1,093
Views
8
CrossRef citations to date
0
Altmetric
REVIEW

Innovative Therapeutic Approaches Based on Nanotechnology for the Treatment and Management of Tuberculosis

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 1159-1191 | Received 24 Jun 2022, Accepted 06 Feb 2023, Published online: 08 Mar 2023

References

  • Cooper AM. Cell-mediated immune responses in tuberculosis. Annu Rev Immunol. 2009;27:393–422.
  • Stewart GR, Robertson BD, Young DB. Tuberculosis: a problem with persistence. Nat Rev Microbiol. 2003;1(2):97–105.
  • World Heath Organization. Rapid Communication: Key Changes to the Treatment of Drug-Resistant Tuberculosis. World Heath Organization; 2022.
  • WHO G. Global tuberculosis report 2020. Glob Tuberc Rep. 2020;2020:S7–S12.
  • World Heath Organization. WHO Declares Tuberculosis a Global Emergency. World Heath Organization; 1993:0303–8408.
  • Debjit B, Chandira R, Jayakar B, Kumar KS. Recent trends of drug used treatment of tuberculosis. J Chem Pharm Res. 2009;1(1):113–133.
  • Greenblatt DJ. Elimination half-life of drugs: value and limitations. Annu Rev Med. 1985;36(1):421–427.
  • Dye C, Watt CJ, Bleed DM, Hosseini SM, Raviglione MC. Evolution of tuberculosis control and prospects for reducing tuberculosis incidence, prevalence, and deaths globally. JAMA. 2005;293(22):2767–2775.
  • Chan ED, Iseman MD. Multidrug-resistant and extensively drug-resistant tuberculosis: a review. Curr Opin Infect Dis. 2008;21(6):587–595.
  • Gladwin MT, Plorde JJ, Martin TR. Clinical application of the Mycobacterium tuberculosis direct test: case report, literature review, and proposed clinical algorithm. Chest. 1998;114(1):317–323.
  • Griffiths G, Nyström B, Sable SB, Khuller GK. Nanobead-based interventions for the treatment and prevention of tuberculosis. Nat Rev Microbiol. 2010;8(11):827–834.
  • Nasiruddin M, Neyaz M, Das S. Nanotechnology-based approach in tuberculosis treatment. Tuberc Res Treat. 2017;2017. doi:10.1155/2017/4920209
  • Müller R, Mehnert W, Lucks J-S, Schwarz C, Zur Mühlen A. Solid lipid nanoparticles (SLN): an alternative colloidal carrier system for controlled drug delivery. Eur J Pharm Biopharm. 1995;41(1):62–69.
  • Sharma A K, Sharma R, Jhorar R, Kumar R. Nanomedicine in therapeutic intervention of tuberculosis meningitis. Curr Nanosci. 2015;11(1):15–22.
  • Kumar M, Jha A, Dr M, Mishra B. Targeted drug nanocrystals for pulmonary delivery: a potential strategy for lung cancer therapy. Expert Opin Drug Deliv. 2020;17(10):1459–1472.
  • Sarkar K, Kumar M, Jha A, Bharti K, Das M, Mishra B. Nanocarriers for tuberculosis therapy: design of safe and effective drug delivery strategies to overcome the therapeutic challenges. J Drug Deliv Sci Technol. 2021;67:102850.
  • Martini M, Besozzi G, Barberis I. The never-ending story of the fight against tuberculosis: from Koch’s bacillus to global control programs. J Prev Med Hyg. 2018;59(3):E241.
  • Hadi SA, Brenner EP, Mani R, Palmer MV, Thacker T, Sreevatsan S. Genome Sequences of Mycobacterium tuberculosis Biovar bovis Strains Ravenel and 10-7428. Microbiol Resour Announc. 2021;10(24):e00411–e00421.
  • Robinson RK. Encyclopedia of Food Microbiology. Academic press; 2014.
  • Moreno S. Tuberculosis multirresistente: epidemiología actual, esquemas terapéuticos, nuevos fármacos. Rev Esp Quimioter. 2016;29(1):35–38.
  • Tuberculosis drugs and mechanisms of action. National Institute of Allergy and Infectious Diseases. https://www.niaid.nih.gov/diseases-conditions/tbdrugs. Accessed March 1, 2023.
  • Ochi K. Phylogenetic analysis of mycolic acid-containing wall-chemotype IV actinomycetes and allied taxa by partial sequencing of ribosomal protein AT-L30. Int J Syst Evol Microbiol. 1995;45(4):653–660.
  • Tsukamura M. A review of the methods of identification and differentiation of mycobacteria. Rev Infect Dis. 1981;3(5):841–861.
  • Karami-Zarandi M, Bahador A, Gizaw Feysia S, et al. Identification of non-tuberculosis mycobacteria by line probe assay and determination of drug resistance patterns of isolates in Iranian patients. Arch Razi Inst. 2019;74(4):375–384.
  • Tió-Coma M, Wijnands T, Pierneef L, et al. Detection of Mycobacterium leprae DNA in soil: multiple needles in the haystack. Sci Rep. 2019;9(1):1–7.
  • Nardell EA. Transmission and institutional infection control of tuberculosis. Cold Spring Harb Perspect Med. 2016;6(2):a018192.
  • Chapter C. Transmission and Pathogenesis of Tuberculosis. US: Taylor and Francies; 2016.
  • Fennelly KP. Particle sizes of infectious aerosols: implications for infection control. Lancet Respir Med. 2020;8(9):914–924.
  • Murray JF. The Normal Lung: the Basis for Diagnosis and Treatment of Pulmonary Disease. WB Saunders Company; 1986.
  • Dannenberg A. Pathogenesis of Pulmonary Tuberculosis: Host-Parasite Interactions, Cellmediatedd Immunity, and Delayed-Type Hypersensitivity: Basic Principles. New York: Springer Verlag; 1994.
  • Smith DW, Wiegeshaus EH. What animal models can teach us about the pathogenesis of tuberculosis in humans. Rev Infect Dis. 1989;11(Supplement_2):S385–S393.
  • Reggiardo Z, Middlebrook G. Failure of passive serum transfer of immunity against aerogenic tuberculosis in rabbits. Proc Soc Exp Biol Med. 1974;145(1):173–175.
  • Canetti G. The Tubercle Bacillus in the Pulmonary Lesion of Man: Histobacteriology and its Bearing on the Therapy of Pulmonary Tuberculosis. Springer Publishing Company; 1955.
  • Dannenberg JAM. Immune mechanisms in the pathogenesis of pulmonary tuberculosis. Rev Infect Dis. 1989;11(Supplement_2):S369–S378.
  • Styblo K, Enarson DA. Epidemiology of Tuberculosis. Vol. 24. Royal Netherlands Tuberculosis Association The Hague; 1991.
  • Bass JB, Farer LS, Hopewell PC, Jacobs RF, Snider DE. Diagnostic standards and classification of tuberculosis. Am Rev Respir Dis. 1990;142(3):725–735.
  • Susilawati TN, Larasati R. A recent update of the diagnostic methods for tuberculosis and their applicability in Indonesia: a narrative review. Med J Indones. 2019;28(3):284–291.
  • Cobat A, Orlova M, Barrera L, Schurr E. Host genomics and control of tuberculosis infection. Public Health Genomics. 2013;16(1–2):44–49.
  • Rate C. Tuberculosis in Alameda County; 2015.
  • Yu WY, Wang YX, Mei JZ, Hu FX, Ji LC. Overview of Tuberculosis. In: Tuberculosis Control in Migrating Population. Springer; 2020:1–10.
  • Gupta S, Kumar P, Gupta MK, Vyas SP. Colloidal carriers: a rising tool for therapy of tuberculosis. Crit Rev Ther Drug Carr Sys. 2012;29(4):299–353.
  • Wen Z, Li T, Zhu W, Chen W, Zhang H, Wang W. Effect of different interventions for latent tuberculosis infections in China: a model-based study. BMC Infect Dis. 2021;22:488.
  • Lee SH. Tuberculosis infection and latent tuberculosis. Tuberc Respir Dis. 2016;79(4):201–206.
  • Esmail H, Barry III CE, Wilkinson RJ. Understanding latent tuberculosis: the key to improved diagnostic and novel treatment strategies. Drug Discov Today. 2012;17(9–10):514–521.
  • Vonasek B, Ness T, Takwoingi Y, et al. Screening tests for active pulmonary tuberculosis in children. Cochrane Database Syst Rev. 2020;7. doi:10.1002/14651858.CD013693.pub2
  • Kaur J, Gill G, Jeet K. Characterization and Biology of Nanomaterials for Drug Delivery. The Netherlands: Elsevier Amsterdam; 2019.
  • Lee SH. Diagnosis and treatment of latent tuberculosis infection. Tuberc Respir Dis. 2015;78(2):56–63.
  • Piccazzo R, Paparo F, Garlaschi G. Diagnostic accuracy of chest radiography for the diagnosis of tuberculosis (TB) and its role in the detection of latent TB infection: a systematic review. J Rheumatol Suppl. 2014;91:32–40.
  • Kiazyk S, Ball T. Tuberculosis (TB): latent tuberculosis infection: an overview. Can Commun Dis Rep. 2017;43(3–4):62.
  • Özüdogru E, Cakli H, Altuntas E, Gürbüz M. Effects of laryngeal tuberculosis on vocal fold functions: case report. Acta otorhinolaryngologica italica. 2005;25(6):374.
  • Lee KM, Choe KH, Kim SJ. Clinical investigation of cavitary tuberculosis and tuberculous pneumonia. Korean J Intern Med. 2006;21(4):230.
  • Ray S, Talukdar A, Kundu S, Khanra D, Sonthalia N. Diagnosis and management of miliary tuberculosis: current state and future perspectives. Ther Clin Risk Manag. 2013;9:9.
  • Jeon D. Tuberculous pleurisy: an update. Tuberc Respir Dis. 2014;76(4):153–159.
  • Kelestimur F. The endocrinology of adrenal tuberculosis: the effects of tuberculosis on the hypothalamo-pituitary-adrenal axis and adrenocortical function. J Endocrinol Invest. 2004;27(4):380–386.
  • Benjelloun A, Darouassi Y, Zakaria Y, Bouchentouf R, Errami N. Lymph nodes tuberculosis: a retrospective study on clinical and therapeutic features. Pan Afr Med J. 2015;20:65.
  • Johnson JL, Ellner JJ. Tuberculosis and atypical mycobacterial infections. In: Tropical Infectious Diseases. Elsevier Inc; 2006:394–427.
  • Srivastava U, Almusa O, Tung KW, Heller MT. Tuberculous peritonitis. Radiol Case Report. 2014;9(3):971.
  • Daher EDF, da Silva Junior GB, Barros EJG. Renal tuberculosis in the modern era. Am J Trop Med Hyg. 2013;88(1):54.
  • Chin JH. Tuberculous meningitis: diagnostic and therapeutic challenges. Neurol Clin Pract. 2014;4(3):199–205.
  • Mayosi BM, Burgess LJ, Doubell AF. Tuberculous pericarditis. Circulation. 2005;112(23):3608–3616.
  • Silva DR, Muñoz-Torrico M, Duarte R, et al. Risk factors for tuberculosis: diabetes, smoking, alcohol use, and the use of other drugs. Jornal Brasileiro de Pneumologia. 2018;44:145–152.
  • Narasimhan P, Wood J, MacIntyre CR, Mathai D. Risk factors for tuberculosis. Pulm Med. 2013;2013. doi:10.1155/2013/828939
  • Hershkovitz I, Donoghue HD, Minnikin DE, et al. Tuberculosis origin: the Neolithic scenario. Tuberculosis. 2015;95:S122–S126.
  • Sakula A. Robert Koch: centenary of the discovery of the tubercle bacillus, 1882. Thorax. 1982;37(4):246–251.
  • Glaziou P, Floyd K, Raviglione MC. Global epidemiology of tuberculosis. Thieme Med Publish. 2018;34:271–285.
  • Baranyai Z, Soria-Carrera H, Alleva M, et al. Nanotechnology-Based targeted drug delivery: an emerging tool to overcome tuberculosis. Adv Ther. 2021;4(1):2000113.
  • Pardhi VP, Jain K. Impact of binary/ternary solid dispersion utilizing poloxamer 188 and TPGS to improve pharmaceutical attributes of bedaquiline fumarate. J Drug Deliv Sci Technol. 2021;62:102349.
  • Pai M, Kasaeva T, Swaminathan S. Covid-19’s devastating effect on tuberculosis care—a path to recovery. NEJM. 2022;386(16):1490–1493.
  • Chakaya J, Petersen E, Nantanda R, et al. The WHO global tuberculosis 2021 report–not so good news and turning the tide back to End TB. Int J Infect Dis. 2022;124:S26–S29.
  • World Health Organization. Global Tuberculosis Report 2020: Executive Summary. World Health Organization; 2020.
  • World Health Organization. Global Tuberculosis Report 2020. World Health Organization; 2021.
  • Singh R, Dwivedi SP, Gaharwar US, Meena R, Rajamani P, Prasad T. Recent updates on drug resistance in Mycobacterium tuberculosis. J Appl Microbiol. 2020;128(6):1547–1567.
  • MacNeil A, Glaziou P, Sismanidis C, Date A, Maloney S, Floyd K. Global epidemiology of tuberculosis and progress toward meeting global targets—worldwide, 2018. MMWR. 2020;69(11):281.
  • Regazzi M, Carvalho AC, Villani P, Matteelli A. Treatment optimization in patients co-infected with HIV and Mycobacterium tuberculosis infections: focus on drug–drug interactions with rifamycins. Clin Pharmacokinet. 2014;53(6):489–507.
  • World Health Organization. Global Tuberculosis Report 2013. World Health Organization; 2013.
  • Marais B, Zumla A. Advancing global tuberculosis control after the UNGA-HLM. Lancet. 2018;392(10153):1096–1097.
  • Glaziou P, Sismanidis C, Floyd K, Raviglione M. Global epidemiology of tuberculosis. Cold Spring Harb Perspect Med. 2015;5(2):a017798.
  • Sudha S. Tuberculosis diagnosis-an overview to the conventional diagnostic methodology and need for nanodiagnosis. Int J Med Eng Inform. 2016;8(1):27–40.
  • Drancourt M, Carrieri P, Gévaudan M-J, Raoult D. Blood agar and Mycobacterium tuberculosis: the end of a dogma. J Clin Microbiol. 2003;41(4):1710–1711.
  • Parker RA. Implications of tuberculosis sputum culture test sensitivity on accuracy of other diagnostic modalities. Am J Respir Crit Care Med. 2019;199(5):664–664.
  • Pestariati P, Rachmawati M. Solid Media (Lowenstein Jensen) and Liquid Media (Mycobacteria Growth Indicator Tube) Usage Against Mycobacterium tuberculosis Culture in Sputum Suspect Tuberculosis. Health Notions. 2021;5(6):220–224.
  • Abdelaziz MM, Bakr WM, Hussien SM, Amine AE. Diagnosis of pulmonary tuberculosis using Ziehl–Neelsen stain or cold staining techniques? J Egypt Public Health Assoc. 2016;91(1):39–43.
  • Lee JE, Kim H-J, Lee SW. The clinical utility of tuberculin skin test and interferon-γ release assay in the diagnosis of active tuberculosis among young adults: a prospective observational study. BMC Infect Dis. 2011;11(1):1–7.
  • Rose DN, Schechter CB, Adler JJ. Interpretation of the tuberculin skin test. J Gen Intern Med. 1995;10(11):635–642.
  • Trajman A, Steffen R, Menzies D. Interferon-gamma release assays versus tuberculin skin testing for the diagnosis of latent tuberculosis infection: an overview of the evidence. Pulm Med. 2013;2013. doi:10.1155/2013/601737
  • Walsh MC, Camerlin AJ, Miles R, et al. The sensitivity of interferon-gamma release assays is not compromised in tuberculosis patients with diabetes. Int J Tuberc Lung Dis. 2011;15(2):179–184.
  • Nalunjogi J, Mugabe F, Najjingo I, et al. Accuracy and incremental yield of the chest X-Ray in screening for tuberculosis in Uganda: a cross-sectional study. Tuberc Res Treat. 2021;2021. doi:10.1155/2021/6622809
  • Desikan P, Panwalkar N, Mirza SB, et al. Line probe assay for detection of Mycobacterium tuberculosis complex: an experience from Central India. Indian J Med Res. 2017;145(1):70.
  • Ninan MM, Gowri M, Christopher D, Rupali P, Michael JS. The diagnostic utility of line probe assays for multidrug-resistant tuberculosis. Pathog Glob Health. 2016;110(4–5):194–199.
  • Shaw JA, Irusen EM, Koegelenberg CF. Pleural effusion: tuberculous effusion; 2019.
  • Laraque F, Griggs A, Slopen M, Munsiff SS. Performance of nucleic acid amplification tests for diagnosis of tuberculosis in a large urban setting. Clin Infect Dis. 2009;49(1):46–54.
  • Phillips M, Cataneo RN, Condos R, et al. Volatile biomarkers of pulmonary tuberculosis in the breath. Tuberculosis. 2007;87(1):44–52.
  • Vishinkin R, Busool R, Mansour E, et al. Profiles of volatile biomarkers detect tuberculosis from skin. Adv Sci. 2021;8:2100235.
  • World Health Organization. Treatment of Drug-Susceptible Tuberculosis: Rapid Communication. World Health Organization; 2021.
  • Laurenzi M, Ginsberg A, Spigelman M. Challenges associated with current and future TB treatment. Infect Disord Drug Targets. 2007;7(2):105–119.
  • Howell M, Wang C, Mahmoud A, Hellermann G, Mohapatra S, Mohapatra S. Dual-function theranostic nanoparticles for drug delivery and medical imaging contrast: perspectives and challenges for use in lung diseases. Drug Deliv Transl Res. 2013;3(4):352–363.
  • Control CfD, Prevention. Treatment for TB disease. US department of Health and Human Services; 2016. Available from https://www.cdc.gov/tb/topic/treatment/tbdisease.htm. Accessed February 16, 2023.
  • Coelho MRT. Impact of mycobacterial recognition by toll like receptors in the regulation of IL-10 and T helper type of responses; 2012.
  • Grange JM, Zumla A. The global emergency of tuberculosis: what is the cause? J R Soc Promot Health. 2002;122(2):78–81.
  • Pym AS, Diacon AH, Tang S-J, et al. Bedaquiline in the treatment of multidrug-and extensively drug-resistant tuberculosis. Eur Respir J. 2016;47(2):564–574.
  • Gils T, Lynen L, de Jong BC, Van Deun A, Decroo T. Pretomanid for tuberculosis: a systematic review. Clin Microbiol Infect. 2021;28(1):31–42.
  • Olayanju O, Esmail A, Limberis J, Gina P, Dheda K. Linezolid interruption in patients with fluoroquinolone-resistant tuberculosis receiving a bedaquiline-based treatment regimen. Int J Infect Dis. 2019;85:74–79.
  • Shan X, Gong X, Li J, Wen J, Li Y, Zhang Z. Current approaches of nanomedicines in the market and various stage of clinical translation. Acta Pharmaceutica Sinica B. 2022;12:3028–3048.
  • Rodrigues AM, Gonçalves SS, de Carvalho JA, Borba-Santos LP, Rozental S, Camargo Z. Current progress on epidemiology, diagnosis, and treatment of sporotrichosis and their future trends. J Fungi. 2022;8(8):776.
  • Dye C. Making wider use of the world’s most widely used vaccine: Bacille Calmette–Guérin revaccination reconsidered. J R Soc Interface. 2013;10(87):20130365.
  • Matsuo K, Yasutomi Y. Mycobacterium bovis Bacille Calmette-Guerin as a vaccine vector for global infectious disease control. Tuberc Res Treat. 2011;2011. doi:10.1155/2011/574591
  • Dockrell HM, Smith SG. What have we learnt about BCG vaccination in the last 20 years? Front Immunol. 2017;8:1134.
  • Jiao X, Lo-Man R, Guermonprez P, et al. Dendritic cells are host cells for mycobacteria in vivo that trigger innate and acquired immunity. J Immunol. 2002;168(3):1294–1301.
  • Tsuji S, Matsumoto M, Takeuchi O, et al. Maturation of human dendritic cells by cell wall skeleton of Mycobacterium bovis bacillus Calmette-Guerin: involvement of toll-like receptors. Infect Immun. 2000;68(12):6883–6890.
  • Azuma I, Ribi EE, Meyer TJ, Zbar B. Biologically active components from mycobacterial cell walls. I. Isolation and composition of cell wall skeleton and component P3. J Natl Cancer Inst. 1974;52(1):95–101.
  • Kleinnijenhuis J, Oosting M, Joosten LA, Netea MG, Van Crevel R. Innate immune recognition of Mycobacterium tuberculosis. Clin Dev Immunol. 2011;2011. doi:10.1155/2011/405310
  • Jung S-B, Yang C-S, Lee J-S, et al. The mycobacterial 38-kilodalton glycolipoprotein antigen activates the mitogen-activated protein kinase pathway and release of proinflammatory cytokines through toll-like receptors 2 and 4 in human monocytes. Infect Immun. 2006;74(5):2686–2696.
  • Kim K, Sohn H, Kim JS, et al. Mycobacterium tuberculosis Rv0652 stimulates production of tumour necrosis factor and monocytes chemoattractant protein-1 in macrophages through the Toll-like receptor 4 pathway. Immunology. 2012;136(2):231–240.
  • Li J, Fu L, Wang G, Subbian S, Qin C, Zhao A. Unmethylated CpG motif-containing genomic DNA fragment of Bacillus Calmette-Guerin promotes macrophage functions through TLR9-mediated activation of NF-κ B and MAPKs signaling pathways. Innate Immun. 2020;26(3):183–203.
  • Tokunaga T, Yamamoto T, Yamamoto S. How BCG led to the discovery of immunostimulatory DNA. Jpn J Infect Dis. 1999;52(1):1–11.
  • Gagliardi MC, Teloni R, Giannoni F, et al. Mycobacterium bovis Bacillus Calmette-Guérin infects DC-SIGN–dendritic cell and causes the inhibition of IL-12 and the enhancement of IL-10 production. J Leukoc Biol. 2005;78(1):106–113.
  • Kaufmann SH. Tuberculosis Vaccines: Time to Think About the Next Generation. Elsevier; 2013:172–181.
  • Li J, Zhan L, Qin C. The double-sided effects of Mycobacterium Bovis bacillus Calmette–Guérin vaccine. NPJ Vaccines. 2021;6(1):1–11.
  • Bollampalli VP, Harumi Yamashiro L, Feng X, et al. BCG skin infection triggers IL-1R-MyD88-dependent migration of EpCAMlow CD11bhigh skin dendritic cells to draining lymph node during CD4+ T-cell priming. PLoS Pathog. 2015;11(10):e1005206.
  • Su H, Peng B, Zhang Z, Liu Z, Zhang Z. The Mycobacterium tuberculosis glycoprotein Rv1016c protein inhibits dendritic cell maturation, and impairs Th1/Th17 responses during mycobacteria infection. Mol Immunol. 2019;109:58–70.
  • Bertholet S, Ireton GC, Kahn M, et al. Identification of human T cell antigens for the development of vaccines against Mycobacterium tuberculosis. J Immunol. 2008;181(11):7948–7957.
  • Rossouw M, Nel HJ, Cooke GS, van Helden PD, Hoal EG. Association between tuberculosis and a polymorphic NFκB binding site in the interferon γ gene. Lancet. 2003;361(9372):1871–1872.
  • Hanekom WA. The immune response to BCG vaccination of newborns. Ann N Y Acad Sci. 2005;1062(1):69–78.
  • Soares AP, Kwong Chung CK, Choice T, et al. Longitudinal changes in CD4+ T-cell memory responses induced by BCG vaccination of newborns. J Infect Dis. 2013;207(7):1084–1094.
  • Dahanayake MH, Jayasundera AC. Nano-based drug delivery optimization for tuberculosis treatment: a review. J Microbiol Methods. 2021;181:106127.
  • Dahanayake MH, Jayasundera AC. Nano-based drug delivery optimization for tuberculosis treatment: a review. J Microbiol Methods. 2020;181:106127.
  • Pham -D-D, Fattal E, Tsapis N. Pulmonary drug delivery systems for tuberculosis treatment. Int J Pharm. 2015;478(2):517–529.
  • Ruman U, Fakurazi S, Masarudin MJ, Hussein MZ. Nanocarrier-based therapeutics and theranostics drug delivery systems for next generation of liver cancer nanodrug modalities. Int J Nanomedicine. 2020;15:1437.
  • Pulivendala G, Bale S, Godugu C. Inhalation of sustained release microparticles for the targeted treatment of respiratory diseases. Drug Deliv Transl Res. 2020;10(2):339–353.
  • Dhand C, Prabhakaran MP, Beuerman RW, Lakshminarayanan R, Dwivedi N, Ramakrishna S. Role of size of drug delivery carriers for pulmonary and intravenous administration with emphasis on cancer therapeutics and lung-targeted drug delivery. RSC Adv. 2014;4(62):32673–32689.
  • Bhardwaj A, Mehta S, Yadav S, et al. Pulmonary delivery of antitubercular drugs using spray-dried lipid–polymer hybrid nanoparticles. Artif Cells, Nanomed Biotechnol. 2016;44(6):1544–1555.
  • Ahmed R, Aucamp M, Ebrahim N, Samsodien H. Supramolecular assembly of rifampicin and PEGylated PAMAM dendrimer as a novel conjugate for tuberculosis. J Drug Deliv Sci Technol. 2021;66:102773.
  • Roy I, Vij N. Nanodelivery in airway diseases: challenges and therapeutic applications. Nanomedicine. 2010;6(2):237–244.
  • Marianecci C, Di Marzio L, Rinaldi F, Carafa M, Alhaique F. Pulmonary delivery: innovative approaches and perspectives. J Biomater Nanobiotechnol. 2011;2(05):567.
  • Zarogoulidis P, Chatzaki E, Porpodis K, et al. Inhaled chemotherapy in lung cancer: future concept of nanomedicine. Int J Nanomedicine. 2012;7:1551.
  • Sanders N, Rudolph C, Braeckmans K, De Smedt SC, Demeester J. Extracellular barriers in respiratory gene therapy. Adv Drug Deliv Rev. 2009;61(2):115–127.
  • Krombach F, Münzing S, Allmeling A-M, Gerlach JT, Behr J, Dörger M. Cell size of alveolar macrophages: an interspecies comparison. Environ Health Perspect. 1997;105(suppl 5):1261–1263.
  • Ruge CA, Schaefer UF, Herrmann J, et al. The interplay of lung surfactant proteins and lipids assimilates the macrophage clearance of nanoparticles. PLoS One. 2012;7(7):e40775.
  • Dobrovolskaia MA, Aggarwal P, Hall JB, McNeil SE. Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol Pharm. 2008;5(4):487–495.
  • Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul. 2001;41:189–207.
  • Soldati T, Schliwa M. Powering membrane traffic in endocytosis and recycling. Nat Rev Mol Cell Biol. 2006;7(12):897–908.
  • Torchilin VP. Recent approaches to intracellular delivery of drugs and DNA and organelle targeting. Annu Rev Biomed Eng. 2006;8:343–375.
  • Formoso P, Muzzalupo R, Tavano L, De Filpo G, Pasquale Nicoletta F. Nanotechnology for the environment and medicine. Mini Rev Med Chem. 2016;16(8):668–675.
  • Cabral H, Nishiyama N, Kataoka K. Supramolecular nanodevices: from design validation to theranostic nanomedicine. Acc Chem Res. 2011;44(10):999–1008.
  • Ahmed N, Fessi H, Elaissari A. Theranostic applications of nanoparticles in cancer. Drug Discov Today. 2012;17(17–18):928–934.
  • Funkhouser J. Reinventing pharma: the theranostic revolution. Curr Drug Discov. 2002;2:17–19.
  • Wyszogrodzka-Gaweł G, Dorożyński P, Giovagnoli S, et al. An inhalable theranostic system for local tuberculosis treatment containing an isoniazid loaded metal organic framework Fe-MIL-101-NH2—From Raw MOF to drug delivery system. Pharmaceutics. 2019;11(12):687.
  • Zhao J, Wu H, Zhao J, et al. 2D LDH-MoS 2 clay nanosheets: synthesis, catalase-mimic capacity, and imaging-guided tumor photo-therapy. J Nanobiotechnology. 2021;19(1):1–16.
  • Sargazi S, Hajinezhad MR, Rahdar A, et al. CoNi alloy nanoparticles for cancer theranostics: synthesis, physical characterization, in vitro and in vivo studies. Appl Physics A. 2021;127(10):1–12.
  • Guo Z, Xie W, Lu J, et al. Ferrous ions doped layered double hydroxide: smart 2D nanotheranostic platform with imaging-guided synergistic chemo/photothermal therapy for breast cancer. Biomaterials Sci. 2021;9(17):5928–5938.
  • Wu J, Williams GR, Zhu Y, et al. Ultrathin chalcogenide nanosheets for photoacoustic imaging-guided synergistic photothermal/gas therapy. Biomaterials. 2021;273:120807.
  • Choi G, Choy JH. Recent progress in layered double hydroxides as a cancer theranostic nanoplatform. Wiley Interdiscip Rev. 2021;13(2):e1679.
  • Alagarsamy KN, Mathan S, Yan W, et al. Carbon nanomaterials for cardiovascular theranostics: promises and challenges. Bioactive Material. 2021;6(8):2261–2280.
  • Lee S, Kim SY. Gold Nanorod/reduced graphene oxide composite nanocarriers for near-infrared-induced cancer therapy and photoacoustic imaging. ACS Applied Nano Material. 2021;4(11):11849–11860.
  • Fahmi MZ, Sholihah NF, Wibrianto A, Sakti SC, Firdaus F, Chang JY. Simple and fast design of folic acid-based carbon dots as theranostic agent and its drug release aspect. Mater Chem Phys. 2021;267:124596.
  • Shi J, Zhang H, Wang L, et al. PEI-derivatized fullerene drug delivery using folate as a homing device targeting to tumor. Biomaterials. 2013;34(1):251–261.
  • Tang C, Li H, Hong J, Chai X. Application of nanoparticles in the early diagnosis and treatment of tumors: current status and progress. Tradit Med Res. 2020;5(1):34–43.
  • Sumer B, Gao J. Theranostic nanomedicine for cancer; 2008.
  • Pandey N, Menon JU, Takahashi M, et al. Thermo-responsive fluorescent nanoparticles for multimodal imaging and treatment of cancers. Nanotheranostics. 2020;4(1):1.
  • Branca RT, Cleveland ZI, Fubara B, et al. Molecular MRI for sensitive and specific detection of lung metastases. Proc Natl Acad Sci. 2010;107(8):3693–3697.
  • Wang H, Zheng L, Peng C, Shen M, Shi X, Zhang G. Folic acid-modified dendrimer-entrapped gold nanoparticles as nanoprobes for targeted CT imaging of human lung adencarcinoma. Biomaterials. 2013;34(2):470–480.
  • Cho S, Hwang O, Lee I, et al. Chemiluminescent and antioxidant micelles as theranostic agents for hydrogen peroxide associated-inflammatory diseases. Adv Funct Mater. 2012;22(19):4038–4043.
  • Banyal S, Malik P, Tuli HS, Mukherjee TK. Advances in nanotechnology for diagnosis and treatment of tuberculosis. Curr Opin Pulm Med. 2013;19(3):289–297.
  • Lee C-N, Wang Y-M, Lai W-F, et al. Super-paramagnetic iron oxide nanoparticles for use in extrapulmonary tuberculosis diagnosis. Clin Microbiol Infect. 2012;18(6):E149–E157.
  • Chen Y, Chen H, Zhang S, et al. Structure-property relationships in manganese oxide-mesoporous silica nanoparticles used for T1-weighted MRI and simultaneous anti-cancer drug delivery. Biomaterials. 2012;33(7):2388–2398.
  • Zhou Y, Kong Y, Kundu S, Cirillo JD, Liang H. Antibacterial activities of gold and silver nanoparticles against Escherichia coli and bacillus Calmette-Guérin. J Nanobiotechnology. 2012;10(1):1–9.
  • Sani A, Cao C, Cui D. Toxicity of gold nanoparticles (AuNPs): a review. Biochem Biophys Rep. 2021;26:100991.
  • Huang H, Li J, Shi S, et al. Detection of interferon-gamma for latent tuberculosis diagnosis using an immunosensor based on CdS quantum dots coupled to magnetic beads as labels. Int J Electrochem Sci. 2015;10:2580–2593.
  • Qi L, Gao X. Emerging application of quantum dots for drug delivery and therapy. Expert Opin Drug Deliv. 2008;5(3):263–267.
  • Wu T, Tang M. Toxicity of quantum dots on respiratory system. Inhal Toxicol. 2014;26(2):128–139.
  • Mohanta D, Patnaik S, Sood S, Das N. Carbon nanotubes: evaluation of toxicity at biointerfaces. J Pharm Anal. 2019;9(5):293–300.
  • Indoria S, Singh V, Hsieh M-F. Recent advances in theranostic polymeric nanoparticles for cancer treatment: a review. Int J Pharm. 2020;582:119314.
  • Mansour HM, Rhee Y-S WX. Nanomedicine in pulmonary delivery. Int J Nanomedicine. 2009;4:299.
  • Kammona O, Kiparissides C. Recent advances in nanocarrier-based mucosal delivery of biomolecules. J Control Release. 2012;161(3):781–794.
  • Pandey R, Khuller G. Nanotechnology based drug delivery system (s) for the management of tuberculosis; 2006.
  • Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R. Biodegradable long-circulating polymeric nanospheres. Science. 1994;263(5153):1600–1603.
  • Zhang L, Pornpattananangkul D, Hu C-M, Huang C-M. Development of nanoparticles for antimicrobial drug delivery. Curr Med Chem. 2010;17(6):585–594.
  • Pramanik S, Mohanto S, Manne R, et al. Nanoparticle-based drug delivery system: the magic bullet for the treatment of chronic pulmonary diseases. Mol Pharm. 2021;18(10):3671–3718.
  • Rai M, Dos Santos CA. Nanotechnology Applied to Pharmaceutical Technology. Springer; 2017.
  • Kobayashi S, Müllen K. Encyclopedia of Polymeric Nanomaterials. Springer Berlin Heidelberg; 2015.
  • Bekraki AI. Liposomes-and niosomes-based drug delivery systems for tuberculosis treatment. In: Nanotechnology Based Approaches for Tuberculosis Treatment. Elsevier; 2020:107–122.
  • Yusefi M, Chan H-Y, Teow S-Y, et al. 5-fluorouracil encapsulated chitosan-cellulose fiber bionanocomposites: synthesis, characterization and in vitro analysis towards colorectal cancer cells. Nanomaterials. 2021;11(7):1691.
  • Ahmad A, Ahmad I, Khan A, Abdullah M, Chee CY, Verpoort F. Introduction to nanomedicine an overview. Nanomed Manufactu Appli. 2021;1–20. doi:10.1016/B978-0-12-820773-4.00001-9
  • Debnath SK, Srivastava R. Drug delivery with carbon-based nanomaterials as versatile nanocarriers: progress and prospects. Front Nanotechnol. 2021;3:15.
  • Souto EB. Patenting Nanomedicines: Legal Aspects, Intellectual Property and Grant Opportunities. Springer Science & Business Media; 2012.
  • Vijayaraj Kumar P, Agashe H, Dutta T, Jain NK. PEGylated dendritic architecture for development of a prolonged drug delivery system for an antitubercular drug. Curr Drug Deliv. 2007;4(1):11–19.
  • Frijlink H, De Boer A. Dry powder inhalers for pulmonary drug delivery. Expert Opin Drug Deliv. 2004;1(1):67–86.
  • Machelart A, Salzano G, Li X, et al. Intrinsic antibacterial activity of nanoparticles made of β-cyclodextrins potentiates their effect as drug nanocarriers against tuberculosis. ACS Nano. 2019;13(4):3992–4007.
  • Rahimpour Y, Hamishehkar H, Nokhodchi A. Lipidic Micro-and Nano-Carriers for pulmonary drug delivery–a state-of-the-art review. Pulm Drug Deliv. 2015;123–142. doi:10.1002/9781118799536.ch6
  • Jafari A, Mosavari N, Movahedzadeh F, et al. Bactericidal impact of Ag, ZnO and mixed AgZnO colloidal nanoparticles on H37Rv Mycobacterium tuberculosis phagocytized by THP-1 cell lines. Microb Pathog. 2017;110:335–344.
  • Ivask A, ElBadawy A, Kaweeteerawat C, et al. Toxicity mechanisms in Escherichia coli vary for silver nanoparticles and differ from ionic silver. ACS Nano. 2014;8(1):374–386.
  • Jafari A, Kharazi S, Mosavari N, et al. Synthesis of mixed metal oxides nano-colloidal particles and investigation of the cytotoxicity effects on the human pulmonary cell lines: a prospective approach in anti-tuberculosis inhaled nanoparticles. Orient J Chem. 2017;33(3):1529.
  • Martínez-Carmona M, Gun’Ko Y, Vallet-Regí M. ZnO nanostructures for drug delivery and theranostic applications. Nanomaterials. 2018;8(4):268.
  • Saifullah B, Chrzastek A, Maitra A, et al. Novel anti-tuberculosis nanodelivery formulation of ethambutol with graphene oxide. Molecules. 2017;22(10):1560.
  • Rawal T, Patel S, Butani S. Chitosan nanoparticles as a promising approach for pulmonary delivery of bedaquiline. Eur J Pharm Sci. 2018;124:273–287.
  • Prabhu P, Fernandes T, Chaubey P, et al. Mannose-conjugated chitosan nanoparticles for delivery of rifampicin to osteoarticular tuberculosis. Drug Deliv Transl Res. 2021;11(4):1509–1519.
  • Öztürk AA, Yenilmez E, Özarda MG. Clarithromycin-loaded poly (lactic-co-glycolic acid)(PLGA) nanoparticles for oral administration: effect of polymer molecular weight and surface modification with chitosan on formulation, nanoparticle characterization and antibacterial effects. Polymers. 2019;11(10):1632.
  • Nemati E, Mokhtarzadeh A, Panahi-Azar V, et al. Ethambutol-loaded solid lipid nanoparticles as dry powder inhalable formulation for tuberculosis therapy. AAPS PharmSciTech. 2019;20(3):1–9.
  • Ali HR, Ali MR, Wu Y, et al. Gold nanorods as drug delivery vehicles for rifampicin greatly improve the efficacy of combating Mycobacterium tuberculosis with good biocompatibility with the host cells. Bioconjug Chem. 2016;27(10):2486–2492.
  • Varma JR, Kumar TS, Prasanthi B, Ratna JV. Formulation and characterization of pyrazinamide polymeric nanoparticles for pulmonary tuberculosis: efficiency for alveolar macrophage targeting. Indian J Pharm Sci. 2015;77(3):258.
  • Zaru M, Mourtas S, Klepetsanis P, Fadda AM, Antimisiaris SG. Liposomes for drug delivery to the lungs by nebulization. Eur J Pharm Biopharm. 2007;67(3):655–666.
  • Vishwa B, Moin A, Gowda D, et al. Pulmonary Targeting of inhalable moxifloxacin microspheres for effective management of tuberculosis. Pharmaceutics. 2021;13(1):79.
  • Xia X, Pethe K, Kim R, et al. Encapsulation of anti-tuberculosis drugs within mesoporous silica and intracellular antibacterial activities. Nanomaterials. 2014;4(3):813–826.
  • Zomorodbakhsh S, Abbasian Y, Naghinejad M, Sheikhpour M. The effects study of isoniazid conjugated multi-wall carbon nanotubes nanofluid on Mycobacterium tuberculosis. Int J Nanomedicine. 2020;15:5901.
  • El-Ridy MS, Yehia SA, Kassem MA, Mostafa DM, Nasr EA, Asfour MH. Niosomal encapsulation of ethambutol hydrochloride for increasing its efficacy and safety. Drug Deliv. 2015;22(1):21–36.
  • Ahmed RM. Development of Rifampicin Loaded in Surface-Modified 4.0 G PAMAM Dendrimer as a Novel Antituberculosis Pulmonary Drug Delivery System. Elsevier; 2020.
  • Garcia-Contreras L, Sung JC, Muttil P, et al. Dry powder PA-824 aerosols for treatment of tuberculosis in guinea pigs. Antimicrob Agents Chemother. 2010;54(4):1436–1442.
  • Basha RY, Doble M. Dual delivery of tuberculosis drugs via cyclodextrin conjugated curdlan nanoparticles to infected macrophages. Carbohydr Polym. 2019;218:53–62.
  • Henostroza MAB, Melo KJC, Yukuyama MN, Löbenberg R, Bou-Chacra NA. Cationic rifampicin nanoemulsion for the treatment of ocular tuberculosis. Colloids Surfaces A. 2020;597:124755.
  • Peters K, Leitzke S, Diederichs J, et al. Preparation of a clofazimine nanosuspension for intravenous use and evaluation of its therapeutic efficacy in murine Mycobacterium avium infection. J Antimicrob Chemother. 2000;45(1):77–83.
  • Goyal S, Klassert TE, Slevogt H. C-type lectin receptors in tuberculosis: what we know. Med Microbiol Immunol. 2016;205(6):513–535.
  • Ragas A, Roussel L, Puzo G, Riviere M. The Mycobacterium tuberculosis cell-surface glycoprotein apa as a potential adhesin to colonize target cells via the innate immune system pulmonary C-type lectin surfactant protein A. J Biol Chem. 2007;282(8):5133–5142.
  • Minnikin DE. Complex lipids, their chemistry biosynthesis and roles. Bio Mycobacteria. 1982;1:95–184.
  • Lemmer Y, Kalombo L, Pietersen R-D, et al. Mycolic acids, a promising mycobacterial ligand for targeting of nanoencapsulated drugs in tuberculosis. J Control Release. 2015;211:94–104.
  • Vieira AC, Chaves LL, Pinheiro M, et al. Mannosylated solid lipid nanoparticles for the selective delivery of rifampicin to macrophages. Artif Cells, Nanomed Biotechnol. 2018;46(sup1):653–663.
  • Mukhtar M, Csaba N, Robla S, et al. Dry powder comprised of isoniazid-loaded nanoparticles of hyaluronic acid in conjugation with mannose-anchored chitosan for macrophage-targeted pulmonary administration in tuberculosis. Pharmaceutics. 2022;14(8):1543.
  • Bhardwaj A, Kumar L, Narang R, Murthy R. Development and characterization of ligand-appended liposomes for multiple drug therapy for pulmonary tuberculosis. Artif Cells Nanomed Biotechnol. 2013;41(1):52–59.
  • Goyal AK, Garg T, Rath G, Gupta UD, Gupta P. Development and characterization of nanoembedded microparticles for pulmonary delivery of antitubercular drugs against experimental tuberculosis. Mol Pharm. 2015;12(11):3839–3850.
  • Grenha A, Alves AD, Guerreiro F, et al. Inhalable locust bean gum microparticles co-associating isoniazid and rifabutin: therapeutic assessment in a murine model of tuberculosis infection. Eur J Pharm Biopharm. 2020;147:38–44.