201402648
  • Yan Y, Gong J, Chen J, et al. Recent advances on graphene quantum dots: from chemistry and physics to applications. Adv Mater. 2019;31:1808283. doi:10.1002/adma.201808283
  • Kuo WS, Yeh TS, Chang CY, et al. Amino-functionalized nitrogen-doped graphene quantum dots for efficient enhancement of two-photon-excitation photodynamic therapy: functionalized nitrogen as a bactericidal and contrast agent. Int J Nanomedicine. 2020;15:6961–6973. doi:10.2147/IJN.S242892
  • Wang L, Li Y, Wang Y, et al. Chlorine-doped graphene quantum dots with enhanced anti- and pro-oxidant properties. ACS Appl Mater Interfaces. 2019;11(24):21822–21829. doi:10.1021/acsami.9b03194
  • Li Z, Wang D, Xu M, et al. Fluorine-containing graphene quantum dots with a high singlet oxygen generation applied for photodynamic therapy. J Mater Chem B. 2020;8(13):2598–2606. doi:10.1039/C9TB02529D
  • Roeinfard M, Zahedifar M, Darroudi M, Khorsand Zak A, Sadeghi E. Synthesis of graphene quantum dots decorated with Se, Eu and Ag as photosensitizer and study of their potential to use in photodynamic therapy. J Fluoresc. 2021;31(2):551–557. doi:10.1007/s10895-020-02674-0
  • Du D, Wang K, Wen Y, Li Y, Li YY. Photodynamic graphene quantum dot: reduction condition regulated photoactivity and size dependent efficacy. ACS Appl Mater Interfaces. 2016;8(5):3287–3294. doi:10.1021/acsami.5b11154
  • Ju J, Regmi S, Fu A, Lim S, Liu Q. Graphene quantum dot based charge-reversal nanomaterial for nucleus-targeted drug delivery and efficiency controllable photodynamic therapy. J Biophotonics. 2019;12(6):e201800367. doi:10.1002/jbio.201800367
  • Wu C, Guan X, Xu J, et al. Highly efficient cascading synergy of cancer photo-immunotherapy enabled by engineered graphene quantum dots/photosensitizer/CpG oligonucleotides hybrid nanotheranostics. Biomaterials. 2019;205:106–119. doi:10.1016/j.biomaterials.2019.03.020
  • Cao Y, Dong H, Yang Z, et al. Aptamer-conjugated graphene quantum dots/porphyrin derivative theranostic agent for intracellular cancer-related MicroRNA detection and fluorescence-guided photothermal/photodynamic synergetic therapy. ACS Appl Mater Interfaces. 2017;9(1):159–166. doi:10.1021/acsami.6b13150
  • Yu Y, Mei L, Shi Y, et al. Ag-Conjugated graphene quantum dots with blue light-enhanced singlet oxygen generation for ternary-mode highly-efficient antimicrobial therapy. J Mater Chem B. 2020;8(7):1371–1382. doi:10.1039/C9TB02300C
  • Tade RS, Patil PO. Theranostic prospects of graphene quantum dots in breast cancer. ACS Biomater Sci Eng. 2020;6(11):5987–6008. doi:10.1021/acsbiomaterials.0c01045
  • Antoku D, Sugikawa K, Ikeda A. Photodynamic activity of fullerene derivatives solubilized in water by natural-product-based solubilizing agents. Chemistry. 2019;25(8):1854–1865. doi:10.1002/chem.201803657
  • Lee H, Seok lee JS, Moor KJ, et al. Hand-ground fullerene-nanodiamond composite for photosensitized water treatment and photodynamic cancer therapy. J Colloid Interface Sci. 2021;587:101–109. doi:10.1016/j.jcis.2020.12.020
  • Zheng X, Wang L, Pei Q, He S, Liu S, Xie Z. Metal–organic framework@porous organic polymer nanocomposite for photodynamic therapy. Chem Mater. 2017;29(5):2374–2381. doi:10.1021/acs.chemmater.7b00228
  • Tao Y, Chan HF, Shi B, Li M, Leong KW. Light: a magical tool for controlled drug delivery. Adv Funct Mater. 2020;30(49):1804901. doi:10.1002/adfm.202005029
  • Sun T, Xia R, Zhou J, Zheng X, Liu S, Xie Z. Protein-assisted synthesis of nanoscale covalent organic frameworks for phototherapy of cancer. Mater Chem Front. 2020;4(8):2346–2356. doi:10.1039/D0QM00274G
  • Hynek J, Zelenka J, Rathouský J, et al. Designing porphyrinic covalent organic frameworks for the photodynamic inactivation of bacteria. ACS Appl Mater Interfaces. 2018;10(10):8527–8535. doi:10.1021/acsami.7b19835
  • Zhang L, Wang S, Zhou Y, Wang C, Zhang XZ, Deng H. Covalent organic frameworks as favorable constructs for photodynamic therapy. Angew Chem Int. 2019;58(40):14213–14218. doi:10.1002/anie.201909020
  • Gao P, Wang M, Chen Y, et al. A COF-based nanoplatform for highly efficient cancer diagnosis, photodynamic therapy and prognosis. Chem Sci. 2020;11(26):6882–6888. doi:10.1039/D0SC00847H
  • Guan Q, Fu DD, Li YA, et al. BODIPY-decorated nanoscale covalent organic frameworks for photodynamic therapy. iScience. 2019;14:180–198. doi:10.1016/j.isci.2019.03.028
  • Guan Q, Zhou LL, Lv FH, Li WY, Li YA, Dong YB. A glycosylated covalent organic framework equipped with BODIPY and CaCO3 for synergistic tumor therapy. Angew Chem Int. 2020;59(41):18042–18047. doi:10.1002/anie.202008055
  • Shi Y, Liu S, Liu Y, et al. Facile fabrication of nanoscale porphyrinic covalent organic polymers for combined photodynamic and photothermal cancer therapy. ACS Appl Mater Interfaces. 2019;11(13):12321–12326. doi:10.1021/acsami.9b00361
  • Hu C, Zhang Z, Liu S, Liu X, Pang M. Monodispersed CuSe sensitized covalent organic framework photosensitizer with an enhanced photodynamic and photothermal effect for cancer therapy. ACS Appl Mater Interfaces. 2019;11(26):23072–23082. doi:10.1021/acsami.9b08394
  • Hu C, Cai L, Liu S, Pang M. Integration of a highly monodisperse covalent organic framework photosensitizer with cation exchange synthesized Ag2Se nanoparticles for enhanced phototherapy. Chem Commun. 2019;55(62):9164–9167. doi:10.1039/C9CC04668B
  • Yin Q, Zhao P, Sa R, et al. An ultra-robust and crystalline redeemable hydrogen-bonded organic framework for synergistic chemo-photodynamic therapy. Angew Chem Int Ed. 2018;57(26):7691–7696. doi:10.1002/anie.201800354
  • Zhang C, Qin W-J, Bai X-F, Zhang X-Z. Nanomaterials to relieve tumor hypoxia for enhanced photodynamic therapy. Nano Today. 2020;35:100960. doi:10.1016/j.nantod.2020.100960
  • Sahu A, Kwon I, Tae G. Improving cancer therapy through the nanomaterials-assisted alleviation of hypoxia. Biomaterials. 2020;228:119578. doi:10.1016/j.biomaterials.2019.119578
  • Zheng DW, Li B, Li CX, et al. Carbon-dot-decorated carbon nitride nanoparticles for enhanced photodynamic therapy against hypoxic tumor via water splitting. ACS Nano. 2016;10(9):8715–8722. doi:10.1021/acsnano.6b04156
  • Zhao H, Li L, Zheng C, et al. An intelligent dual stimuli-responsive photosensitizer delivery system with O2-supplying for efficient photodynamic therapy. Colloids Surf B Biointerfaces. 2018;167:299–309. doi:10.1016/j.colsurfb.2018.04.011
  • Ma Z, Zhang M, Jia X, et al. FeIII -doped two-dimensional C3 N4 nanofusiform: a new O2-evolving and mitochondria-targeting photodynamic agent for MRI and enhanced antitumor therapy. Small. 2016;12(39):5477–5487. doi:10.1002/smll.201601681
  • Zhang W, Li S, Liu X, et al. Oxygen-generating MnO2 nanodots-anchored versatile nanoplatform for combined chemo-photodynamic therapy in hypoxic cancer. Adv Funct Mater. 2018;28(13):1706375. doi:10.1002/adfm.201706375
  • Jiang W, Zhang C, Ahmed A, et al. H2O2-sensitive upconversion nanocluster bomb for tri-mode imaging-guided photodynamic therapy in deep tumor tissue. Adv Healthc Mater. 2019;8(20):e1900972. doi:10.1002/adhm.201900972
  • Ouyang J, Deng Y, Chen W, et al. Marriage of artificial catalase and black phosphorus nanosheets for reinforced photodynamic antitumor therapy. J Mater Chem B. 2018;6(14):2057–2064. doi:10.1039/C8TB00371H
  • Yang X, Liu R, Zhong Z, et al. Platinum nanoenzyme functionalized black phosphorus nanosheets for photothermal and enhanced-photodynamic therapy. Chem Eng J. 2021;409:127381. doi:10.1016/j.cej.2020.127381
  • Lan S, Lin Z, Zhang D, Zeng Y, Liu X. Photocatalysis enhancement for programmable killing of hepatocellular carcinoma through self-compensation mechanisms based on black phosphorus quantum-dot-hybridized nanocatalysts. ACS Appl Mater Interfaces. 2019;11(10):9804–9813. doi:10.1021/acsami.8b21820
  • Zhang Y, Xu M, Wang Y, Toledo F, Zhou F. Studies of metal ion binding by apo-metallothioneins attached onto preformed self-assembled monolayers using a highly sensitive surface plasmon resonance spectrometer. Sens Actuators B Chem. 2007;123(2):784–792, 127491. doi:10.1016/j.snb.2006.10.019
  • Yao X, Yang B, Wang S, et al. A novel multifunctional FePt/BP nanoplatform for synergistic photothermal/photodynamic/chemodynamic cancer therapies and photothermally-enhanced immunotherapy. J Mater Chem B. 2020;8(35):8010–8021. doi:10.1039/D0TB00411A
  • Cai L, Hu C, Liu S, Zhou Y, Pang M, Lin J. A covalent organic framework-based multifunctional therapeutic platform for enhanced photodynamic therapy via catalytic cascade reactions. Sci China Mater. 2020;64:488–497. doi:10.1007/s40843-020-1428-0
  • Liu J, Liu T, Du P, Zhang L, Lei J. Metal-organic framework (MOF) hybrid as a tandem catalyst for enhanced therapy against hypoxic tumor cells. Angew Chem Int. 2019;58(23):7808–7812. doi:10.1002/anie.201903475
  • Liu J, Du P, Mao H, Zhang L, Ju H, Lei J. Dual-triggered oxygen self-supply black phosphorus nanosystem for enhanced photodynamic therapy. Biomaterials. 2018;172:83–91. doi:10.1016/j.biomaterials.2018.04.051
  • Qi F, Ji P, Chen Z, et al. Photosynthetic cyanobacteria-hybridized black phosphorus nanosheets for enhanced tumor photodynamic therapy. Small. 2021;17(42):2102113. doi:10.1002/smll.202102113
  • Jiang L, Yang J, Zhou S, et al. Strategies to extend near-infrared light harvest of polymer carbon nitride photocatalysts. Coord Chem Rev. 2021;439:213947.
  • Chan MH, Chen CW, Lee IJ, et al. Near-infrared light-mediated photodynamic therapy nanoplatform by the electrostatic assembly of upconversion nanoparticles with graphitic carbon nitride quantum dots. Inorg Chem. 2016;55(20):10267–10277. doi:10.1021/acs.inorgchem.6b01522
  • Feng L, He F, Yang G, et al. NIR-driven graphitic-phase carbon nitride nanosheets for efficient bioimaging and photodynamic therapy. J Mater Chem B. 2016;4(48):8000–8008. doi:10.1039/C6TB02232D
  • Zou X, Yao M, Ma L, et al. X-ray-induced nanoparticle-based photodynamic therapy of cancer. Nanomedicine. 2014;9(15):2339–2351. doi:10.2217/nnm.13.198
  • Huang H, He L, Zhou W, et al. Stable black phosphorus/Bi2O3 heterostructures for synergistic cancer radiotherapy. Biomaterials. 2018;171:12–22. doi:10.1016/j.biomaterials.2018.04.022
  • Luo K, Wu H, Chen Y, et al. Preparation of Bi-based hydrogel for multi-modal tumor therapy. Colloids Surf B Biointerfaces. 2021;200:111591. doi:10.1016/j.colsurfb.2021.111591
  • Duan D, Liu H, Xu Y, et al. Activating TiO2 nanoparticles: gallium-68 serves as a high-yield photon emitter for cerenkov-induced photodynamic therapy. ACS Appl Mater Interfaces. 2018;10(6):5278–5286. doi:10.1021/acsami.7b17902
  • Yu B, Ni D, Rosenkrans ZT, Barnhart TE, Cai W. A “missile-detonation” strategy to precisely supply and efficiently amplify cerenkov radiation energy for cancer theranostics. Adv Mater. 2019;31(52):1904894. doi:10.1002/adma.201904894
  • Zhang Y, Pang L, Ma C, et al. Small molecule-initiated light-activated semiconducting polymer dots: an integrated nanoplatform for targeted photodynamic therapy and imaging of cancer cells. Anal Chem. 2014;86(6):3092–3099. doi:10.1021/ac404201s
  • Yuan H, Chong H, Wang B, et al. Chemical molecule-induced light-activated system for anticancer and antifungal activities. J Am Chem Soc. 2012;134(32):13184–13187. doi:10.1021/ja304986t
  • Wang Y, Feng L, Wang S. Conjugated polymer nanoparticles for imaging, cell activity regulation, and therapy. Adv Funct Mater. 2019;29(5):1806818. doi:10.1002/adfm.201806818
  • Wilhelm S, Tavares AJ, Dai Q, et al. Analysis of nanoparticle delivery to tumours. Nat Rev Mater. 2016;1(5):16014. doi:10.1038/natrevmats.2016.14
  • Feng L, Zhu J, Wang Z. Biological functionalization of conjugated polymer nanoparticles for targeted imaging and photodynamic killing of tumor cells. ACS Appl Mater Interfaces. 2016;8(30):19364–19370. doi:10.1021/acsami.6b06642
  • Li Y, Feng P, Wang C, Miao W, Huang H. Black phosphorus nanophototherapeutics with enhanced stability and safety for breast cancer treatment. Chem Eng J. 2020;400:125851. doi:10.1016/j.cej.2020.125851
  • Zhang W, Dang G, Dong J, et al. A multifunctional nanoplatform based on graphitic carbon nitride quantum dots for imaging-guided and tumor-targeted chemo-photodynamic combination therapy. Colloids Surf B Biointerfaces. 2020;199:111549. doi:10.1016/j.colsurfb.2020.111549
  • Fan J, Fang G, Zeng F, Wang X, Wu S. Water-dispersible fullerene aggregates as a targeted anticancer prodrug with both chemo- and photodynamic therapeutic actions. Small. 2013;9(4):613–621. doi:10.1002/smll.201201456
  • Wang J, Liang D, Qu Z, Kislyakov IM, Kiselev VM, Liu J. PEGylated-folic acid–modified black phosphorus quantum dots as near-infrared agents for dual-modality imaging-guided selective cancer cell destruction. Nanophotonics. 2020;9(8):2425–2435. doi:10.1515/nanoph-2019-0506
  • Jin G, He R, Liu Q, et al. Theranostics of triple-negative breast cancer based on conjugated polymer nanoparticles. ACS Appl Mater Interfaces. 2018;10(13):10634–10646. doi:10.1021/acsami.7b14603
  • Lu Y, Song G, He B, et al. Strengthened tumor photodynamic therapy based on a visible nanoscale covalent organic polymer engineered by microwave assisted synthesis. Adv Funct Mater. 2020;30:2004834. doi:10.1002/adfm.202004834
  • Cheng HL, Guo HL, Xie AJ, Shen YH, Zhu MZ. 4-in-1 Fe3O4/g-C3N4@PPy-DOX nanocomposites: magnetic targeting guided trimode combinatorial chemotherapy/PDT/PTT for cancer. J Inorg Biochem. 2021;215:111329. doi:10.1016/j.jinorgbio.2020.111329
  • Zeng S, Gao H, Li C, et al. Boosting photothermal theranostics via TICT and molecular motions for photohyperthermia therapy of muscle-invasive bladder cancer. Adv Healthc Mater. 2021:e2101063. doi:10.1002/adhm.202101063
  • Zhang X, Li H, Yi C, et al. Host immune response triggered by graphene quantum-dot-mediated photodynamic therapy for oral squamous cell carcinoma. Int J Nanomedicine. 2020;15:9627–9638. doi:10.2147/IJN.S276153
  • Feng L, He F, Liu B, et al. g-C3N4 coated upconversion nanoparticles for 808 nm near-infrared light triggered phototherapy and multiple imaging. Chem Mater. 2016;28(21):7935–7946. doi:10.1021/acs.chemmater.6b03598
  • Zhang X, Xie X, Wang H, Zhang J, Pan B, Xie Y. Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J Am Chem Soc. 2013;135(1):18–21. doi:10.1021/ja308249k
  • Anju S, Ashtami J, Mohanan PV. Black phosphorus, a prospective graphene substitute for biomedical applications. Mater Sci Eng C Mater Biol Appl. 2019;97:978–993. doi:10.1016/j.msec.2018.12.146
  • Song S-J, Shin Y, Lee H, Kim B, Han DW, Lim D. Dose- and time-dependent cytotoxicity of layered black phosphorus in fibroblastic cells. Nanomaterials. 2018;8(6):408. doi:10.3390/nano8060408
  • Wang G, Pandey R, Karna SP. Phosphorene oxide: stability and electronic properties of a novel two-dimensional material. Nanoscale. 2014;7(2):524–531. doi:10.1039/C4NR05384B
  • Han C, Hu Z, Gomes LC, et al. Surface functionalization of black phosphorus via potassium toward high-performance complementary devices. Nano Lett. 2017;17(7):4122–4129. doi:10.1021/acs.nanolett.7b00903
  • Autere A, Ryder CR, Säynätjoki A, et al. Rapid and large-area characterization of exfoliated black phosphorus using third-harmonic generation microscopy. J Phys Chem Lett. 2017;8(7):1343–1350. doi:10.1021/acs.jpclett.7b00140
  • Qu G, Liu W, Zhao Y, et al. Improved biocompatibility of black phosphorus nanosheets by chemical modification. Sci Found China. 2018;56:14488–14493.
  • Ryder CR, Wood JD, Wells SA, et al. Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry. Nat Chem. 2016;8(6):597–602. doi:10.1038/nchem.2505