680
Views
8
CrossRef citations to date
0
Altmetric
Original Research

Exploring a Novel Fasudil-Phospholipid Complex Formulated as Liposomal Thermosensitive in situ Gel for Glaucoma

ORCID Icon, , , ORCID Icon &
Pages 163-181 | Published online: 11 Jan 2022

References

  • Leite MT, Sakata LM, Medeiros FA. Managing glaucoma in developing countries. Arq Bras Oftalmol. 2011;74(2):83–84. doi:10.1590/s0004-27492011000200001
  • Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014;121(11):2081–2090. doi:10.1016/j.ophtha.2014.05.013
  • Braunger BM, Fuchshofer R, Tamm ER. The aqueous humor outflow pathways in glaucoma: a unifying concept of disease mechanisms and causative treatment. Eur J Pharm Biopharm. 2015;95(2):173–181. doi:10.1016/j.ejpb.2015.04.029
  • Tanna AP, Johnson M. Rho kinase inhibitors as a novel treatment for glaucoma and ocular hypertension. Ophthalmology. 2018;125(11):1741–1756. doi:10.1016/j.ophtha.2018.04.040
  • Pattabiraman PP, Toris CB. The exit strategy: pharmacological modulation of extracellular matrix production and deposition for better aqueous humor drainage. Eur J Pharmacol. 2016;787:32–42. doi:10.1016/j.ejphar.2016.04.048
  • Mietzner R, Breunig M. Causative glaucoma treatment: promising targets and delivery systems. Drug Discov Today. 2019;24(8):1606–1613. doi:10.1016/j.drudis.2019.03.017
  • Garnock-Jones KP. Ripasudil: first global approval. Drugs. 2014;74(18):2211–2215. doi:10.1007/s40265-014-0333-2
  • Hoy SM. Netarsudil ophthalmic solution 0.02%: first global approval. Drugs. 2018;78(3):389–396. doi:10.1007/s40265-018-0877-7
  • Honjo M, Tanihara H. Impact of the clinical use of ROCK inhibitor on the pathogenesis and treatment of glaucoma. Jpn J Ophthalmol. 2018;62(2):109–126. doi:10.1007/s10384-018-0566-9
  • Wang SK, Chang RT. An emerging treatment option for glaucoma: rho kinase inhibitors. Clin Ophthalmol. 2014;8:883–890. doi:10.2147/OPTH.S41000
  • Pakravan M, Naderi Beni A, Ghahari E, et al. The ocular hypotensive efficacy of topical fasudil, a Rho-associated protein kinase inhibitor, in patients with end-stage glaucoma. Am J Ther. 2016;24:1.
  • Tetko IV, Gasteiger J, Todeschini R, et al. Virtual computational chemistry laboratory–design and description. J Comput Aided Mol Des. 2005;19(6):453–463. doi:10.1007/s10822-005-8694-y
  • Qin X, Yang Y, Fan TT, Gong T, Zhang XN, Huang Y. Preparation, characterization and in vivo evaluation of bergenin-phospholipid complex. Acta Pharmacol Sin. 2010;31(1):127–136. doi:10.1038/aps.2009.171
  • Ding D, Sun B, Cui W, et al. Integration of phospholipid-drug complex into self-nanoemulsifying drug delivery system to facilitate oral delivery of paclitaxel. Asian J Pharmaceut Sci. 2019;14(5):552–558. doi:10.1016/j.ajps.2018.10.003
  • Ghate D, Edelhauser HF. Barriers to glaucoma drug delivery. J Glaucoma. 2008;17(2):147–156. doi:10.1097/IJG.0b013e31814b990d
  • Bachu RD, Chowdhury P, Al-Saedi ZHF, Karla PK, Boddu SHS. Ocular drug delivery barriers-role of nanocarriers in the treatment of anterior segment ocular diseases. Pharmaceutics. 2018;10(1):28. doi:10.3390/pharmaceutics10010028
  • Shafaa MW, Sabra NM, Fouad RA. The extended ocular hypotensive effect of positive liposomal cholesterol bound timolol maleate in glaucomatous rabbits. Biopharm Drug Dispos. 2011;32(9):507–517. doi:10.1002/bdd.778
  • Monem AS, Ali FM, Ismail MW. Prolonged effect of liposomes encapsulating pilocarpine HCl in normal and glaucomatous rabbits. Int J Pharm. 2000;198(1):29–38. doi:10.1016/s0378-5173(99)00348-8
  • Lombardo D, Calandra P, Barreca D, Magazù S, Kiselev MA. Soft interaction in liposome nanocarriers for therapeutic drug delivery. Nanomaterials. 2016;6(7):125. doi:10.3390/nano6070125
  • Fabiano A, Bizzarri R, Zambito Y. Thermosensitive hydrogel based on chitosan and its derivatives containing medicated nanoparticles for transcorneal administration of 5-fluorouracil. Int J Nanomedicine. 2017;12:633–643. doi:10.2147/ijn.s121642
  • Soliman KA, Ullah K, Shah A, Jones DS, Singh TRR. Poloxamer-based in situ gelling thermoresponsive systems for ocular drug delivery applications. Drug Discov Today. 2019;24(8):1575–1586. doi:10.1016/j.drudis.2019.05.036
  • Patel N, Thakkar V, Metalia V, Baldaniya L, Gandhi T, Gohel M. Formulation and development of ophthalmic in situ gel for the treatment ocular inflammation and infection using application of quality by design concept. Drug Dev Ind Pharm. 2016;42(9):1406–1423. doi:10.3109/03639045.2015.1137306
  • Cao F, Zhang X, Ping Q. New method for ophthalmic delivery of azithromycin by poloxamer/carbopol-based in situ gelling system. Drug Deliv. 2010;17(7):500–507. doi:10.3109/10717544.2010.483255
  • Kurniawansyah IS, Gozali D, Sopyan I, Iqbal M, Subarnas A. Physical study of chloramphenicol in situ gel with base hydroxypropyl methylcellulose and poloxamer 188. J Pharm Bioallied Sci. 2019;11(Suppl4):S547–S550. doi:10.4103/jpbs.JPBS_201_19
  • Hüsch J, Dutagaci B, Glaubitz C, et al. Structural properties of so-called NSAID-phospholipid-complexes. Eur J Pharm Sci. 2011;44(1–2):103–116. doi:10.1016/j.ejps.2011.06.010
  • Kuche K, Bhargavi N, Dora CP, Jain S. Drug-phospholipid complex-A go through strategy for enhanced oral bioavailability. AAPS PharmSciTech. 2019;20(2):43. doi:10.1208/s12249-018-1252-4
  • Domazou AS, Luigi Luisi P. Size distribution of spontaneously formed liposomes by the alcohol injection method. J Liposome Res. 2002;12(3):205–220. doi:10.1081/LPR-120014758
  • Gao D, Tang S, Tong Q. Oleanolic acid liposomes with polyethylene glycol modification: promising antitumor drug delivery. Int J Nanomedicine. 2012;7:3517–3526. doi:10.2147/ijn.s31725
  • Eldesouky LM, El-Moslemany RM, Ramadan AA, Morsi MH, Khalafallah NM. Cyclosporine lipid nanocapsules as thermoresponsive gel for dry eye management: promising corneal mucoadhesion, biodistribution and preclinical efficacy in rabbits. Pharmaceutics. 2021;13(3):360. doi:10.3390/pharmaceutics13030360
  • Morsi N, Ghorab D, Refai H, Teba H. Ketoroloac tromethamine loaded nanodispersion incorporated into thermosensitive in situ gel for prolonged ocular delivery. Int J Pharm. 2016;506(1–2):57–67. doi:10.1016/j.ijpharm.2016.04.021
  • Fathalla MA, Vangala A, Longman M, et al. Poloxamer-based thermoresponsive ketorolac tromethamine in situ gel preparations: design, characterisation, toxicity and transcorneal permeation studies. Eur J Pharmaceut Biopharmaceut. 2017;114:119–134. doi:10.1016/j.ejpb.2017.01.008
  • Alomrani A, Badran M, Harisa GI, et al. The use of chitosan-coated flexible liposomes as a remarkable carrier to enhance the antitumor efficacy of 5-fluorouracil against colorectal cancer. Saudi Pharmaceut J. 2019;27(5):603–611. doi:10.1016/j.jsps.2019.02.008
  • Gupta N, Al-Saikhan FI, Patel B, Rashid J, Ahsan F. Fasudil and SOD packaged in peptide-studded-liposomes: properties, pharmacokinetics and ex-vivo targeting to isolated perfused rat lungs. Int J Pharm. 2015;488(1):33–43. doi:10.1016/j.ijpharm.2015.04.031
  • Tan G, Yu S, Pan H, et al. Bioadhesive chitosan-loaded liposomes: a more efficient and higher permeable ocular delivery platform for timolol maleate. Int J Biol Macromol. 2017;94:355–363. doi:10.1016/j.ijbiomac.2016.10.035
  • Fahmy HM, Saad EAE-MS, Sabra NM, El-Gohary AA, Mohamed FF, Gaber MH. Treatment merits of latanoprost/thymoquinone – encapsulated liposome for glaucomatus rabbits. Int J Pharm. 2018;548(1):597–608. doi:10.1016/j.ijpharm.2018.07.012
  • Tan G, Yu S, Li J, Pan W. Development and characterization of nanostructured lipid carriers based chitosan thermosensitive hydrogel for delivery of dexamethasone. Int J Biol Macromol. 2017;103:941–947. doi:10.1016/j.ijbiomac.2017.05.132
  • Huang W, Zhang N, Hua H, et al. Preparation, pharmacokinetics and pharmacodynamics of ophthalmic thermosensitive in situ hydrogel of betaxolol hydrochloride. Biomed Pharmacother. 2016;83:107–113. doi:10.1016/j.biopha.2016.06.024
  • Lee C-A, Kim B-S, Cho C-W. Quantitative evaluation of mucoadhesive polymers to compare the mucoadhesion. J Pharmaceut Investig. 2016;46(2):189–194. doi:10.1007/s40005-016-0233-4
  • Pecora TMG, Ragazzo B, Bertin W, et al. Rheological behavior of a new mucoadhesive oral formulation based on Sodium Chondroitin Sulfate, Xyloglucan and Glycerol. J Funct Biomater. 2021;12(2):28. doi:10.3390/jfb12020028
  • Aggarwal D, Garg A, Kaur IP. Development of a topical niosomal preparation of Acetazolamide: preparation and evaluation. J Pharm Pharmacol. 2004;56(12):1509–1517. doi:10.1211/0022357044896
  • Cañadas C, Alvarado H, Calpena AC, et al. In vitro, ex vivo and in vivo characterization of PLGA nanoparticles loading pranoprofen for ocular administration. Int J Pharm. 2016;511(2):719–727. doi:10.1016/j.ijpharm.2016.07.055
  • Kaskoos RA. Investigation of moxifloxacin loaded chitosan-dextran nanoparticles for topical instillation into eye: in-vitro and ex-vivo evaluation. Int J Pharm Investig. 2014;4(4):164–173. doi:10.4103/2230-973X.143114
  • Gupta H, Aqil M, Khar RK, Ali A, Bhatnagar A, Mittal G. Sparfloxacin-loaded PLGA nanoparticles for sustained ocular drug delivery. Nanomedicine. 2010;6(2):324–333. doi:10.1016/j.nano.2009.10.004
  • McKenzie B, Kay G, Matthews KH, Knott RM, Cairns D. The hen’s egg chorioallantoic membrane (HET-CAM) test to predict the ophthalmic irritation potential of a cysteamine-containing gel: quantification using Photoshop® and ImageJ. Int J Pharm. 2015;490(1–2):1–8. doi:10.1016/j.ijpharm.2015.05.023
  • Shokry M, Hathout RM, Mansour S. Exploring gelatin nanoparticles as novel nanocarriers for Timolol Maleate: augmented in-vivo efficacy and safe histological profile. Int J Pharm. 2018;545(1):229–239. doi:10.1016/j.ijpharm.2018.04.059
  • Morsi N, Ibrahim M, Refai H, El Sorogy H. Nanoemulsion-based electrolyte triggered in situ gel for ocular delivery of Acetazolamide. Eur J Pharmaceut Sci. 2017;104:302–314. doi:10.1016/j.ejps.2017.04.013
  • Ebada HMK, Nasra MMA, Elnaggar YSR, Abdallah OY. Novel rhein–phospholipid complex targeting skin diseases: development, in vitro, ex vivo, and in vivo studies. Drug Deliv Transl Res. 2021;11(3):1107–1118. doi:10.1007/s13346-020-00833-1
  • Pathak S, Mishra R, Kumar S, Prakash GS, Parthasarthy R. Effect of cholesterol concentration on size of liposome. IOSR J Pharm Biol Sci. 2012;1(1):50–53. doi:10.9790/3008-0115053
  • Jaafar-Maalej C, Diab R, Andrieu V, Elaissari A, Fessi H. Ethanol injection method for hydrophilic and lipophilic drug-loaded liposome preparation. J Liposome Res. 2010;20(3):228–243. doi:10.3109/08982100903347923
  • Vázquez-González ML, Bernad R, Calpena AC, Domènech O, Montero MT, Hernández-Borrell J. Improving ex vivo skin permeation of non-steroidal anti-inflammatory drugs: enhancing extemporaneous transformation of liposomes into planar lipid bilayers. Int J Pharm. 2014;461(1):427–436. doi:10.1016/j.ijpharm.2013.12.009
  • Yu S, Wang Q-M, Wang X, et al. Liposome incorporated ion sensitive in situ gels for ophthalmic delivery of timolol maleate. Int J Pharm. 2015;480(1–2):128–136. doi:10.1016/j.ijpharm.2015.01.032
  • Mura P, Mennini N, Nativi C, Richichi B. In situ mucoadhesive-thermosensitive liposomal gel as a novel vehicle for nasal extended delivery of opiorphin. Eur J Pharm Biopharm. 2018;122:54–61. doi:10.1016/j.ejpb.2017.10.008
  • Da Silva JB, Cook MT, Bruschi ML. Thermoresponsive systems composed of poloxamer 407 and HPMC or NaCMC: mechanical, rheological and sol-gel transition analysis. Carbohydr Polym. 2020;240:116268. doi:10.1016/j.carbpol.2020.116268
  • Venkatesh DMP, Kamlesh L, Kumar P. Development and evaluation of chitosan based thermosensitive in situ gels of pilocarpine. Int J Pharm Pharmaceut Sci. 2013;5:164–169.
  • Ricci EJ, Lunardi LO, Nanclares DM, Marchetti JM. Sustained release of lidocaine from Poloxamer 407 gels. Int J Pharm. 2005;288(2):235–244. doi:10.1016/j.ijpharm.2004.09.028
  • Baranowski P, Karolewicz B, Gajda M, Pluta J. Ophthalmic drug dosage forms: characterisation and research methods. Sci World J. 2014;2014:861904. doi:10.1155/2014/861904
  • Zhang B, Chen J, Lu Y, Qi J, Wu W. Liposomes interiorly thickened with thermosensitive nanogels as novel drug delivery systems. Int J Pharm. 2013;455(1–2):276–284. doi:10.1016/j.ijpharm.2013.07.020
  • El-Kamel AH. In vitro and in vivo evaluation of Pluronic F127-based ocular delivery system for timolol maleate. Int J Pharm. 2002;241(1):47–55. doi:10.1016/s0378-5173(02)00234-x
  • Zhang ZJ, Osmałek T. Deformable liposomal hydrogel for dermal and transdermal delivery of meloxicam. Int J Nanomedicine. 2020;15:9319–9335. doi:10.2147/ijn.s274954
  • Leriche G, Cifelli J, Sibucao K, et al. Characterization of drug encapsulation and retention in archaea-inspired tetraether liposomes. Org Biomol Chem. 2017;15(10):2157–2162. doi:10.1039/C6OB02832B
  • Mehanna MM, El-Kader NA, Samaha MW. Liposomes as potential carriers for ketorolac ophthalmic delivery: formulation and stability issues. Braz J Pharmaceut Sci. 2017;53(2). doi:10.1590/s2175-97902017000216127
  • Paarakh MP, Jose PA, Setty C, Christoper GVP. Release kinetics – concepts and applications. Int J Pharm Res Tech. 2018;8:12–20.
  • Nie S, Hsiao WL, Pan W, Yang Z. Thermoreversible Pluronic F127-based hydrogel containing liposomes for the controlled delivery of paclitaxel: in vitro drug release, cell cytotoxicity, and uptake studies. Int J Nanomedicine. 2011;6:151–166. doi:10.2147/ijn.s15057
  • Silva MM, Calado R, Marto J, Bettencourt A, Almeida AJ, Gonçalves LMD. Chitosan nanoparticles as a mucoadhesive drug delivery system for ocular administration. Mar Drugs. 2017;15(12). doi:10.3390/md15120370
  • Li H, Liu Y, Zhang Y, et al. Liposomes as a novel ocular delivery system for brinzolamide: in vitro and in vivo studies. AAPS PharmSciTech. 2016;17(3):710–717. doi:10.1208/s12249-015-0382-1
  • Spielmann H, Castle J, Gomez M. In Vitro Methods in Pharmaceutical Research. San Diego, CA: Academic Press; 1997.
  • Worakul N, Robinson JR. Ocular pharmacokinetics/pharmacodynamics. Eur J Pharmaceut Biopharmaceut. 1997;44(1):71–83. doi:10.1016/S0939-6411(97)00064-7
  • Mohsen AM, Salama A, Kassem AA. Development of Acetazolamide loaded bilosomes for improved ocular delivery: preparation, characterization and in vivo evaluation. J Drug Deliv Sci Technol. 2020;59:101910. doi:10.1016/j.jddst.2020.101910
  • He W, Guo X, Feng M, Mao N. In vitro and in vivo studies on ocular vitamin A palmitate cationic liposomal in situ gels. Int J Pharm. 2013;458(2):305–314. doi:10.1016/j.ijpharm.2013.10.033