523
Views
3
CrossRef citations to date
0
Altmetric
Review

Antimicrobial Coating: Tracheal Tube Application

ORCID Icon, , &
Pages 1483-1494 | Published online: 29 Mar 2022

References

  • Mehta A, Bhagat R. Preventing ventilator-associated infections. Clin Chest Med. 2016;37(4):683–692. doi:10.1016/j.ccm.2016.07.008
  • Zhao Q, Yang LP. Effect observation of airway management optimization to prevent (P<0.05) in patients undergoing mechanical ventilation. Nurs Pract Res. 2018;15(13):29–31.
  • Hawe CS, Ellis KS, Cairns CJS, Longmate A. Reduction of ventilator-associated pneumonia: active versus passive guideline implementation. Intensive Care Med. 2009;35(7):1180–1186. doi:10.1007/s00134-009-1461-0
  • Redman LR, Lockey E. Colonisation of the upper respiratory tract with Gram-negative bacilli after operation, endotracheal intubation and prophylactic antibiotic therapy. Anaesthesia. 1967;22(2):220–227. doi:10.1111/j.1365-2044.1967.tb02722.x
  • Sottile FD, Marrie TJ, Prough DS, et al. Nosocomial pulmonary infection: possible etiologic significance of bacterial adhesion to endotracheal tubes. Crit Care Med. 1986;14(4):265–270. doi:10.1097/00003246-198604000-00001
  • Carvalho I, Henriques M, Carvalho S. New Strategies to Fight Bacterial Adhesion. Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education. Formatex Research Center. 2013:170–178.
  • Săndulescu O. Managing sticky situations - anti-biofilm agents. Germs. 2016;6(2):49. doi:10.11599/germs.2016.1088
  • Boulané-Petermann L. Processes of bioadhesion on stainless steel surfaces and cleanability: a review with special reference to the food industry. Biofouling. 1996;10(4):275–300. doi:10.1080/08927019609386287
  • Chmielewski RAN, Frank JF. Biofilm formation and control in food processing facilities. Compr Rev Food Sci Food Saf. 2003;2(1):22–32. doi:10.1111/j.1541-4337.2003.tb00012.x
  • Otto M. Staphylococcus epidermidis pathogenesis. Methods Mol Biol. 2014;1106:17–31. doi:10.1007/978-1-62703-736-5_2
  • Wimpenny J, Manz W, Szewzyk U. Heterogeneity in biofilms. FEMS Microbiol Rev. 2000;24(5):661–671. doi:10.1111/j.1574-6976.2000.tb00565.x
  • Kim KY, Frank JF. Effect of nutrients on biofilm formation by Listeria monocytogenes on stainless steel. J Food Prot. 1995;58(1):24–28. doi:10.4315/0362-028X-58.1.24
  • Sugano M, Morisaki H, Negishi Y, et al. Potential effect of cationic liposomes on interactions with oral bacterial cells and biofilms. J Liposome Res. 2016;26(2):156–162. doi:10.3109/08982104.2015.1063648
  • Mah TF, Pitts B, Pellock B, Walker GC, Stewart PS, O’Toole GA. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature. 2003;426(6964):306–310. doi:10.1038/nature02122
  • Koya J, Nannya Y, Kobayashi H, Okugawa S, Moriya K, Kurokawa M. Simultaneous increase in 1,3-β-D-glucan and procalcitonin levels in Pseudomonas aeruginosa infection. J Infect. 2013;67(2):164–166. doi:10.1016/j.jinf.2013.03.017
  • Zhang L, Fritsch M, Hammond L, et al. Identification of genes involved in Pseudomonas aeruginosa biofilm-specific resistance to antibiotics. PLoS One. 2013;8(4):e61625. doi:10.1371/journal.pone.0061625
  • Stewart P, Zhang T, Xu R, et al. Reaction-diffusion theory explains hypoxia and heterogeneous growth within microbial biofilms associated with chronic infections. NPJ Biofilms Microbiomes. 2016;2. doi:10.1038/npjbiofilms.2016.12
  • Hazan R, Que YA, Maura D, et al. Auto poisoning of the respiratory chain by a quorum-sensing-regulated molecule favors biofilm formation and antibiotic tolerance. Curr Biol. 2016;26(2):195–206. doi:10.1016/j.cub.2015.11.056
  • Nikaido H. Structure and mechanism of RND-type multidrug efflux pumps. Adv Enzymol Relat Areas Mol Biol. 2011;77:1–60. doi:10.1002/9780470920541.ch1
  • Soto SM. Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm. Virulence. 2013;4(3):223–229. doi:10.4161/viru.23724
  • Cook LC, Dunny GM. Effects of biofilm growth on plasmid copy number and expression of antibiotic resistance genes in Enterococcus faecalis. Antimicrob Agents Chemother. 2013;57(4):1850–1856. doi:10.1128/AAC.02010-12
  • Gillings MR. Integrons: past, present, and future. Microbiol Mol Biol Rev. 2014;78(2):257–277. doi:10.1128/MMBR.00056-13
  • Strugeon E, Tilloy V, Ploy MC, Da Re S. The stringent response promotes antibiotic resistance dissemination by regulating integron integrase expression in biofilms. mBio. 2016;7(4). doi:10.1128/mBio.00868-16
  • Mandsberg LF, Ciofu O, Kirkby N, Christiansen LE, Poulsen HE, Høiby N. Antibiotic resistance in Pseudomonas aeruginosa strains with increased mutation frequency due to inactivation of the DNA oxidative repair system. Antimicrob Agents Chemother. 2009;53(6):2483–2491. doi:10.1128/AAC.00428-08
  • Ryder VJ, Chopra I, O’Neill AJ. Increased mutability of Staphylococci in biofilms as a consequence of oxidative stress. PLoS One. 2012;7(10):e47695. doi:10.1371/journal.pone.0047695
  • Polívková M, Hubáček T, Staszek M, Švorčík V, Siegel J. Antimicrobial treatment of polymeric medical devices by silver nanomaterials and related technology. Int J Mol Sci. 2017;18(2):419. doi:10.3390/ijms18020419
  • Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K. Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng C Mater Biol Appl. 2014;44:278–284. doi:10.1016/j.msec.2014.08.031
  • Taylor EN, Kummer KM, Dyondi D, Webster TJ, Banerjee R. Multi-scale strategy to eradicate Pseudomonas aeruginosa on surfaces using solid lipid nanoparticles loaded with free fatty acids. Nanoscale. 2014;6(2):825–832. doi:10.1039/c3nr04270g
  • Homeyer KH, Singha P, Goudie MJ, Handa H. S ‐Nitroso‐ N‐ acetylpenicillamine impregnated endotracheal tubes for prevention of ventilator‐associated pneumonia. Biotechnol Bioeng. 2020;117(7):2237–2246. doi:10.1002/bit.27341
  • Oliveira VC, Macedo AP, Melo LDR, et al. Bacteriophage cocktail-mediated inhibition of Pseudomonas aeruginosa biofilm on endotracheal tube surface. Antibiotics. 2021;10(1):78. doi:10.3390/antibiotics10010078
  • Durmus NG, Taylor EN, Inci F, Kummer KM, Tarquinio KM, Webster TJ. Fructose-enhanced reduction of bacterial growth on nanorough surfaces. Int J Nanomedicine. 2012;7:537–545. doi:10.2147/IJN.S27957
  • Jones DS, McCoy CP, Andrews GP, McCrory RM, Gorman SP. Hydrogel antimicrobial capture coatings for endotracheal tubes: a pharmaceutical strategy designed to prevent ventilator-associated pneumonia. Mol Pharm. 2015;12(8):2928–2936. doi:10.1021/acs.molpharmaceut.5b00208
  • Venkateswaran S, Henrique Dos Santos OD, Scholefield E, et al. Fortified interpenetrating polymers - bacteria resistant coatings for medical devices. J Mater Chem B. 2016;4(32):5405–5411. doi:10.1039/c6tb01110a
  • Wang C, Zolotarskaya O, Ashraf KM, Wen X, Ohman DE, Wynne KJ. Surface characterization, antimicrobial effectiveness, and human cell response for a biomedical grade polyurethane blended with a mixed soft block PTMO-quat/PEG copolyoxetane polyurethane. ACS Appl Mater Interfaces. 2019;11(23):20699–20714. doi:10.1021/acsami.9b04697
  • Seitz AP, Schumacher F, Baker J, et al. Sphingosine-coating of plastic surfaces prevents ventilator-associated pneumonia. J Mol Med. 2019;97(8):1195–1211. doi:10.1007/s00109-019-01800-1
  • Ozcelik B, Pasic P, Sangwan P, et al. Evaluation of the novel antimicrobial BCP3 in a coating for endotracheal tubes. ACS Omega. 2020;5(18):10288–10296. doi:10.1021/acsomega.9b04178
  • Peng W, Yin H, Liu P, et al. Covalently construction of poly (hexamethylene biguanide) as high-efficiency antibacterial coating for silicone rubber. Chem Eng J. 2021;412:128707. doi:10.1016/j.cej.2021.128707
  • Valliammai A, Selvaraj A, Mathumitha P, Aravindraja C, Pandian SK. Polymeric antibiofilm coating comprising synergistic combination of citral and thymol prevents methicillin-resistant Staphylococcus aureus biofilm formation on titanium. Mater Sci Eng. 2021;121:111863. doi:10.1016/j.msec.2021.111863
  • Hemeg HA. Nanomaterials for alternative antibacterial therapy. Int J Nanomedicine. 2017;12:8211–8225. doi:10.2147/IJN.S132163
  • Olson ME, Harmon BG, Kollef MH. Silver-coated endotracheal tubes associated with reduced bacterial burden in the lungs of mechanically ventilated dogs. Chest. 2002;121(3):863–870. doi:10.1378/chest.121.3.863
  • Hu Y, Ji X, Wei D, Deng J. Antibacterial properties and application of nanosilver material in the tracheal tube. J Nanosci Nanotechnol. 2020;20(10):6542–6546. doi:10.1166/jnn.2020.18520
  • Berra L, Kolobow T, Laquerriere P, et al. Internally coated endotracheal tubes with silver sulfadiazine in polyurethane to prevent bacterial colonization: a clinical trial. Intensive Care Med. 2008;34(6):1030–1037. doi:10.1007/s00134-008-1100-1
  • Kollef MH, Afessa B, Anzueto A, et al. Silver-coated endotracheal tubes and incidence of ventilator-associated pneumonia: the NASCENT randomized trial. JAMA. 2008;300(7):805–813. doi:10.1001/jama.300.7.805
  • Tokmaji G, Vermeulen H, Müller MCA, Kwakman PHS, Schultz MJ, Zaat SAJ. Silver-coated endotracheal tubes for prevention of ventilator-associated pneumonia in critically ill patients. Cochrane Database Syst Rev. 2015;(8):CD009201. doi:10.1002/14651858.CD009201.pub2
  • Seil JT, Rubien NM, Webster TJ, Tarquinio KM. Comparison of quantification methods illustrates reduced Pseudomonas aeruginosa activity on nanorough polyvinyl chloride. J Biomed Mater Res B Appl Biomater. 2011;98(1):1–7. doi:10.1002/jbm.b.31821
  • Loo CY, Young PM, Lee WH, Cavaliere R, Whitchurch CB, Rohanizadeh R. Superhydrophobic, nanotextured polyvinyl chloride films for delaying Pseudomonas aeruginosa attachment to intubation tubes and medical plastics. Acta Biomaterialia. 2012;8(5):1881–1890. doi:10.1016/j.actbio.2012.01.015
  • Polivkova M, Siegel J, Kolarova K, Rimpelova S, Svorcik V. Silver nanostructures sputtered on polyimide: surface characterization and antibacterial properties. Chem Listy. 2016;110(2):139–143.
  • Jiang X, Lv B, Shen Q, Wang X. Preparation of silicon-modified antimicrobial polyethylene endotracheal tubes. J Biomed Mater Res B Appl Biomater. 2017;105(1):91–98. doi:10.1002/jbm.b.33530
  • Lethongkam S, Daengngam C, Tansakul C, et al. Prolonged inhibitory effects against planktonic growth, adherence, and biofilm formation of pathogens causing ventilator-associated pneumonia using a novel polyamide/silver nanoparticle composite-coated endotracheal tube. Biofouling. 2020;36(3):292–307. doi:10.1080/08927014.2020.1759041
  • Setyawati MI, Yuan X, Xie J, Leong DT. The influence of lysosomal stability of silver nanomaterials on their toxicity to human cells. Biomaterials. 2014;35(25):6707–6715. doi:10.1016/j.biomaterials.2014.05.007
  • Strauch BM, Hubele W, Hartwig A. Impact of endocytosis and lysosomal acidification on the toxicity of copper oxide nano- and microsized particles: uptake and gene expression related to oxidative stress and the DNA damage response. Nanomaterials. 2020;10(4):E679. doi:10.3390/nano10040679
  • Delaval M, Wohlleben W, Landsiedel R, Baeza-Squiban A, Boland S. Assessment of the oxidative potential of nanoparticles by the cytochrome c assay: assay improvement and development of a high-throughput method to predict the toxicity of nanoparticles. Arch Toxicol. 2017;91(1):163–177. doi:10.1007/s00204-016-1701-3
  • Gliga AR, Skoglund S, Wallinder IO, Fadeel B, Karlsson HL. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol. 2014;11:11. doi:10.1186/1743-8977-11-11
  • Azizi S, Mohamad R, Abdul Rahim R, Mohammadinejad R, Bin Ariff A. Hydrogel beads bio-nanocomposite based on Kappa-Carrageenan and green synthesized silver nanoparticles for biomedical applications. Int J Biol Macromol. 2017;104(Pt A):423–431. doi:10.1016/j.ijbiomac.2017.06.010
  • Daengngam C, Lethongkam S, Srisamran P, et al. Green fabrication of anti-bacterial biofilm layer on endotracheal tubing using silver nanoparticles embedded in polyelectrolyte multilayered film. Mater Sci Eng C Mater Biol Appl. 2019;101:53–63. doi:10.1016/j.msec.2019.03.061
  • Damas P, Legrain C, Lambermont B, et al. Prevention of ventilator-associated pneumonia by noble metal coating of endotracheal tubes: a multi-center, randomized, double-blind study. Ann Intensive Care. 2022;12:1. doi:10.1186/s13613-021-00961-y
  • Pirrone M, Imber DA, Marrazzo F, et al. Silver-coated endotracheal tubes cleaned with a mechanism for secretion removal. Respir Care. 2019;64(1):1–9. doi:10.4187/respcare.06222
  • Ramos JF, Webster TJ. Cytotoxicity of selenium nanoparticles in rat dermal fibroblasts. Int J Nanomedicine. 2012;7:3907–3914. doi:10.2147/IJN.S33767
  • Tran PA, Webster TJ. Antimicrobial selenium nanoparticle coatings on polymeric medical devices. Nanotechnology. 2013;24(15):155101. doi:10.1088/0957-4484/24/15/155101
  • Seil JT, Webster TJ. Reduced Staphylococcus aureus proliferation and biofilm formation on zinc oxide nanoparticle PVC composite surfaces. Acta Biomater. 2011;7(6):2579–2584. doi:10.1016/j.actbio.2011.03.018
  • Huang T, Holden JA, Heath DE, O’Brien-Simpson NM, O’Connor AJ. Engineering highly effective antimicrobial selenium nanoparticles through control of particle size. Nanoscale. 2019;11(31):14937–14951. doi:10.1039/c9nr04424h
  • Inoue M, Sakamoto K, Suzuki A, et al. Size and surface modification of silica nanoparticles affect the severity of lung toxicity by modulating endosomal ROS generation in macrophages. Part Fibre Toxicol. 2021;18(1):21. doi:10.1186/s12989-021-00415-0
  • Huang YW, Wu CH, Aronstam RS. Toxicity of transition metal oxide nanoparticles: recent insights from in vitro studies. Materials. 2010;3(10):4842–4859. doi:10.3390/ma3104842
  • Pati R, Das I, Mehta RK, Sahu R, Sonawane A. Zinc-oxide nanoparticles exhibit genotoxic, clastogenic, cytotoxic and actin depolymerization effects by inducing oxidative stress responses in macrophages and adult mice. Toxicol Sci. 2016;150(2):454–472. doi:10.1093/toxsci/kfw010
  • Suhad H, Neihaya HZ, Raghad AL. Synergic effect of biosynthesized ZnO- nanoparticles with some antibiotic on multi-drug resistance bacteria. Ann RSCB. 2021;25:2293–2305.
  • Ferrer MCC, Hickok NJ, Eckmann DM, Composto RJ. Antibacterial biomimetic hybrid films. Soft Matter. 2012;8(8):2423–2431. doi:10.1039/c2sm06969e
  • Milenkovic J, Hrenovic J, Goic-Barisic I, Tomic M, Djonlagic J, Rajic N. Synergistic anti-biofouling effect of Ag-exchanged zeolite and D-Tyrosine on PVC composite against the clinical isolate of Acinetobacter baumannii. Biofouling. 2014;30(8):965–973. doi:10.1080/08927014.2014.959941
  • Mishra A, Loganathan H, Bhatt N. Preparation and characterization of nanosilica based superhydrophobic antimicrobial coatings and evaluation of bacterial adhesion on coated surface. Trends Biomater Artif Organs. 2019;33(3):64–68.
  • Thorarinsdottir HR. Biofilm formation on three different endotracheal tubes: a prospective clinical trial. Critical Care. 2020;24:12.
  • Biel MA, Sievert C, Usacheva M, et al. Reduction of endotracheal tube biofilms using antimicrobial photodynamic therapy. Lasers Surg Med. 2011;43(7):586–590. doi:10.1002/lsm.21103
  • Foster HA, Ditta IB, Varghese S, Steele A. Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity. Appl Microbiol Biotechnol. 2011;90(6):1847–1868. doi:10.1007/s00253-011-3213-7
  • Tarquinio KM, Kothurkar NK, Goswami DY, Sanders RC, Zaritsky AL, LeVine AM. Bactericidal effects of silver plus titanium dioxide-coated endotracheal tubes on Pseudomonas aeruginosa and Staphylococcus aureus. Int J Nanomedicine. 2010;5:177–183. doi:10.2147/IJN.S8746
  • Jiang X, Wang Y, Hua J, Lyu B. [Study on antibacterial property of silver loaded titanium dioxide antibacterial coated endotracheal intubation tube]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2014;26(5):343–346. Chinese. doi:10.3760/cma.j.issn.2095-4352.2014.05.012
  • Xu J, Cao J, Wang Y, Jiang X. [Study on oral mucsa irritation due to silver loaded titanium dioxide antibacterial coating endotracheal intubation tube]. Zhonghua Wei Zhong Bing Ji Jiu Yi xue. 2014;26(12):920–922. Chinese. doi:10.3760/cma.j.issn.2095-4352.2014.12.016
  • Deng W, Ning S, Lin Q, et al. I-TiO2/PVC film with highly photocatalytic antibacterial activity under visible light. Colloids Surf B Biointerfaces. 2016;144:196–202. doi:10.1016/j.colsurfb.2016.03.085
  • Gentile MA, Siobal MS. Are specialized endotracheal tubes and heat-and-moisture exchangers cost-effective in preventing ventilator associated pneumonia? Respir Care. 2010;55(2):184–196;discussion 196–197.
  • Caratto V, Ball L, Sanguineti E, et al. Antibacterial activity of standard and N-doped titanium dioxide-coated endotracheal tubes: an in vitro study. Rev Bras Ter Intensiva. 2017;29(1):55–62. doi:10.5935/0103-507X.20170009
  • Zhou H, Wang Y, Jiang XH. Study on antifungal property of antimicrobial coated endotracheal tube with silver loaded titanium dioxide. Chin J Health Lab Technol. 2017;27(5):616–617+621.
  • Zangirolami AC, Inada NM, Bagnato VS, Blanco KC. Biofilm destruction on endotracheal tubes by photodynamic inactivation. Infect Disord Drug Targets. 2018;18(3):218–223. doi:10.2174/1871526518666180523085754
  • Zangirolami AC, Dias LD, Blanco KC, et al. Avoiding ventilator-associated pneumonia: curcumin-functionalized endotracheal tube and photodynamic action. PNAS. 2020;117(37):22967–22973. doi:10.1073/pnas.2006759117
  • Inada NM, Dias LD, Blanco KC, Kassab G, Buzzá HH, Bagnato VS. Antimicrobial photodynamic therapy of the respiratory tract: from the proof of principles to clinical application. Photodyn Ther. 2021. doi:10.5772/intechopen.95602
  • Hashemi MM, Rovig J, Bateman J, et al. Preclinical testing of a broad-spectrum antimicrobial endotracheal tube coated with an innate immune synthetic mimic. J Antimicrob Chemother. 2018;73(1):143–150. doi:10.1093/jac/dkx347
  • Latorre MC, Pérez-Granda MJ, Savage PB, et al. Endotracheal tubes coated with a broad-spectrum antibacterial ceragenin reduce bacterial biofilm in an in vitro bench top model. J Antimicrob Chemother. 2021;76:1168–1173. doi:10.1093/jac/dkab019