240
Views
1
CrossRef citations to date
0
Altmetric
Original Research

Functionalized Au@Cu-Sb-S Nanoparticles for Spectral CT/Photoacoustic Imaging-Guided Synergetic Photo-Radiotherapy in Breast Cancer

, , , , , , , , ORCID Icon, , & ORCID Icon show all
Pages 395-407 | Published online: 25 Jan 2022

References

  • Brunt A, Haviland J, Sydenham M, et al. Ten-year results of FAST: a randomized controlled trial of 5-fraction whole-breast radiotherapy for early breast cancer. J Clin Oncol. 2020;38(28):3261–3272. doi:10.1200/jco.19.02750
  • Buckley AM, Lynam-Lennon N, O’Neill H, O’Sullivan J. Targeting hallmarks of cancer to enhance radiosensitivity in gastrointestinal cancers. Nat Rev Gastroenterol Hepatol. 2020;17(5):298–313. doi:10.1038/s41575-019-0247-2
  • Kirakci K, Pozmogova T, Protasevich A, et al. A water-soluble octahedral molybdenum cluster complex as a potential agent for X-ray induced photodynamic therapy. Biomater Sci. 2021;9(8):2893–2902. doi:10.1039/d0bm02005b
  • Li SM, Tan LF, Meng XW. Nanoscale metal‐organic frameworks: synthesis, biocompatibility, imaging applications, and thermal and dynamic therapy of tumors. Adv Funct Mater. 2020;30(13). doi:10.1002/adfm.201908924
  • Guo Z, Zhu S, Yong Y, et al. Synthesis of BSA-coated BiOI@Bi2 S3 semiconductor heterojunction nanoparticles and their applications for radio/photodynamic/photothermal synergistic therapy of tumor. Adv Mater. 2017;29(44):1704136. doi:10.1002/adma.201704136
  • Liu TI, Lu TY, Yang YC, et al. New combination treatment from ROS-Induced sensitized radiotherapy with nanophototherapeutics to fully eradicate orthotopic breast cancer and inhibit metastasis. Biomaterials. 2020;257:120229. doi:10.1016/j.biomaterials.2020.120229
  • Gong L, Zhang Y, Liu C, Zhang M, Han S. Application of radiosensitizers in cancer radiotherapy. Int J Nanomedicine. 2021;16:1083–1102. doi:10.2147/ijn.S290438
  • Li XS, Lovell JF, Yoon J, Chen XY. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat Rev Clin Oncol. 2020;17(11):657–674. doi:10.1038/s41571-020-0410-2
  • Xie ZJ, Fan TJ, An JS, et al. Emerging combination strategies with phototherapy in cancer nanomedicine. Chem Soc Rev. 2020;49(22):8065–8087. doi:10.1039/d0cs00215a
  • Wang X, Zhang CY, Du JF, et al. Enhanced generation of non-oxygen dependent free radicals by Schottky-type heterostructures of Au-BiS nanoparticles via X-ray-induced catalytic reaction for radiosensitization. ACS Nano. 2019;13(5):5947–5958. doi:10.1021/acsnano.9b01818
  • Oliveira J, Guidelli E. Multitherapeutic nanoplatform based on scintillating anthracene, silver@anthracene, and gold@anthracene nanoparticles for combined radiation and photodynamic cancer therapies. Mater Sci Eng C Mater Biol Appl. 2021;126:112122. doi:10.1016/j.msec.2021.112122
  • Chang MY, Hou ZY, Wang M, et al. Cu2 MoS4 /Au heterostructures with enhanced catalase-like activity and photoconversion efficiency for primary/metastatic tumors eradication by phototherapy-induced immunotherapy. Small. 2020;16(14):e1907146. doi:10.1002/smll.201907146
  • Yang S, Han GH, Chen Q, et al. Au-Pt nanoparticle formulation as a radiosensitizer for radiotherapy with dual effects. Int J Nanomedicine. 2021;16:239–248. doi:10.2147/IJN.S287523
  • Zhang P, Yu B, Jin X, et al. Therapeutic efficacy of carbon ion irradiation enhanced by 11-MUA-capped gold nanoparticles: an in vitro and in vivo study. Int J Nanomedicine. 2021;16:4661–4674. doi:10.2147/IJN.S313678
  • Chen Y, Yang J, Fu S, Wu J. Gold nanoparticles as radiosensitizers in cancer radiotherapy. Int J Nanomedicine. 2020;15:9407–9430. doi:10.2147/ijn.S272902
  • Zhang J, Liu YT, Wang X, et al. Nanozyme-incorporated biodegradable bismuth mesoporous radiosensitizer for tumor microenvironment-modulated hypoxic tumor thermoradiotherapy. ACS Appl Mater Interfaces. 2020;12(52):57768–57781. doi:10.1021/acsami.0c18853
  • Liu HX, Lin WQ, He LZ, Chen TF. Radiosensitive core/satellite ternary heteronanostructure for multimodal imaging-guided synergistic cancer radiotherapy. Biomaterials. 2020;226:119545. doi:10.1016/j.biomaterials.2019.119545
  • Zhou J, Geng SZ, Ye WR, et al. ROS-boosted photodynamic therapy against metastatic melanoma by inhibiting the activity of antioxidase and oxygen-producing nano-dopants. Pharmacol Res. 2020;158:104885. doi:10.1016/j.phrs.2020.104885
  • Yaqoob S, Adnan R, Rameez Khan R, Rashid M. Gold, silver, and palladium nanoparticles: a chemical tool for biomedical applications. Front Chem. 2020;8:376. doi:10.3389/fchem.2020.00376
  • Huang Q, Zhang SH, Zhang H, et al. Boosting the radiosensitizing and photothermal performance of Cu2- xSe nanocrystals for synergetic radiophotothermal therapy of orthotopic breast cancer. ACS Nano. 2019;13(2):1342–1353. doi:10.1021/acsnano.8b06795
  • Nosrati H, Charmi J, Abhari F, et al. Improved synergic therapeutic effects of chemoradiation therapy with the aid of a co-drug-loaded nano-radiosensitizer under conventional-dose X-ray irradiation. Biomater Sci. 2020;8(15):4275–4286. doi:10.1039/d0bm00353k
  • Hou MR, Yan CG, Chen ZL, et al. Multifunctional NIR-responsive poly(vinylpyrrolidone)-Cu-Sb-S nanotheranostic agent for photoacoustic imaging and photothermal/photodynamic therapy. Acta Biomater. 2018;74:334–343. doi:10.1016/j.actbio.2018.05.011
  • Ding XG, Liow CH, Zhang MX, et al. Surface plasmon resonance enhanced light absorption and photothermal therapy in the second near-infrared window. J Am Chem Soc. 2014;136(44):15684–15693. doi:10.1021/ja508641z
  • Wang XL, Liu X, Zhu DW, Swihart MT. Controllable conversion of plasmonic Cu2−xS nanoparticles to Au2S by cation exchange and electron beam induced transformation of Cu2−xS–Au2S core/shell nanostructures. Nanoscale. 2014;6(15):8852–8857. doi:10.1039/c4nr02114b
  • Tao C, An L, Lin JM, Tian QW, Yang SP. Surface plasmon resonance-enhanced photoacoustic imaging and photothermal therapy of endogenous H2 S-triggered Au@Cu2 O. Small. 2019;15(44):e1903473. doi:10.1002/smll.201903473
  • Lu SY, Li X, Zhang JL, Peng C, Shen MW, Shi XY. Dendrimer-stabilized gold nanoflowers embedded with ultrasmall iron oxide nanoparticles for multimode imaging-guided combination therapy of tumors. Adv Sci. 2018;5(12):1801612. doi:10.1002/advs.201801612
  • Li SN, Zhang LY, Chen XJ, et al. Selective growth synthesis of ternary janus nanoparticles for imaging-guided synergistic chemo- and photothermal therapy in the second NIR window. ACS Appl Mater Interfaces. 2018;10(28):24137–24148. doi:10.1021/acsami.8b06527
  • He F, Ji HJ, Feng LL, et al. Construction of thiol-capped ultrasmall Au-Bi bimetallic nanoparticles for X-ray CT imaging and enhanced antitumor therapy efficiency. Biomaterials. 2021;264:120453. doi:10.1016/j.biomaterials.2020.120453
  • Wang M, Chang MY, Chen Q, et al. Au2Pt-PEG-Ce6 nanoformulation with dual nanozyme activities for synergistic chemodynamic therapy/phototherapy. Biomaterials. 2020;252:120093. doi:10.1016/j.biomaterials.2020.120093
  • Taheri-Ledari R, Zhang W, Radmanesh M, et al. Multi-stimuli nanocomposite therapeutic: docetaxel targeted delivery and synergies in treatment of human breast cancer tumor. Small. 2020;16(41):e2002733. doi:10.1002/smll.202002733
  • Metin Y, Metin NO, Ozdemir O, Tasci F, Kul S. The role of low keV virtual monochromatic imaging in increasing the conspicuity of primary breast cancer in dual-energy spectral thoracic CT examination for staging purposes. Acta Radiol. 2020;61(2):168–174. doi:10.1177/0284185119858040
  • Wu J, Yang X, Gao JM, Zhao S, Wang L, Luo TY. Application of MRI and CT energy spectrum imaging in hand and foot tendon lesions. J Med Syst. 2019;43(5):116. doi:10.1007/s10916-019-1208-6
  • Yuan R, Shuman W, Earls J, et al. Reduced iodine load at CT pulmonary angiography with dual-energy monochromatic imaging: comparison with standard CT pulmonary angiography–a prospective randomized trial. Radiology. 2012;262(1):290–297. doi:10.1148/radiol.11110648
  • Jia XQ, Li XJ, Li JY, et al. Improving diagnostic accuracy for arteries of lower extremities with dual-energy spectral CT imaging. Eur J Radiol. 2020;128:109061. doi:10.1016/j.ejrad.2020.109061
  • Wang GK, Zhao DL, Ling ZS, Wang HB, Yu SS, Zhang JL. Evaluation of the best single-energy scanning in energy spectrum CT in lower extremity arteriography. Exp Ther Med. 2019;18(2):1433–1439. doi:10.3892/etm.2019.7666
  • Zhao JH, Chai YJ, Zhou JL, Zhang ZL, Wang ZP. Energy spectrum computed tomography improves the differentiation between benign and malignant solitary pulmonary nodules. Clin Invest Med. 2019;42(3):E40–E46. doi:10.25011/cim.v42i3.33091
  • Jiang XX, Zhang SH, Ren F, et al. Ultrasmall magnetic CuFeSe2 ternary nanocrystals for multimodal imaging guided photothermal therapy of cancer. ACS Nano. 2017;11(6):5633–5645. doi:10.1021/acsnano.7b01032
  • Zhu H, Wang Y, Chen C, et al. Monodisperse dual plasmonic Au@CuE (E= S, Se) core@shell supraparticles: aqueous fabrication, multimodal imaging, and tumor therapy at in vivo level. ACS Nano. 2017;11(8):8273–8281. doi:10.1021/acsnano.7b03369
  • Jaque D, Martinez Maestro L, Del Rosal B, et al. Nanoparticles for photothermal therapies. Nanoscale. 2014;6(16):9494–9530. doi:10.1039/c4nr00708e
  • Sun WJ, Luo L, Feng YS, et al. Aggregation-induced emission gold clustoluminogens for enhanced low-dose X-ray-induced photodynamic therapy. Angew Chem Int Ed Engl. 2020;59(25):9914–9921. doi:10.1002/anie.201908712
  • Xia DL, Hang DM, Li YY, et al. Au-hemoglobin loaded platelet alleviating tumor hypoxia and enhancing the radiotherapy effect with low-dose X-ray. ACS Nano. 2020;14(11):15654–15668. doi:10.1021/acsnano.0c06541