374
Views
6
CrossRef citations to date
0
Altmetric
Original Research

Combined Prussian Blue Nanozyme Carriers Improve Photodynamic Therapy and Effective Interruption of Tumor Metastasis

, , , , , & ORCID Icon show all
Pages 1397-1408 | Published online: 25 Mar 2022

References

  • Kong XY, Cheng R, Wang J, Fang Y, Hwang KC. Nanomedicines inhibiting tumor metastasis and recurrence and their clinical applications. Nano Today. 2021;36:e23.
  • Park CG, Hartl CA, Schmid D, Carmona EM, Kim HJ, Goldberg MS. Extended release of perioperative immunotherapy prevents tumor recurrence and eliminates metastases. Sci Transl Med. 2018;10(433). doi:10.1126/scitranslmed.aar1916
  • Pei P, Shen WH, Zhou HL, et al. Radionuclide labeled gold nanoclusters boost effective anti-tumor immunity for augmented radio-immunotherapy of cancer. Nano Today. 2021;38:101144. doi:10.1016/j.nantod.2021.101144
  • Butturini E, Carcereri de Prati A, Boriero D, Mariotto S. Tumor dormancy and interplay with hypoxic tumor microenvironment. Int J Mol Sci. 2019;20(17):4305. doi:10.3390/ijms20174305
  • Emami Nejad A, Najafgholian S, Rostami A, et al. The role of hypoxia in the tumor microenvironment and development of cancer stem cell: a novel approach to developing treatment. Cancer Cell Int. 2021;21(1):62. doi:10.1186/s12935-020-01719-5
  • Fu R, Du W, Ding Z, et al. HIF-1alpha promoted vasculogenic mimicry formation in lung adenocarcinoma through NRP1 upregulation in the hypoxic tumor microenvironment. Cell Death Dis. 2021;12(4):394. doi:10.1038/s41419-021-03682-z
  • Pei P, Shen W, Zhang Y, et al. Radioactive nano-oxygen generator enhance anti-tumor radio-immunotherapy by regulating tumor microenvironment and reducing proliferation. Biomaterials. 2022;280:121326. doi:10.1016/j.biomaterials.2021.121326
  • Tao J, Yang G, Zhou W, et al. Targeting hypoxic tumor microenvironment in pancreatic cancer. J Hematol Oncol. 2021;14(1):14.
  • Wang B, Zhao Q, Zhang Y, et al. Targeting hypoxia in the tumor microenvironment: a potential strategy to improve cancer immunotherapy. J Exp Clin Cancer Res. 2021;40(1):24. doi:10.1186/s13046-020-01820-7
  • Lu J. The Warburg metabolism fuels tumor metastasis. Cancer Metastasis Rev. 2019;38(1–2):157–164. doi:10.1007/s10555-019-09794-5
  • Song C, Phuengkham H, Kim YS, et al. Syringeable immunotherapeutic nanogel reshapes tumor microenvironment and prevents tumor metastasis and recurrence. Nat Commun. 2019;10(1):3745. doi:10.1038/s41467-019-11730-8
  • Yu Z, Zhou P, Pan W, Li N, Tang B. A biomimetic nanoreactor for synergistic chemiexcited photodynamic therapy and starvation therapy against tumor metastasis. Nat Commun. 2018;9(1):5044. doi:10.1038/s41467-018-07197-8
  • Li X, Zhou Z, Zhou R, et al. Stimuli-responsive nanoparticles combining photodynamic therapy and mitochondria disruption suppressed tumor metastasis. Adv Mater Interfaces. 2021;8(10):456.
  • Pei P, Sun C, Tao W, Li J, Yang X, Wang J. ROS-sensitive thioketal-linked polyphosphoester-doxorubicin conjugate for precise phototriggered locoregional chemotherapy. Biomaterials. 2019;188:74–82. doi:10.1016/j.biomaterials.2018.10.010
  • Yang J, Hou M, Sun W, et al. Sequential PDT and PTT using dual-modal single-walled carbon nanohorns synergistically promote systemic immune responses against tumor metastasis and relapse. Adv Sci. 2020;7(16):2001088. doi:10.1002/advs.202001088
  • Yue D, Cai X, Fan M, et al. An alternating irradiation strategy-driven combination therapy of PDT and RNAi for highly efficient inhibition of tumor growth and metastasis. Adv Healthc Mater. 2021;10(8):e2001850. doi:10.1002/adhm.202001850
  • Zeng JY, Zou MZ, Zhang MK, et al. pi-Extended benzoporphyrin-based metal-organic framework for inhibition of tumor metastasis. Acs Nano. 2018;12(5):4630–4640. doi:10.1021/acsnano.8b01186
  • Ma Y, Ma Y, Gao M, et al. Platelet-mimicking therapeutic system for noninvasive mitigation of the progression of atherosclerotic plaques. Adv Sci. 2021;8(8):2004128. doi:10.1002/advs.202004128
  • Sobhani N, Samadani AA. Implications of photodynamic cancer therapy: an overview of PDT mechanisms basically and practically. J Egypt Natl Canc Inst. 2021;33(1):34. doi:10.1186/s43046-021-00093-1
  • Wen L, Zhang Y, Zhang L, et al. Application of different noninvasive diagnostic techniques used in HMME-PDT in the treatment of port wine stains. Photodiagnosis Photodyn Ther. 2019;25:369–375. doi:10.1016/j.pdpdt.2019.01.008
  • Wu W, Shi L, Duan Y, et al. Nanobody modified high-performance AIE photosensitizer nanoparticles for precise photodynamic oral cancer therapy of patient-derived tumor xenograft. Biomaterials. 2021;274:120870. doi:10.1016/j.biomaterials.2021.120870
  • Fan GL, Deng FA, Zhou X, et al. Plasma membrane targeted photodynamic O2 economizer for hypoxic tumor therapy. Biomaterials. 2021;273:120854. doi:10.1016/j.biomaterials.2021.120854
  • Liu Z, Xie Z, Li W, et al. Photodynamic immunotherapy of cancers based on nanotechnology: recent advances and future challenges. J Nanobiotechnology. 2021;19(1):160. doi:10.1186/s12951-021-00903-7
  • Sun Y, Zhao D, Wang G, et al. Recent progress of hypoxia-modulated multifunctional nanomedicines to enhance photodynamic therapy: opportunities, challenges, and future development. Acta Pharm Sin B. 2020;10(8):1382–1396. doi:10.1016/j.apsb.2020.01.004
  • Yang Z, Wang J, Ai S, Sun J, Mai X, Guan W. Self-generating oxygen enhanced mitochondrion-targeted photodynamic therapy for tumor treatment with hypoxia scavenging. Theranostics. 2019;9(23):6809–6823. doi:10.7150/thno.36988
  • Li Y, Wu CJ, Zhai YW, et al. Palliating the escalated post-PDT tumor hypoxia with a dual cascade oxygenation nanocomplex. Appl Mater Today. 2022;26. doi:10.1016/j.apmt.2021.101337
  • Shi L, Hu F, Duan Y, et al. Hybrid nanospheres to overcome hypoxia and intrinsic oxidative resistance for enhanced photodynamic therapy. Acs Nano. 2020;14(2):2183–2190. doi:10.1021/acsnano.9b09032
  • Gulzar A, Xu JT, Wang C, et al. Tumour microenvironment responsive nanoconstructs for cancer theranostic. Nano Today. 2019;26:16–56.
  • Tang W, Yang Z, He L, et al. A hybrid semiconducting organosilica-based O2 nanoeconomizer for on-demand synergistic photothermally boosted radiotherapy. Nat Commun. 2021;12(1):523. doi:10.1038/s41467-020-20860-3
  • Yang N, Xiao W, Song X, Wang W, Dong X. Recent advances in tumor microenvironment hydrogen peroxide-responsive materials for cancer photodynamic therapy. Nanomicro Lett. 2020;12(1):15. doi:10.3847/1538-4357/ab5f08
  • Zhu P, Chen Y, Shi J. Nanoenzyme-augmented cancer sonodynamic therapy by catalytic tumor oxygenation. Acs Nano. 2018;12(4):3780–3795. doi:10.1021/acsnano.8b00999
  • Zeng Z, Zhang C, Li J, Cui D, Jiang Y, Pu K. Activatable polymer nanoenzymes for photodynamic immunometabolic cancer therapy. Adv Mater. 2021;33(4):e2007247.
  • Dacarro G, Taglietti A, Pallavicini P. Prussian blue nanoparticles as a versatile photothermal tool. Molecules. 2018;23(6):1414. doi:10.3390/molecules23061414
  • Zhang W, Hu S, Yin JJ, et al. Prussian blue nanoparticles as multienzyme mimetics and reactive oxygen species scavengers. J Am Chem Soc. 2016;138(18):5860–5865. doi:10.1021/jacs.5b12070
  • Hang L, Li H, Zhang T, et al. Au@Prussian blue hybrid nanomaterial synergy with a chemotherapeutic drug for tumor diagnosis and chemodynamic therapy. ACS Appl Mater Interfaces. 2019;11(43):39493–39502. doi:10.1021/acsami.9b13470
  • Yang ZL, Tian W, Wang Q, et al. Oxygen-evolving mesoporous organosilica coated prussian blue nanoplatform for highly efficient photodynamic therapy of tumors. Adv Sci. 2018;5(5):1700847. doi:10.1002/advs.201700847
  • Lu L, Zhang C, Zou B, Wang Y. Hollow prussian blue nanospheres for photothermal/chemo-synergistic therapy. Int J Nanomedicine. 2020;15:5165–5177. doi:10.2147/IJN.S252505
  • Qin Z, Li Y, Gu N. Progress in applications of prussian blue nanoparticles in biomedicine. Adv Healthc Mater. 2018;7(20):e1800347. doi:10.1002/adhm.201800347
  • Ren C, Cheng Y, Li W, et al. Ultra-small Bi2S3 nanodot-doped reversible Fe(ii/iii)-based hollow mesoporous Prussian blue nanocubes for amplified tumor oxidative stress-augmented photo-/radiotherapy. Biomater Sci. 2020;8(7):1981–1995. doi:10.1039/C9BM02014D
  • Shou P, Yu Z, Wu Y, et al. Zn(2+) doped ultrasmall prussian blue nanotheranostic agent for breast cancer photothermal therapy under MR imaging guidance. Adv Healthc Mater. 2020;9(1):e1900948. doi:10.1002/adhm.201900948
  • Wang X, Li H, Li F, Han X, Chen G. Prussian blue-coated lanthanide-doped core/shell/shell nanocrystals for NIR-II image-guided photothermal therapy. Nanoscale. 2019;11(45):22079–22088. doi:10.1039/C9NR07973D
  • Zhang K, Tu M, Gao W, et al. Hollow prussian blue nanozymes drive neuroprotection against ischemic stroke via attenuating oxidative stress, counteracting inflammation, and suppressing cell apoptosis. Nano Lett. 2019;19(5):2812–2823. doi:10.1021/acs.nanolett.8b04729
  • Gao X, Wang Q, Cheng C, et al. The application of prussian blue nanoparticles in tumor diagnosis and treatment. Sensors. 2020;20(23):6905. doi:10.3390/s20236905
  • Wang S, Yan H, Wang Y, Wang N, Lin Y, Li M. Hollow Prussian Blue nanocubes as peroxidase mimetic and enzyme carriers for colorimetric determination of ethanol. Mikrochim Acta. 2019;186(11):738. doi:10.1007/s00604-019-3826-6