1,101
Views
8
CrossRef citations to date
0
Altmetric
Review

Mycology-Nanotechnology Interface: Applications in Medicine and Cosmetology

, , , , , , & ORCID Icon show all
Pages 2505-2533 | Published online: 02 Jun 2022

References

  • Lowry GV, Avellan A, Gilbertson LM. Opportunities and challenges for nanotechnology in the agri-tech revolution. Nat Nanotechnol. 2019;14(6):517–522. doi:10.1038/s41565-019-0461-7
  • Mittapally S, Aziz A, Student A, Afnan AA. A review on nanotechnology in cosmetics. Pharma Innov Int J. 2019;8(4):668–671.
  • Effiong DE, Uwah TO, Jumbo EU, et al. Nanotechnology in cosmetics: basics, current trends and safety concerns—A review. Adv Nanopart. 2019;9(1):1–22. doi:10.4236/ANP.2020.91001
  • Erkoc P, Ulucan-Karnak F. Nanotechnology-based antimicrobial and antiviral surface coating strategies. Prosthes. 2021;3(1):25–52. doi:10.3390/PROSTHESIS3010005
  • Tao C. Antimicrobial activity and toxicity of gold nanoparticles: research progress, challenges and prospects. Lett Appl Microbiol. 2018;67(6):537–543. doi:10.1111/LAM.13082
  • Marinescu L, Ficai D, Oprea O, et al. Optimized synthesis approaches of metal nanoparticles with antimicrobial applications. J Nanomater. 2020;2020:6651207. doi:10.1155/2020/6651207
  • Fouda A, El-din Hassan S, Salem SS, Shaheen TI. In-Vitro cytotoxicity, antibacterial, and UV protection properties of the biosynthesized Zinc oxide nanoparticles for medical textile applications. Microb Pathog. 2018;125:252–261. doi:10.1016/J.MICPATH.2018.09.030
  • Fouda A, Hassan SED, Saied E, Azab MS. An eco-friendly approach to textile and tannery wastewater treatment using maghemite nanoparticles (γ-Fe2O3-NPs) fabricated by Penicillium expansum strain (K-w). J Environ Chem Eng. 2021;9(1):104693. doi:10.1016/J.JECE.2020.104693
  • Badawy AA, Abdelfattah NAH, Salem SS, Awad MF, Fouda A. Efficacy assessment of biosynthesized Copper Oxide Nanoparticles (CuO-NPs) on stored grain insects and their impacts on morphological and physiological traits of wheat (Triticum aestivum L.) plant. Biology. 2021;10(3):233. doi:10.3390/BIOLOGY10030233
  • Syed A, Ahmad A. Extracellular biosynthesis of platinum nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B Biointerfaces. 2012;97:27–31. doi:10.1016/J.COLSURFB.2012.03.026
  • Canu IG, Schulte PA, Riediker M, Fatkhutdinova L, Bergamaschi E. Methodological, political and legal issues in the assessment of the effects of nanotechnology on human health. J Epidemiol Community Heal. 2018;72(2):148–153. doi:10.1136/JECH-2016-208668
  • Alavi M, Adulrahman NA, Haleem AA, et al. Nanoformulations of curcumin and quercetin with silver nanoparticles for inactivation of bacteria. Cell Mol Biol. 2021;67(5):151–156. doi:10.14715/CMB/2021.67.5.21
  • Nasrollahzadeh M, Sajjadi M, Sajadi SM, Issaabadi Z. Green Nanotechnology. Interface Sci Technol. 2019;28:145–198. doi:10.1016/B978-0-12-813586-0.00005-5
  • Oke AE, Aigbavboa CO, Semenya K. Energy savings and sustainable construction: examining the advantages of nanotechnology. Energy Procedia. 2017;142:3839–3843. doi:10.1016/J.EGYPRO.2017.12.285
  • Müller RH, Pyo SM. Why nanotechnology in dermal products?—Advantages, challenges, and market aspects. In: Cornier J, Keck CM, Voorde Van de M, editors. Nanocosmetics. 1st ed. Cham: Springer; 2019:347–359. doi:10.1007/978-3-030-16573-4_16
  • Gaikwad S, Ingle A, Gade A, et al. Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. Int J Nanomedicine. 2013;8:4303–4314. doi:10.2147/IJN.S50070
  • Moghaddam AB, Namvar F, Moniri M, Tahir PM, Azizi S, Mohamad R. Nanoparticles biosynthesized by fungi and yeast: a review of their preparation, properties, and medical applications. Molecules. 2015;20(9):16540–16565. doi:10.3390/MOLECULES200916540
  • Singh T, Jyoti K, Patnaik A, Singh A, Chauhan R, Chandel SS. Biosynthesis, characterization and antibacterial activity of silver nanoparticles using an endophytic fungal supernatant of Raphanus sativus. J Genet Eng Biotechnol. 2017;15(1):31–39. doi:10.1016/J.JGEB.2017.04.005
  • Sharmin S, Rahaman MM, Sarkar C, Atolani O, Islam MT, Adeyemi OS. Nanoparticles as antimicrobial and antiviral agents: a literature-based perspective study. Heliyon. 2021;7(3):e06456. doi:10.1016/J.HELIYON.2021.E06456
  • Salvioni L, Morelli L, Ochoa E, et al. The emerging role of nanotechnology in skincare. Adv Colloid Interface Sci. 2021;293:102437. doi:10.1016/J.CIS.2021.102437
  • Kokura S, Handa O, Takagi T, Ishikawa T, Naito Y, Yoshikawa T. Silver nanoparticles as a safe preservative for use in cosmetics. Nanomedicine. 2010;6(4):570–574. doi:10.1016/J.NANO.2009.12.002
  • Wiesenthal A, Hunter L, Wang S, Wickliffe J, Wilkerson M. Nanoparticles: small and mighty. Int J Dermatol. 2011;50(3):247–254. doi:10.1111/J.1365-4632.2010.04815.X
  • Li Q, Liu F, Li M, Chen C, Gadd GM. Nanoparticle and nanomineral production by fungi. Fungal Biol Rev. 2021. doi:10.1016/J.FBR.2021.07.003
  • Alavi M, Rai M. Antisense RNA, the modified CRISPR-Cas9, and metal/metal oxide nanoparticles to inactivate pathogenic bacteria. Cell Mol Biomed Rep. 2021;1(2):52–59. doi:10.55705/CMBR.2021.142436.1014
  • Chinchilla-Rodríguez Z, Miguel S, Perianes-Rodríguez A, Sugimoto CR. Dependencies and autonomy in research performance: examining nanoscience and nanotechnology in emerging countries. Science. 2018;115(3):1485–1504. doi:10.1007/S11192-018-2652-7
  • Mitter N, Hussey K. Moving policy and regulation forward for nanotechnology applications in agriculture. Nat Nanotechnol. 2019;14(6):508–510. doi:10.1038/s41565-019-0464-4
  • Henchion M, McCarthy M, Dillon EJ, Greehy G, McCarthy SN. Big issues for a small technology: consumer trade-offs in acceptance of nanotechnology in food. Innov Food Sci Emerg Technol. 2019;58:102210. doi:10.1016/J.IFSET.2019.102210
  • Jain R, Sharma D. Applications and Ethical Issues of Nanotechnology in Real World. J Web Eng Technol. 2019;6(2):25–28.
  • Silva GA. A New Frontier: the convergence of nanotechnology, brain machine interfaces, and artificial intelligence. Front Neurosci. 2018;12:843. doi:10.3389/FNINS.2018.00843
  • Rana KL, Kour D, Yadav N, Yadav AN. Endophytic microbes in nanotechnology: current development, and potential biotechnology applications. In: Microb Endophytes Prospect Sustain Agric; 2020:231–262. doi:10.1016/B978-0-12-818734-0.00010-3
  • Kargozar S, Mozafari M. Nanotechnology and Nanomedicine: start small, think big. Mater Today Proc. 2018;5(7):15492–15500. doi:10.1016/J.MATPR.2018.04.155
  • Deshmukh R, Khardenavis AA, Purohit HJ. Diverse metabolic capacities of fungi for bioremediation. Indian J Microbiol. 2016;56(3):247. doi:10.1007/S12088-016-0584-6
  • Durán N, Marcato PD, Durán M, Yadav A, Gade A, Rai M. Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi, and plants. Appl Microbiol Biotechnol. 2011;90(5):1609–1624. doi:10.1007/S00253-011-3249-8
  • Hietzschold S, Walter A, Davis C, Taylor AA, Sepunaru L. Does nitrate reductase play a role in silver nanoparticle synthesis? Evidence for NADPH as the sole reducing agent. ACS Sustain Chem Eng. 2019;7(9):8070–8076. doi:10.1021/ACSSUSCHEMENG.9B00506
  • Ahmad Siddiqui E, Ahmad A, Julius A, et al. Biosynthesis of anti-proliferative gold nanoparticles using endophytic Fusarium oxysporum strain isolated from neem (A. indica) leaves. Curr Top Med Chem. 2016;16(18):2036–2042. doi:10.2174/1568026616666160215160644
  • Mukherjee P, Senapati S, Mandal D, et al. Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. ChemBioChem. 2002;3(5):461–463. doi:10.1002/1439-7633(20020503)3:5<461::AID-CBIC461>3.0.CO;2-X
  • Silva LP, Bonatto CC, Polez VLP. Green Synthesis of Metal Nanoparticles by Fungi: Current Trends and Challenges. 2016:71–89. doi:10.1007/978-3-319-42990-8_4
  • Khandel P, Shahi SK. Mycogenic nanoparticles and their bio-prospective applications: current status and future challenges. J Nanostruct Chem. 2018;8(4):369–391. doi:10.1007/s40097-018-0285-2
  • Kitching M, Ramani M, Marsili E. Fungal biosynthesis of gold nanoparticles: mechanism and scale up. Microb Biotechnol. 2015;8(6):904. doi:10.1111/1751-7915.12151
  • Gahlawat G, Choudhury AR. A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Adv. 2019;9(23):12944–12967. doi:10.1039/C8RA10483B
  • Zhang X-F, Liu Z-G, Shen W, Gurunathan S. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci. 2016;17(9):9. doi:10.3390/IJMS17091534
  • Khan I, Saeed K, Khan I. Nanoparticles: properties, applications and toxicities. Arab J Chem. 2019;12(7):908–931. doi:10.1016/J.ARABJC.2017.05.011
  • Illath K, Wankhar S, Mohan L, Nagai M, Santra TS. Metallic nanoparticles for biomedical applications. Springer Ser Biomater Sci Eng. 2021;16:29–81. doi:10.1007/978-981-33-6252-9_2
  • Heuer-Jungemann A, Feliu N, Bakaimi I, et al. The role of ligands in the chemical synthesis and applications of inorganic nanoparticles. Chem Rev. 2019;119(8):4819–4880. doi:10.1021/ACS.CHEMREV.8B00733
  • Rauwel P, Küünal S, Ferdov S, Rauwel E. A review on the green synthesis of silver nanoparticles and their morphologies studied via TEM. Adv Mater Sci Eng. 2015;2015:1–9. doi:10.1155/2015/682749
  • Ojuederie O, Babalola O. Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review. Int J Environ Res Public Health. 2017;14(12):1504. doi:10.3390/ijerph14121504
  • Azam Z, Ayaz A, Younas M, et al. Microbial synthesized cadmium oxide nanoparticles induce oxidative stress and protein leakage in bacterial cells. Microb Pathog. 2020:144. doi:10.1016/J.MICPATH.2020.104188
  • Salunke BK, Sawant SS, Lee SI, Kim BS. Microorganisms as efficient biosystem for the synthesis of metal nanoparticles: current scenario and future possibilities. World J Microbiol Biotechnol. 2016;32(5). doi:10.1007/S11274-016-2044-1
  • Yurtluk T, Akçay FA, Avcı A. Biosynthesis of silver nanoparticles using novel Bacillus sp. SBT8. Prep Biochem Biotechnol. 2018;48(2):151–159. doi:10.1080/10826068.2017.1421963
  • Abdo AM, Fouda A, Eid AM, et al. Green synthesis of Zinc Oxide Nanoparticles (ZnO-NPs) by Pseudomonas aeruginosa and their activity against pathogenic microbes and common house mosquito, Culex pipiens. Materials. 2021;14(22):6983. doi:10.3390/MA14226983
  • Singh A, Gautam PK, Verma A, et al. Green synthesis of metallic nanoparticles as effective alternatives to treat antibiotics resistant bacterial infections: a review. Biotechnol Rep. 2020;25:e00427. doi:10.1016/J.BTRE.2020.E00427
  • Guilger-Casagrande M, Lima de R. Synthesis of silver nanoparticles mediated by fungi: a review. Front Bioeng Biotechnol. 2019;7:287. doi:10.3389/FBIOE.2019.00287/BIBTEX
  • Guilger-Casagrande M, Lima de R. Synthesis of silver nanoparticles mediated by fungi: a review. Front Bioeng Biotechnol. 2019;7:287. doi:10.3389/fbioe.2019.00287
  • Menon S, Rajeshkumar S, Venkatkumar S. A review on biogenic synthesis of gold nanoparticles, characterization, and its applications. Resour Technol. 2017;3(4):516–527. doi:10.1016/J.REFFIT.2017.08.002
  • Li X, Xu H, Chen ZS, Chen G. Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater. 2011;2011:1–16. doi:10.1155/2011/270974
  • Taha ZK, Hawar SN, Sulaiman GM. Extracellular biosynthesis of silver nanoparticles from Penicillium italicum and its antioxidant, antimicrobial and cytotoxicity activities. Biotechnol Lett. 2019;41(8–9):899–914. doi:10.1007/S10529-019-02699-X/FIGURES/12
  • Mohmed AA, Fouda A, Elgamal MS, EL-Din Hassan S, Shaheen TI, Salem SS. Enhancing of cotton fabric antibacterial properties by silver nanoparticles synthesized by new Egyptian strain Fusarium Keratoplasticum A1-3. Egypt J Chem. 2017;60:63–71. doi:10.21608/EJCHEM.2017.1626.1137
  • Fouda A, Hassan SED, Abdel-Rahman MA, et al. Catalytic degradation of wastewater from the textile and tannery industries by green synthesized hematite (α-Fe2O3) and magnesium oxide (MgO) nanoparticles. Curr Res Biotechnol. 2021;3:29–41. doi:10.1016/J.CRBIOT.2021.01.004
  • Fouda A, Awad MA, Eid AM, et al. An Eco-friendly approach to the control of pathogenic microbes and anopheles stephensi malarial vector using Magnesium Oxide Nanoparticles (Mg-NPs) fabricated by Penicillium chrysogenum. Int J Mol Sci. 2021;22(10):5096. doi:10.3390/IJMS22105096
  • Das RK, Pachapur VL, Lonappan L, et al. Biological synthesis of metallic nanoparticles: plants, animals and microbial aspects. Nanotechnol Environ Eng. 2017;2(1):1–21. doi:10.1007/S41204-017-0029-4
  • Ghosh S, Ahmad R, Zeyaullah M, Khare SK. Microbial nano-factories: synthesis and biomedical applications. Front Chem. 2021;194. doi:10.3389/FCHEM.2021.626834
  • Balakumaran MD, Ramachandran R, Kalaichelvan PT. Exploitation of endophytic fungus, Guignardia mangiferae for extracellular synthesis of silver nanoparticles and their in vitro biological activities. Microbiol Res. 2015;178:9–17. doi:10.1016/J.MICRES.2015.05.009
  • Chan YS, Don MM. Optimization of process variables for the synthesis of silver nanoparticles by Pycnoporus sanguineus using statistical experimental design. J Korean Soc Appl Biol Chem. 2013;56(1):11–20. doi:10.1007/S13765-012-2177-3
  • Siddiqi KS, Husen A. Fabrication of metal nanoparticles from fungi and metal salts: scope and application. Nanoscale Res Lett. 2016;11(1):1–15. doi:10.1186/S11671-016-1311-2
  • Owaid MN, Ibraheem IJ. Mycosynthesis of nanoparticles using edible and medicinal mushrooms. Eur J Nanomed. 2017;9(1):5–23. doi:10.1515/ejnm-2016-0016
  • Anthony KJP, Murugan M, Jeyaraj M, Rathinam NK, Sangiliyandi G. Synthesis of silver nanoparticles using pine mushroom extract: a potential antimicrobial agent against E. coli and B. subtilis. J Ind Eng Chem. 2014;20(4):2325–2331. doi:10.1016/J.JIEC.2013.10.008
  • Al-Bahrani R, Raman J, Lakshmanan H, Hassan AA, Sabaratnam V. Green synthesis of silver nanoparticles using tree oyster mushroom Pleurotus ostreatus and its inhibitory activity against pathogenic bacteria. Mater Lett. 2017;186:21–25. doi:10.1016/j.matlet.2016.09.069
  • Sen IK, Maity K, Islam SS. Green synthesis of gold nanoparticles using a glucan of an edible mushroom and study of catalytic activity. Carbohydr Polym. 2013;91(2):518–528. doi:10.1016/J.CARBPOL.2012.08.058
  • Narayanan KB, Park HH, Han SS. Synthesis and characterization of biomatrixed-gold nanoparticles by the mushroom Flammulina velutipes and its heterogeneous catalytic potential. Chemosphere. 2015;141:169–175. doi:10.1016/J.CHEMOSPHERE.2015.06.101
  • Wang L, Liu CC, Wang YY, Xu H, Su H, Cheng X. Antibacterial activities of the novel silver nanoparticles biosynthesized using Cordyceps militaris extract. Curr Appl Phys. 2016;16(9):969–973. doi:10.1016/J.CAP.2016.05.025
  • Nguyen VP, Le Trung H, Nguyen TH, Hoang D, Tran TH. Synthesis of biogenic silver nanoparticles with eco-friendly processes using Ganoderma lucidum Extract and evaluation of their theranostic applications. J Nanomater. 2021;2021:1–11. doi:10.1155/2021/6135920
  • Owaid MN, Naeem GA, Muslim RF, Oleiwi RS. Synthesis, characterization and antitumor efficacy of silver nanoparticle from Agaricus bisporus Pileus, Basidiomycota. Walailak J Sci Technol. 2018;17(2):75–87. doi:10.48048/wjst.2020.5840
  • Sarkar J, Ray S, Chattopadhyay D, Laskar A, Acharya K. Mycogenesis of gold nanoparticles using a phytopathogen Alternaria alternata. Bioprocess Biosyst Eng. 2011;35(4):637–643. doi:10.1007/S00449-011-0646-4
  • Saravanan M, Nanda A. Extracellular synthesis of silver bionanoparticles from Aspergillus clavatus and its antimicrobial activity against MRSA and MRSE. Colloids Surf B Biointerfaces. 2010;77(2):214–218. doi:10.1016/J.COLSURFB.2010.01.026
  • Verma VC, Kharwar RN, Gange AC. Biosynthesis of antimicrobial silver nanoparticles by the endophytic fungus Aspergillus clavatus. Nanomedicine. 2009;5(1):33–40. doi:10.2217/NNM.09.77
  • Abu-Tahon MA, Ghareib M, Abdallah WE. Environmentally benign rapid biosynthesis of extracellular gold nanoparticles using Aspergillus flavus and their cytotoxic and catalytic activities. Process Biochem. 2020;95:1–11. doi:10.1016/J.PROCBIO.2020.04.015
  • Ninganagouda S, Rathod V, Singh D; RATHOD Professor V. Extracellular biosynthesis of silver nanoparticles using Aspergillus Flavus and their antimicrobial activity against gram negative MDR strains. Int J Pharm Bio Sci. 2013;4(2):222–229.
  • Gupta S, Bector S. Biosynthesis of extracellular and intracellular gold nanoparticles by Aspergillus fumigatus and A. flavus. Antonie van Leeuwenhoek. 2013;103(5):1113–1123. doi:10.1007/S10482-013-9892-6
  • Shahzad A, Saeed H, Iqtedar M, et al. Size-controlled production of silver nanoparticles by Aspergillus fumigatus BTCB10: likely antibacterial and cytotoxic effects. J Nanomater. 2019;2019:1–14. doi:10.1155/2019/5168698
  • Magdi HM, Mourad MHE, El-Aziz MMA. Biosynthesis of silver nanoparticles using fungi and biological evaluation of mycosynthesized silver nanoparticles. Egypt J Exp Biol. 2014;10(1):1–12.
  • Binupriya AR, Sathishkumar M, Vijayaraghavan K, Yun SI. Bioreduction of trivalent aurum to nano-crystalline gold particles by active and inactive cells and cell-free extract of Aspergillus oryzae var. viridis. J Hazard Mater. 2010;177(1–3):539–545. doi:10.1016/J.JHAZMAT.2009.12.066
  • Binupriya AR, Sathishkumar M, Yun S-I. Myco-crystallization of silver ions to nanosized particles by live and dead cell filtrates of Aspergillus oryzae var. viridis and its bactericidal activity toward Staphylococcus aureus KCCM 12256. Ind Eng Chem Res. 2009;49(2):852–858. doi:10.1021/IE9014183
  • Vala AK. Exploration on green synthesis of gold nanoparticles by a marine-derived fungus Aspergillus sydowii. Environ Prog Sustain Energy. 2015;34(1):194–197. doi:10.1002/EP.11949
  • Ammar HAM, El-Desouky TA. Green synthesis of nanosilver particles by Aspergillus terreus HA1N and Penicillium expansum HA2N and its antifungal activity against mycotoxigenic fungi. J Appl Microbiol. 2016;121(1):89–100. doi:10.1111/JAM.13140
  • Priyadarshini E, Pradhan N, Sukla LB, Panda PK. Controlled synthesis of gold nanoparticles using Aspergillus terreus IF0 and its antibacterial potential against gram negative pathogenic bacteria. J Nanotechnol. 2014;2014:1–9. doi:10.1155/2014/653198
  • Nirwaan R, Sharma D, Chaturvedi M, Yadav JP. Green synthesis, characterization and antibacterial activity of silver nanoparticles of endophytic fungi Aspergillus terreus. Artic J Nanomed Nanotechnol. 2017. doi:10.4172/2157-7439.1000457
  • Laksee S, Puthong S, Teerawatananond T, Palaga T, Muangsin N. Highly efficient and facile fabrication of monodispersed Au nanoparticles using pullulan and their application as anticancer drug carriers. Carbohydr Polym. 2017;173:178–191. doi:10.1016/J.CARBPOL.2017.05.101
  • Rahi DK, Manhas L, Kaur M, Malik D, Rahi S. Extracellular synthesis of silver nanoparticles by an indigenous yeast aureobasidium pullulans RYLF 10: characterization and evaluation of antibacterial potential. Int J Pharm Biol Sci. 2018;8(3):312–321.
  • Castro ME, Cottet L, Castillo A. Biosynthesis of gold nanoparticles by extracellular molecules produced by the phytopathogenic fungus Botrytis cinerea. Mater Lett. 2014;115:42–44. doi:10.1016/J.MATLET.2013.10.020
  • Soni N, Prakash S. Efficacy of fungus mediated silver and gold nanoparticles against Aedes aegypti larvae. Parasitol Res. 2011;110(1):175–184. doi:10.1007/S00436-011-2467-4
  • Manjunath Hulikere M, Joshi CG. Characterization, antioxidant and antimicrobial activity of silver nanoparticles synthesized using marine endophytic fungus- Cladosporium cladosporioides. Process Biochem. 2019;82:199–204. doi:10.1016/J.PROCBIO.2019.04.011
  • Manjunath Hulikere M, Joshi CG, Danagoudar A, Poyya J, Kudva AK, Dhananjaya D. Biogenic synthesis of gold nanoparticles by marine endophytic fungus-Cladosporium cladosporioides isolated from seaweed and evaluation of their antioxidant and antimicrobial properties. Process Biochem. 2017;63:137–144. doi:10.1016/J.PROCBIO.2017.09.008
  • Salunkhe RB, Patil SV, Patil CD, Salunke BK. Larvicidal potential of silver nanoparticles synthesized using fungus Cochliobolus lunatus against Aedes aegypti (Linnaeus, 1762) and Anopheles stephensi Liston (Diptera; Culicidae). Parasitol Res. 2011;109(3):823–831. doi:10.1007/S00436-011-2328-1
  • Kaplan Ö, Gökşen Tosun N, Özgür A, et al. Microwave-assisted green synthesis of silver nanoparticles using crude extracts of Boletus edulis and Coriolus versicolor: characterization, anticancer, antimicrobial and wound healing activities. J Drug Deliv Sci Technol. 2021;64:102641. doi:10.1016/J.JDDST.2021.102641
  • Dar MA, Ingle A, Rai M. Enhanced antimicrobial activity of silver nanoparticles synthesized by Cryphonectria sp. evaluated singly and in combination with antibiotics. Nanomed Nanotechnol, Biol Med. 2013;9(1):105–110. doi:10.1016/J.NANO.2012.04.007
  • Zhang L, Wei Y, Wang H, et al. Green synthesis of silver nanoparticles using mushroom flammulina velutipes extract and their antibacterial activity against aquatic pathogens. Food Bioprocess Technol. 2020;13(11):1908–1917. doi:10.1007/S11947-020-02533-7
  • Birla SS, Gaikwad SC, Gade AK, Rai MK. Rapid synthesis of silver nanoparticles from Fusarium oxysporum by optimizing physicocultural conditions. Sci World J. 2013;2013:1–12. doi:10.1155/2013/796018
  • Korbekandi H, Ashari Z, Iravani S, Abbasi S. Optimization of biological synthesis of silver nanoparticles using Fusarium oxysporum. Iran J Pharm Res IJPR. 2013;12(3):289.
  • Naimi-Shamel N, Pourali P, Dolatabadi S. Green synthesis of gold nanoparticles using Fusarium oxysporum and antibacterial activity of its tetracycline conjugant. J Mycol Med. 2019;29(1):7–13. doi:10.1016/J.MYCMED.2019.01.005
  • Sawle BD, Salimath B, Deshpande R, Bedre MD, Prabhakar BK, Venkataraman A. Biosynthesis and stabilization of Au and Au–Ag alloy nanoparticles by fungus, Fusarium semitectum. Sci Technol Adv Mater. 2008;9(3). doi:10.1088/1468-6996/9/3/035012
  • Clarance P, Luvankar B, Sales J, et al. Green synthesis and characterization of gold nanoparticles using endophytic fungi Fusarium solani and its in-vitro anticancer and biomedical applications. Saudi J Biol Sci. 2020;27(2):706–712. doi:10.1016/J.SJBS.2019.12.026
  • Sogra Fathima B, Balakrishnan RM. Biosynthesis and optimization of silver nanoparticles by endophytic fungus Fusarium solani. Mater Lett. 2014;132:428–431. doi:10.1016/J.MATLET.2014.06.143
  • Gopinath K, Arumugam A. Extracellular mycosynthesis of gold nanoparticles using Fusarium solani. Appl Nanosci. 2013;4(6):657–662. doi:10.1007/S13204-013-0247-4
  • Mishra AN, Bhadauria S, Gaur MS, Pasricha R. Extracellular microbial synthesis of gold nanoparticles using fungus Hormoconis resinae. JOM. 2010;62(11):45–48. doi:10.1007/S11837-010-0168-6
  • Varshney R, Mishra AN, Bhadauria S, Gaur MS, Novel Microbial A. Route to synthesize silver nanoparticles using Fungus Hormoconis Resinae. Dig J Nanomater Biostruct. 2009;4(2):349–355.
  • Aziz N, Pandey R, Barman I, Prasad R. Leveraging the attributes of mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol. 2016;7:1984. doi:10.3389/FMICB.2016.01984
  • Castro-Longoria E, Vilchis-Nestor AR, Avalos-Borja M. Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids Surf B Biointerfaces. 2011;83(1):42–48. doi:10.1016/J.COLSURFB.2010.10.035
  • Quester K, Avalos-Borja M, Vilchis-Nestor AR, Camacho-López MA, Castro-Longoria E. SERS properties of different sized and shaped gold nanoparticles biosynthesized under different environmental conditions by Neurospora Crassa extract. PLoS One. 2013;8(10):e77486. doi:10.1371/JOURNAL.PONE.0077486
  • Hamedi S, Shojaosadati SA, Shokrollahzadeh S, Hashemi-Najafabadi S. Extracellular biosynthesis of silver nanoparticles using a novel and non-pathogenic fungus, Neurospora intermedia: controlled synthesis and antibacterial activity. World J Microbiol Biotechnol. 2013;30(2):693–704. doi:10.1007/S11274-013-1417-Y
  • Kathiresan K, Manivannan S, Nabeel MA, Dhivya B. Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surf B Biointerfaces. 2009;71(1):133–137. doi:10.1016/J.COLSURFB.2009.01.016
  • Mishra A, Tripathy SK, Wahab R, et al. Microbial synthesis of gold nanoparticles using the fungus Penicillium brevicompactum and their cytotoxic effects against mouse mayo blast cancer C2C12 cells. Appl Microbiol Biotechnol. 2011;92(3):617–630. doi:10.1007/S00253-011-3556-0
  • Hitesh R. Biosynthesis of silver nanoparticles using fungus Penicillium brevicompactum and evaluation of their anti-bacterial activity against some human pathogens. Res J Biotechnol. 2016;11(8):44.
  • Majeed S, Abdullah Bin MS, Nanda A, Ansari MT. In vitro study of the antibacterial and anticancer activities of silver nanoparticles synthesized from Penicillium brevicompactum (MTCC-1999). J Taibah Univ Sci. 2018;10(4):614–620. doi:10.1016/J.JTUSCI.2016.02.010
  • Magdi HM, Bhushan B. Extracellular biosynthesis and characterization of gold nanoparticles using the fungus Penicillium chrysogenum. Microsyst Technol. 2015;21(10):2279–2285. doi:10.1007/S00542-015-2666-5
  • Deniz F, Mazmanci MA. The biosynthesis of silver nanoparticles with fungal cytoplasmic fluid obtained from Phanerochaete chrysosporium ME446. Environ Res Technol. 2020;3(4):187–192. doi:10.35208/ERT.788891
  • Birla SSS, Tiwari VVV, Gade AKK, Ingle APP, Yadav APP, Rai MKK. Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett Appl Microbiol. 2009;48(2):173–179. doi:10.1111/J.1472-765X.2008.02510.X
  • Gade A, Rai M, Kulkarni S. Phoma sorghina, a phytopathogen mediated synthesis of unique silver rods. Int J Green Nanotechnol. 2011;3(3):153–159. doi:10.1080/19430892.2011.628573
  • Sarkar J, Kalyan Roy S, Laskar A, Chattopadhyay D, Acharya K. Bioreduction of chloroaurate ions to gold nanoparticles by culture filtrate of Pleurotus sapidus Quél. Mater Lett. 2013;92:313–316. doi:10.1016/J.MATLET.2012.10.130
  • Chaturvedi VK, Yadav N, Rai NK, et al. Pleurotus sajor-caju-mediated synthesis of silver and gold nanoparticles active against colon cancer cell lines: a new era of herbonanoceutics. Molecules. 2020;25(13):3091. doi:10.3390/molecules25133091
  • Vala AK. Intra- and extracellular biosynthesis of gold nanoparticles by a marine-derived Fungus Rhizopus oryzae. Synth React Inorganic, Met Nano-Metal Chem. 2014;44(9):1243–1246. doi:10.1080/15533174.2013.799492
  • AbdelRahim K, Mahmoud SY, Ali AM, Almaary KS, Mustafa AE, Husseiny SM. Extracellular biosynthesis of silver nanoparticles using Rhizopus stolonifer. Saudi J Biol Sci. 2017;24(1):208–216. doi:10.1016/J.SJBS.2016.02.025
  • Cunha FA, Cunha M da CSO, da Frota SM, et al. Biogenic synthesis of multifunctional silver nanoparticles from Rhodotorula glutinis and Rhodotorula mucilaginosa: antifungal, catalytic and cytotoxicity activities. World J Microbiol Biotechnol. 2018;34(9):1–15. doi:10.1007/S11274-018-2514-8
  • Roy K, Sarkar CK, Ghosh CK. Photocatalytic activity of biogenic silver nanoparticles synthesized using yeast (Saccharomyces cerevisiae) extract. Appl Nanosci. 2014;5(8):953–959. doi:10.1007/S13204-014-0392-4
  • Olobayotan I, Akin-Osanaiye B. Biosynthesis of silver nanoparticles using baker’s yeast, Saccharomyces cerevisiae and its antibacterial activities. Access Microbiol. 2019;1(1A):526. doi:10.1099/ACMI.AC2019.PO0316
  • Yen San C, Mat don M. Biosynthesis of silver nanoparticles from Schizophyllum commune and in-vitro antibacterial and antifungal activity studies. J Phys Sci. 2013;24(2):83–96.
  • Tripathi RM, Shrivastav BR, Shrivastav A. Antibacterial and catalytic activity of biogenic gold nanoparticles synthesised by Trichoderma harzianum. IET nanobiotechnology. 2018;12(4):509–513. doi:10.1049/IET-NBT.2017.0105
  • Ahluwalia V, Kumar J, Sisodia R, Shakil NA, Walia S. Green synthesis of silver nanoparticles by Trichoderma harzianum and their bio-efficacy evaluation against Staphylococcus aureus and Klebsiella pneumonia. Ind Crops Prod. 2014;55:202–206. doi:10.1016/J.INDCROP.2014.01.026
  • El-Wakil DA. Antifungal activity of silver nanoparticles by Trichoderma species: synthesis, characterization and biological evaluation. Egypt J Phytopathol. 2020;48(1):71–80. doi:10.21608/EJP.2020.49395.1015
  • Gemishev OT, Panayotova MI, Mintcheva NN, Djerahov LP, Tyuliev GT, Gicheva GD. A green approach for silver nanoparticles preparation by cell-free extract from Trichoderma reesei fungi and their characterization. Mater Res Express. 2019;6(9):095040. doi:10.1088/2053-1591/AB2E6A
  • Elgorban AM, Al-Rahmah AN, Sayed SR, Hirad A, Mostafa AA-F, Bahkali AH. Antimicrobial activity and green synthesis of silver nanoparticles using Trichoderma viride. Biotechnol Biotechnol Equip. 2016;30(2):299–304. doi:10.1080/13102818.2015.1133255
  • Mukherjee P, Roy M, Mandal BP, et al. Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology. 2008;19(7):075103. doi:10.1088/0957-4484/19/7/075103
  • Vahabi K, Dorcheh SK, Monajembashi S, et al. Stress promotes Arabidopsis - Piriformospora indica interaction. Plant Signaling & Behavior. 2016;11(5). doi:10.1080/15592324.2015.1136763
  • Mohanpuria P, Rana NK, Yadav SK. Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res. 2007;10(3):507–517. doi:10.1007/S11051-007-9275-X
  • Jha AK, Prasad K. Understanding mechanism of fungus mediated nanosynthesis: a molecular approach. Adv Appl Through Fungal Nanobiotechnol. 2016;1–23. doi:10.1007/978-3-319-42990-8_1
  • Arnoldi M, Fritz M, Bäuerlein E, Radmacher M, Sackmann E, Boulbitch A. Bacterial turgor pressure can be measured by atomic force microscopy. Phys Rev E. 2000;62(1):1034. doi:10.1103/PhysRevE.62.1034
  • Vahabi K, Mansoori GA, Karimi S. Biosynthesis of Silver nanoparticles by Fungus Trichoderma Reesei (A Route for Large-Scale Production of AgNPs). Insci J. 2011;1(1):65–79. doi:10.5640/insc.010165
  • Narayanan KB, Sakthivel N. Mycocrystallization of gold ions by the fungus Cylindrocladium floridanum. World J Microbiol Biotechnol. 2013;29(11):2207–2211. doi:10.1007/S11274-013-1379-0
  • Prasad R, editor. Advances and applications through fungal nanobiotechnology. In: Fungal Nanobiotechnology; 2016. doi:10.1007/978-3-319-42990-8
  • Prasad R. Fungal nanotechnology. In: Prasad R, editor. Fungal Biology; 2017. doi:10.1007/978-3-319-68424-6
  • Musarrat J, Dwivedi S, Singh BR, Al-Khedhairy AA, Azam A, Naqvi A. Production of antimicrobial silver nanoparticles in water extracts of the fungus Amylomyces rouxii strain KSU-09. Bioresour Technol. 2010;101(22):8772–8776. doi:10.1016/J.BIORTECH.2010.06.065
  • Rajakumar G, Rahuman AA, Roopan SM, et al. Fungus-mediated biosynthesis and characterization of TiO2 nanoparticles and their activity against pathogenic bacteria. Spectrochim Acta Part A Mol Biomol Spectrosc. 2012;91:23–29. doi:10.1016/J.SAA.2012.01.011
  • Alani F, Moo-Young M, Anderson W. Biosynthesis of silver nanoparticles by a new strain of Streptomyces sp. compared with Aspergillus fumigatus. World J Microbiol Biotechnol. 2012;28(3):1081–1086. doi:10.1007/S11274-011-0906-0/FIGURES/5
  • Jaidev LR, Narasimha G. Fungal mediated biosynthesis of silver nanoparticles, characterization and antimicrobial activity. Colloids Surf B Biointerfaces. 2010;81(2):430–433. doi:10.1016/J.COLSURFB.2010.07.033
  • Pareek V, Bhargava A, Panwar J. Biomimetic approach for multifarious synthesis of nanoparticles using metal tolerant fungi: a mechanistic perspective. Mater Sci Eng B. 2020;262:114771. doi:10.1016/J.MSEB.2020.114771
  • Kalpana VN, Kataru BAS, Sravani N, Vigneshwari T, Panneerselvam A, Devi Rajeswari V. Biosynthesis of zinc oxide nanoparticles using culture filtrates of Aspergillus Niger: antimicrobial textiles and dye degradation studies. OpenNano. 2018;3:48–55. doi:10.1016/J.ONANO.2018.06.001
  • Chauhan A, Zubair S, Tufail S, et al. Fungus-mediated biological synthesis of gold nanoparticles: potential in detection of liver cancer. Int J Nanomedicine. 2011;6:2305–2319. doi:10.2147/IJN.S23195
  • Govindappa M, Lavanya M, Aishwarya P, et al. Synthesis and characterization of endophytic fungi, Cladosporium perangustum mediated silver nanoparticles and their antioxidant, anticancer and nano-toxicological study. Bionanoscience. 2020;10(4):928–941. doi:10.1007/S12668-020-00719-Z/FIGURES/14
  • Munawer U, Raghavendra VB, Ningaraju S, et al. Biofabrication of gold nanoparticles mediated by the endophytic Cladosporium species: photodegradation, in vitro anticancer activity and in vivo antitumor studies. Int J Pharm. 2020;588:119729. doi:10.1016/J.IJPHARM.2020.119729
  • Durán N, Marcato PD, Alves OL, De Souza GIH, Esposito E. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol. 2005;3(1). doi:10.1186/1477-3155-3-8/FIGURES/9
  • Chowdhury S, Basu A, Kundu S. Green synthesis of protein capped silver nanoparticles from phytopathogenic fungus Macrophomina phaseolina (Tassi) Goid with antimicrobial properties against multidrug-resistant bacteria. Nanoscale Res Lett. 2014;9(1):365. doi:10.1186/1556-276X-9-365/FIGURES/8
  • Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH. Silver-protein (core-shell) nanoparticle production using spent mushroom substrate. Langmuir. 2007;23(13):7113–7117. doi:10.1021/LA063627P
  • Mishra A, Tripathy SK, Wahab R, et al. Microbial synthesis of gold nanoparticles using the fungus Penicillium brevicompactum and their cytotoxic effects against mouse mayo blast cancer C 2C 12 cells. Appl Microbiol Biotechnol. 2011;92(3):617–630. doi:10.1007/S00253-011-3556-0/FIGURES/15
  • Subramaniyan SA, Sheet S, Vinothkannan M, et al. One-pot facile synthesis of pt nanoparticles using cultural filtrate of microgravity simulated grown P. chrysogenum and their activity on bacteria and cancer cells. J Nanosci Nanotechnol. 2017;18(5):3110–3125. doi:10.1166/JNN.2018.14661
  • Feroze N, Arshad B, Younas M, Afridi MI, Saqib S, Ayaz A. Fungal mediated synthesis of silver nanoparticles and evaluation of antibacterial activity. Microsc Res Tech. 2020;83(1):72–80. doi:10.1002/JEMT.23390
  • Singh D, Rathod V, Ninganagouda S, Hiremath J, Singh AK, Mathew J. Optimization and characterization of silver nanoparticle by endophytic fungi penicillium sp. isolated from curcuma longa (Turmeric) and application studies against MDR E. coli and S. aureus. Bioinorg Chem Appl. 2014;2014:408021. doi:10.1155/2014/408021
  • Elamawi RM, Al-Harbi RE, Hendi AA. Biosynthesis and characterization of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi. Egypt J Biol Pest Control. 2018;28(1):28. doi:10.1186/S41938-018-0028-1/FIGURES/10
  • Fayaz AM, Balaji K, Girilal M, Kalaichelvan PT, Venkatesan R. Mycobased synthesis of silver nanoparticles and their incorporation into sodium alginate films for vegetable and fruit preservation. J Agric Food Chem. 2009;57(14):6246–6252. doi:10.1021/JF900337H
  • Mukherjee P, Ahmad A, Mandal D, et al. Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett. 2001;1(10):515–519. doi:10.1021/NL0155274
  • Das S, Sudhagar P, Kang YS, Choi W. Graphene synthesis and application for solar cells. J Mater Res. 2014;29(3):299–319. doi:10.1557/JMR.2013.297
  • Sharma A, Verma N, Sharma A, Deva D, Sankararamakrishnan N. Iron doped phenolic resin based activated carbon micro and nanoparticles by milling: synthesis, characterization and application in arsenic removal. Chem Eng Sci. 2010;65(11):3591–3601. doi:10.1016/J.CES.2010.02.052
  • Sudhakar T, Nanda A, Babu SG, Janani S, Evans MD, Markose TK. Synthesis of silver nanoparticles from edible mushroom and its antimicrobial activity against human pathogens. Int J PharmTech Res. 2014;6(5):1718–1723.
  • Durán N, Marcato PD, De Souza GIH, Alves OL, Esposito E. Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotechnol. 2007;3(2):203–208. doi:10.1166/JBN.2007.022
  • Mohammed fayaz A, Balaji K, Kalaichelvan PT, Venkatesan R. Fungal based synthesis of silver nanoparticles—An effect of temperature on the size of particles. Colloids Surf B Biointerfaces. 2009;74(1):123–126. doi:10.1016/J.COLSURFB.2009.07.002
  • Ottoni CA, Simões MF, Fernandes S, et al. Screening of filamentous fungi for antimicrobial silver nanoparticles synthesis. AMB Express. 2017;7(1):1–10. doi:10.1186/S13568-017-0332-2
  • Govindappa M, Farheen H, Chandrappa CP, Channabasava R, Rai RV, Raghavendra VB. Mycosynthesis of silver nanoparticles using extract of endophytic fungi, Penicillium species of Glycosmis mauritiana, and its antioxidant, antimicrobial, anti-inflammatory and tyrokinase inhibitory activity. Adv Nat Sci Nanosci Nanotechnol. 2016;7(3):035014. doi:10.1088/2043-6262/7/3/035014
  • Kumar H, Bhardwaj K, Cruz-Martins N, et al. Applications of fruit polyphenols and their functionalized nanoparticles against foodborne bacteria: a mini review. Molecules. 2021;26(11):3447. doi:10.3390/MOLECULES26113447
  • de Francisco L, Pinto D, Rosseto H, et al. Evaluation of radical scavenging activity, intestinal cell viability and antifungal activity of Brazilian propolis by-product. Food Res Int. 2018;105:537–547. doi:10.1016/J.FOODRES.2017.11.046
  • Correa-Royero J, Tangarife V, Durán C, Stashenko E, Mesa-Arango A. In vitro antifungal activity and cytotoxic effect of essential oils and extracts of medicinal and aromatic plants against Candida krusei and Aspergillus fumigatus. Rev Bras Farmacogn. 2010;20(5):734–741. doi:10.1590/S0102-695X2010005000021
  • Ingle A, Gade A, Pierrat S, Sonnichsen C, Rai M. Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci. 2008;4(2):141–144. doi:10.2174/157341308784340804
  • Li GJ, Hyde KD, Zhao RL, et al. Fungal diversity notes 253–366: taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers. 2016;78(1):1–237. doi:10.1007/S13225-016-0366-9
  • Brown SD, Nativo P, Smith J-A, et al. Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J Am Chem Soc. 2010;132(13):4678–4684. doi:10.1021/JA908117A
  • Rodrigues AG, Ping LY, Marcato PD, et al. Biogenic antimicrobial silver nanoparticles produced by fungi. Appl Microbiol Biotechnol. 2012;97(2):775–782. doi:10.1007/S00253-012-4209-7
  • Ishida K, Cipriano TF, Rocha GM, et al. Silver nanoparticle production by the fungus Fusarium oxysporum: nanoparticle characterisation and analysis of antifungal activity against pathogenic yeasts. Mem Inst Oswaldo Cruz. 2013;109(2):220–228. doi:10.1590/0074-0276130269
  • Arun G, Eyini M, Gunasekaran P. Green synthesis of silver nanoparticles using the mushroom fungus Schizophyllum commune and its biomedical applications. Biotechnol Bioprocess Eng. 2014;19(6):1083–1090. doi:10.1007/s12257-014-0071-z
  • Xue B, He D, Gao S, Wang D, Yokoyama K, Wang L. Biosynthesis of silver nanoparticles by the fungus Arthroderma fulvum and its antifungal activity against genera of Candida, Aspergillus and Fusarium. Int J Nanomedicine. 2016;11:1899. doi:10.2147/IJN.S98339
  • Narasimha G. Antiviral activity of silver nanoparticles synthesized by fungal strain Aspergillus Niger. Nano Sci Nano Technol. 2012;6(1):18–20.
  • Elechiguerra JL, Larios-Lopez L, Liu C, Garcia-Gutierrez D, Camacho-Bragado A, Yacaman MJ. Corrosion at the nanoscale: the case of silver nanowires and nanoparticles. Chem Mater. 2005;17(24):6042–6052. doi:10.1021/CM051532N
  • Sharma P, Mehta M, Dhanjal DS, et al. Emerging trends in the novel drug delivery approaches for the treatment of lung cancer. Chem Biol Interact. 2019;309:108720. doi:10.1016/j.cbi.2019.06.033
  • Dhanjal DS, Mehta M, Chopra C, et al. Novel controlled release pulmonary drug delivery systems: current updates and challenges. In: Modeling and Control of Drug Delivery Systems. Academic Press; 2021:253–272. doi:10.1016/B978-0-12-821185-4.00001-4
  • Ortega FG, Fernández-Baldo MA, Fernández JG, et al. Study of antitumor activity in breast cell lines using silver nanoparticles produced by yeast. Int J Nanomedicine. 2015;10:2021. doi:10.2147/IJN.S75835
  • Xia ZK, Ma QH, Li SY, et al. The antifungal effect of silver nanoparticles on Trichosporon asahii. J Microbiol Immunol Infect. 2016;49(2):182–188. doi:10.1016/J.JMII.2014.04.013
  • Singh P, Kim YJ, Zhang D, Yang DC. Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol. 2016;34(7):588–599. doi:10.1016/J.TIBTECH.2016.02.006
  • Basu A, Ray S, Chowdhury S, et al. Evaluating the antimicrobial, apoptotic, and cancer cell gene delivery properties of protein-capped gold nanoparticles synthesized from the edible mycorrhizal fungus Tricholoma crassum. Nanoscale Res Lett. 2018;13(1):154. doi:10.1186/S11671-018-2561-Y/FIGURES/10
  • Vahidi H, Kobarfard F, Alizadeh A, Saravanan M, Barabadi H. Green nanotechnology-based tellurium nanoparticles: exploration of their antioxidant, antibacterial, antifungal and cytotoxic potentials against cancerous and normal cells compared to potassium tellurite. Inorg Chem Commun. 2021;124:108385. doi:10.1016/J.INOCHE.2020.108385
  • Bhat R, Sharanabasava VG, Deshpande R, Shetti U, Sanjeev G, Venkataraman A. Photo-bio-synthesis of irregular shaped functionalized gold nanoparticles using edible mushroom Pleurotus Florida and its anticancer evaluation. J Photochem Photobiol B Biol. 2013;125:63–69. doi:10.1016/J.JPHOTOBIOL.2013.05.002
  • Prasad C, Krishna Murthy P, Hari Krishna RH, Sreenivasa Rao R, Suneetha V, Venkateswarlu P. Bio-inspired green synthesis of RGO/Fe3O4 magnetic nanoparticles using Murrayakoenigii leaves extract and its application for removal of Pb(II) from aqueous solution. J Environ Chem Eng. 2017;5(5):4374–4380. doi:10.1016/J.JECE.2017.07.026
  • Surendiran A, Sandhiya S, Pradhan SC, Adithan C. Novel applications of nanotechnology in medicine: eBSCOhost. Indian J Med Res. 2009;130(6):689–701.
  • Janith W, Chamindri W. Applications of nanotechnology in drug delivery and design-an insight-Indian journals. Curr Trends Biotechnol Pharm. 2016;10(1):78–91.
  • Daisy P, Saipriya K. Biochemical analysis of Cassia fistula aqueous extract and phytochemically synthesized gold nanoparticles as hypoglycemic treatment for diabetes mellitus. Int J Nanomedicine. 2012;7:1189. doi:10.2147/IJN.S26650
  • Mohammed fayaz A, Girilal M, Mahdy SA, Somsundar SS, Venkatesan R, Kalaichelvan PT. Vancomycin bound biogenic gold nanoparticles: a different perspective for development of anti VRSA agents. Process Biochem. 2011;46(3):636–641. doi:10.1016/J.PROCBIO.2010.11.001
  • You C, Han C, Wang X, et al. The progress of silver nanoparticles in the antibacterial mechanism, clinical application and cytotoxicity. Mol Biol Rep. 2012;39(9):9193–9201. doi:10.1007/S11033-012-1792-8
  • Chaloupka K, Malam Y, Seifalian AM. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol. 2010;28(11):580–588. doi:10.1016/J.TIBTECH.2010.07.006
  • Wang P, Li Y, Huang X, Wang L. Fabrication of layer-by-layer modified multilayer films containing choline and gold nanoparticles and its sensing application for electrochemical determination of dopamine and uric acid. Talanta. 2007;73(3):431–437. doi:10.1016/J.TALANTA.2007.04.022
  • Yun Y, Dong Z, Lee N, et al. Revolutionizing biodegradable metals. Mater Today. 2009;12(10):22–32. doi:10.1016/S1369-7021(09
  • Huang Y, Li X, Liao Z, et al. A randomized comparative trial between Acticoat and SD-Ag in the treatment of residual burn wounds, including safety analysis. Burns. 2007;33(2):161–166. doi:10.1016/J.BURNS.2006.06.020
  • Sundaramoorthi C, Kalaivani M, Mathews DM, Palanisamy S, Kalaiselvan V, Rajasekaran A. Biosynthesis of silver nanoparticles from Aspergillus Niger and evaluation of its wound healing activity in experimental rat model. Int J PharmTech Res. 2009;1(4):1523–1529.
  • Marcato PD, Paula De LB, Melo PS, et al. In vivo evaluation of complex biogenic silver nanoparticle and enoxaparin in wound healing. J Nanomater. 2015;2015:439820. doi:10.1155/2015/439820
  • Singh S, Dhanjal DS, Thotapalli S, Sharma P, Singh J. Importance and recent aspects of fungi-based food ingredients. In: New and Future Developments in Microbial Biotechnology and Bioengineering. Elsevier; 2020:245–254.
  • Singh S, Dhanjal DS, Thotapalli S, Sharma P, Singh J. Fungal enzyme inhibitors: repository of novel cancer therapeutics. In: New and Future Developments in Microbial Biotechnology and Bioengineering. Elsevier; 2020:121–133.
  • Lohani A, Verma A, Joshi H, Yadav N, Karki N. Nanotechnology-based cosmeceuticals. ISRN Dermatol. 2014;2(1):1–15. doi:10.1155/2014/843687
  • Maczey N, Dhendup K, Cannon P. Thitarodes namnai sp. nov. and T. caligophilus sp. nov. (Lepidoptera: hepialidae), hosts of the economically important entomopathogenic fungus Ophiocordyceps sinensis in Bhutan. Zootaxa. 2010;24(12):42–52. doi:10.11646/zootaxa.2412.1.3
  • Kokura S, Handa O, Takagi T, Ishikawa T, Naito Y, Yoshikawa T. Silver nanoparticles as a safe preservative for use in cosmetics. Nanomed Nanotechnol, Biol Med. 2010;6(4):570–574. doi:10.1016/J.NANO.2009.12.002
  • Handa O, Kokura S, Adachi S, et al. Methylparaben potentiates UV-induced damage of skin keratinocytes. Toxicology. 2006;227(1–2):62–72. doi:10.1016/J.TOX.2006.07.018
  • Ishiwatari S, Suzuki T, Hitomi T, Yoshino T, Matsukuma S, Tsuji T. Effects of methyl paraben on skin keratinocytes. J Appl Toxicol. 2007;27(1):1–9. doi:10.1002/JAT.1176
  • Gajbhiye S, Sakharwade S, Gajbhiye S, Sakharwade S. Silver Nanoparticles in Cosmetics. J Cosmet Dermatol Sci Appl. 2016;6(1):48–53. doi:10.4236/JCDSA.2016.61007
  • Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M. Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomed Nanotechnol, Biol Med. 2009;5(4):382–386. doi:10.1016/J.NANO.2009.06.005
  • Baskar K, Raj GA, Mohan PM, Lingathura S, Ambrose T, Muthu C. Larvicidal and growth inhibitory activities of entomopathogenic fungus, Beauveria bassiana against Asian army worm, Spodoptera litura Fab. (Lepidoptera: Noctuidae). J Entomol. 2012;9(3):155–162. doi:10.3923/je.2012.155.162
  • Park J-H, Choi G-J, Lee S-W, Kim K-M, Jung H-S. Griseofulvin from Xylaria sp. Strain F0010, an endophytic fungus of Abies holophylla and its antifungal activity against plant pathogenic fungi. J Microbiol Biotechnol. 2005;15(1):112–117.
  • Morones JR, Elechiguerra JL, Camacho A, et al. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16(10):2346. doi:10.1088/0957-4484/16/10/059
  • Kim J, Pitts B, Stewart PS, Camper A, Yoon J. Comparison of the antimicrobial effects of chlorine, silver ion, and tobramycin on biofilm. Antimicrob Agents Chemother. 2008;52(4):1446–1453. doi:10.1128/AAC.00054-07
  • Rajakumar G, Rahuman AA, Roopan SM, et al. Fungus-mediated biosynthesis and characterization of TiO2 nanoparticles and their activity against pathogenic bacteria. Spectrochim Acta Part A Mol Biomol Spectrosc. 2012;91:23–29. doi:10.1016/J.SAA.2012.01.011
  • Ruma K, Sunil K, Prakash HS. Antioxidant, anti-inflammatory, antimicrobial and cytotoxic properties of fungal endophytes from Garcinia species. Int J Pharm Pharm Sci. 2013;5(3):889–897.
  • Bonderman D, Pretsch I, Steringer-Mascherbauer R, et al. Acute hemodynamic effects of riociguat in patients with pulmonary hypertension associated with Diastolic Heart Failure (DILATE-1): a randomized, double-blind, placebo-controlled, single-dose study. Chest. 2014;146(5):1274–1285. doi:10.1378/CHEST.14-0106
  • Naz S, Vallejo M, García A, Barbas C. Method validation strategies involved in non-targeted metabolomics. J Chromatogr A. 2014;1353:99–105. doi:10.1016/J.CHROMA.2014.04.071
  • Bhimba BV, Franco DAAD, Mathew JM, Jose GM, Joel EL, Thangaraj M. Anticancer and antimicrobial activity of mangrove derived fungi Hypocrea lixii VB1. Chin J Nat Med. 2012;10(1):77–80. doi:10.1016/S1875-5364(12
  • Lin J, Zhang H, Chen Z, Zheng Y. Penetration of lipid membranes by gold nanoparticles: insights into cellular uptake, cytotoxicity, and their relationship. ACS Nano. 2010;4(9):5421–5429. doi:10.1021/NN1010792
  • Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomed Nanotechnol, Biol Med. 2010;6(1):103–109. doi:10.1016/J.NANO.2009.04.006
  • Zheng D, Hu C, Gan T, Dang X, Hu S. Preparation and application of a novel vanillin sensor based on biosynthesis of Au–Ag alloy nanoparticles. Sens Actuators B Chem. 2010;148(1):247–252. doi:10.1016/J.SNB.2010.04.031
  • Thibault S, Aubriet H, Arnoult C, Ruch D. Gold nanoparticles and a glucose oxidase based biosensor: an attempt to follow-up aging by XPS. Microchim Acta. 2008;163(3):211–217. doi:10.1007/S00604-008-0028-Z