434
Views
2
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

The Gradual Release of Alendronate for the Treatment of Critical Bone Defects in Osteoporotic and Control Rats

ORCID Icon, , , , , ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, & show all
Pages 541-560 | Received 19 Aug 2022, Accepted 23 Dec 2022, Published online: 01 Feb 2023

References

  • Kanis JA, Norton N, Harvey NC., et al. SCOPE 2021: a new scorecard for osteoporosis in Europe. Arch Osteoporos. 2021;16:82. doi:10.1007/s11657-020-00871-9
  • Torstrick FB, Guldberg RE. Local strategies to prevent and treat osteoporosis. Curr Osteoporos Rep. 2014;12:33–40. doi:10.1007/s11914-014-0191-6
  • Lufkin EG, Wahner HW, O’Fallon WM, et al. Treatment of postmenopausal osteoporosis with transdermal estrogen. Ann Intern Med. 1992;117:1–9. doi:10.7326/0003-4819-117-1-1
  • Ellerington MC, Hillard TC, Whitcroft SI, et al. Intranasal salmon calcitonin for the prevention and treatment of postmenopausal osteoporosis. Calcif Tissue Int. 1996;59:6–11. doi:10.1007/s002239900076
  • Henriksen K, Byrjalsen I, Andersen JR, et al. A randomized, double-blind, multicenter, placebo-controlled study to evaluate the efficacy and safety of oral salmon calcitonin in the treatment of osteoporosis in postmenopausal women taking calcium and vitamin D. Bone. 2016;91:122–129. doi:10.1016/j.bone.2016.07.019
  • Bone HG, Bolognese MA, Yuen CK, et al. Effects of denosumab on bone mineral density and bone turnover in postmenopausal women. J Clin Endocrinol Metab. 2008;93:2149–2157. doi:10.1210/jc.2007-2814
  • Langdahl BL, Libanati C, Crittenden DB, et al. Romosozumab (sclerostin monoclonal antibody) versus teriparatide in postmenopausal women with osteoporosis transitioning from oral bisphosphonate therapy: a randomised, open-label, Phase 3 trial. Lancet. 2017;390:1585–1594.
  • Glover SJ, Eastell R, McCloskey EV, et al. Rapid and robust response of biochemical markers of bone formation to teriparatide therapy. Bone. 2009;45:1053–1058. doi:10.1016/j.bone.2009.07.091
  • Turbí C, Herrero-Beaumont G, Acebes JC, et al. Compliance and satisfaction with raloxifene versus alendronate for the treatment of postmenopausal osteoporosis in clinical practice: an open-label, prospective, nonrandomized, observational study. Clin Ther. 2004;26:245–256. doi:10.1016/S0149-2918(04)90023-9
  • Wysowski DK, Greene P. Trends in osteoporosis treatment with oral and intravenous bisphosphonates in the United States, 2002-2012. Bone. 2013;57:423–428. doi:10.1016/j.bone.2013.09.008
  • Roelofs AJ, Thompson K, Gordon S, et al. Molecular mechanisms of action of bisphosphonates: current status. Clin Cancer Res. 2006;12(20):6222s–30s. doi:10.1158/1078-0432.CCR-06-0843
  • Ruggiero SL, Dodson TB, Assael LA, et al. American Association of Oral and Maxillofacial Surgeons position paper on bisphosphonate-related osteonecrosis of the jaws--2009 update. J Oral Maxillofac Surg. 2009;67:2–12. doi:10.1016/j.joms.2009.01.009
  • Lui PP, Lee YW, Mok TY, et al. Local administration of alendronate reduced peri-tunnel bone loss and promoted graft-bone tunnel healing with minimal systemic effect on bone in contralateral knee. J Orthop Res. 2013;31:1897–1906. doi:10.1002/jor.22442
  • Özer T, Aktas A, Barıs E, et al. Effects of local alendronate administration on bone defect healing. Histomorphometric and radiological evaluation in a rabbit model. Acta Cir Bras. 2017;32:781–795. doi:10.1590/s0102-865020170090000010
  • van Houdt CIA, Gabbai-Armelin PR, Lopez-Perez PM, et al. Alendronate release from calcium phosphate cement for bone regeneration in osteoporotic conditions. Sci Rep. 2018;8:15398. doi:10.1038/s41598-018-33692-5
  • Wang X, Zeng D, Weng W, et al. Alendronate delivery on amino modified mesoporous bioactive glass scaffolds to enhance bone regeneration in osteoporosis rats. Artif Cells Nanomed Biotechnol. 2018;46:171–181. doi:10.1080/21691401.2018.1453825
  • Zeng Y, Zhou M, Chen L, et al. Alendronate loaded graphene oxide functionalized collagen sponge for the dual effects of osteogenesis and anti-osteoclastogenesis in osteoporotic rats. Bioactive Mater. 2020;5:859–870. doi:10.1016/j.bioactmat.2020.06.010
  • Bobyn JD, Thompson R, Lim L, et al. Local alendronic acid elution increases net periimplant bone formation: a micro-CT analysis. Clin Orthop Relat Res. 2014;472(2):687–694. doi:10.1007/s11999-013-3120-6
  • Toker H, Ozdemir H, Ozer H, et al. Alendronate enhances osseous healing in a rat calvarial defect model. Arch Oral Biol. 2012;57(11):1545–1550. doi:10.1016/j.archoralbio.2012.06.013
  • Yun YP, Kim SJ, Lim YM, et al. The effect of alendronate-loaded polycarprolactone nanofibrous scaffolds on osteogenic differentiation of adipose-derived stem cells in bone tissue regeneration. J Biomed Nanotechnol. 2014;10:1080–1090. doi:10.1166/jbn.2014.1819
  • Jiřík M, Bartoš M, Tomášek P, et al. Generating standardized image data for testing and calibrating quantification of volumes, surfaces, lengths, and object counts in fibrous and porous materials using X-ray microtomography. Microsc Res Tech. 2018;81:551–568. doi:10.1002/jemt.23011
  • Yoshimoto H, Shin YM, Terai H, et al. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials. 2003;24:2077–2082. doi:10.1016/S0142-9612(02)00635-X
  • Regis S, Youssefian S, Jassal M, et al. Fibronectin adsorption on functionalized electrospun polycaprolactone scaffolds: experimental and molecular dynamics studies. J Biomed Mater Res A. 2014;102(6):1697–1706. doi:10.1002/jbm.a.34843
  • Lukasova V, Buzgo M, Vocetkova K, et al. Osteoinductive 3D scaffolds prepared by blend centrifugal spinning for long-term delivery of osteogenic supplements. RSC Adv. 2018;8:21889–21904. doi:10.1039/C8RA02735H
  • Radisavljevic A, Stojanovic DB, Perisic S, et al. Cefazolin-loaded polycaprolactone fibers produced via different electrospinning methods: characterization, drug release and antibacterial effect. Eur J Pharmaceutical Sci. 2018;124:26–36. doi:10.1016/j.ejps.2018.08.023
  • Žižková R, Hedvičáková V, Blahnová VH, et al. The Effect of Osteoblast Isolation Methods from Adult Rats on Osteoclastogenesis in Co-Cultures. Int J Mol Sci. 2022;23(14):7875. doi:10.3390/ijms23147875
  • Mir M, Leite FL, Herrmann Junior PSDP. XRD, AFM, IR and TGA study of nanostructured hydroxyapatite. Materials Res. 2012;15(4):6. doi:10.1590/S1516-14392012005000069
  • Canbolat MF, Celebioglu A, Uyar T. Drug delivery system based on cyclodextrin-naproxen inclusion complex incorporated in electrospun polycaprolactone nanofibers. Colloids Surf B Biointerfaces. 2014;115:15–21. doi:10.1016/j.colsurfb.2013.11.021
  • Senra MR, Lima R, Souza D, et al. Thermal characterization of hydroxyapatite or carbonated hydroxyapatite hybrid composites with distinguished collagens for bone graft. J Mater Res Technol. 2020;9(4):7190–7200. doi:10.1016/j.jmrt.2020.04.089
  • Cicco SR, Vona D, Leone G, et al. In vivo functionalization of diatom biosilica with sodium alendronate as osteoactive material. Mater Sci Eng. 2019;104:109897. doi:10.1016/j.msec.2019.109897
  • Novik H, Clerici M, Fahmi A, et al. High-Throughput Electrospinning of Bioactive Scaffolds for Bone Regeneration. Proceedings. 2021;78:24.
  • Boanini E, Torricelli P, Gazzano M, et al. Alendronate–hydroxyapatite nanocomposites and their interaction with osteoclasts and osteoblast-like cells. Biomaterials. 2008;29(7):790–796. doi:10.1016/j.biomaterials.2007.10.040
  • Heinemann C, Heinemann S, Worch H, et al. Development of an osteoblast/osteoclast co-culture derived by human bone marrow stromal cells and human monocytes for biomaterials testing. Eur Cell Mater. 2011;21:80–93. doi:10.22203/eCM.v021a07
  • Dolci LS, Panzavolta S, Torricelli P, et al. Modulation of Alendronate release from a calcium phosphate bone cement: an in vitro osteoblast-osteoclast co-culture study. Int J Pharm. 2019;554:245–255. doi:10.1016/j.ijpharm.2018.11.023
  • Meng G, Wu X, Yao R, et al. Effect of zinc substitution in hydroxyapatite coating on osteoblast and osteoclast differentiation under osteoblast/osteoclast co-culture. Regen Biomater. 2019;6:349–359. doi:10.1093/rb/rbz001
  • Borciani G, Montalbano G, Baldini N, et al. Co–culture systems of osteoblasts and osteoclasts: simulating in vitro bone remodeling in regenerative approaches. Acta Biomaterialia. 2020;108:22–45. doi:10.1016/j.actbio.2020.03.043
  • Asagiri M, Takayanagi H. The molecular understanding of osteoclast differentiation. Bone. 2007;40:251–264. doi:10.1016/j.bone.2006.09.023
  • Owen R, Reilly GC. In vitro models of bone remodelling and associated disorders. Front Bioeng Biotechnol. 2018;6:134. doi:10.3389/fbioe.2018.00134
  • Hedvičáková V, Žižková R, Buzgo M, et al. The effect of alendronate on osteoclastogenesis in different combinations of M-CSF and RANKL growth factors. Biomolecules. 2021;12(1):11. doi:10.3390/biom12010011
  • Park KW, Yun YP, Kim SE, et al. The effect of alendronate loaded biphasic calcium phosphate scaffolds on bone regeneration in a rat tibial defect model. Int J Mol Sci. 2015;16:26738–26753. doi:10.3390/ijms161125982
  • Zeng Y, Zhou M, Mou S, et al. Sustained delivery of alendronate by engineered collagen scaffold for the repair of osteoporotic bone defects and resistance to bone loss. J Biomed Mater Res A. 2020;108:2460–2472. doi:10.1002/jbm.a.36997
  • Shen X, Ma P, Hu Y, et al. Alendronate-loaded hydroxyapatite-TiO2 nanotubes for improved bone formation in osteoporotic rabbits. J Mater Chem B. 2016;4:1423–1436. doi:10.1039/C5TB01956G
  • Iwamoto J, Seki A, Matsuura M, et al. Influence of ovariectomy on bone turnover and trabecular bone mass in mature cynomolgus monkeys. Yonsei Med J. 2009;50:358–367. doi:10.3349/ymj.2009.50.3.358
  • Kennedy OD, Brennan O, Rackard SM, et al. Effects of ovariectomy on bone turnover, porosity, and biomechanical properties in ovine compact bone 12 months postsurgery. J Orthop Res. 2009;27:303–309. doi:10.1002/jor.20750
  • Zhang Y, Lai WP, Leung PC, et al. Short- to mid-term effects of ovariectomy on bone turnover, bone mass and bone strength in rats. Biol Pharm Bull. 2007;30:898–903. doi:10.1248/bpb.30.898
  • Väänänen HK, Härkönen PL. Estrogen and bone metabolism. Maturitas. 1996;23(Suppl):S65–9. doi:10.1016/0378-5122(96)01015-8
  • Khosla S, Oursler MJ, Monroe DG. Estrogen and the skeleton. Trends Endocrinol Metab. 2012;23:576–581. doi:10.1016/j.tem.2012.03.008
  • Perinpanayagam H, Zaharias R, Stanford C, et al. Early cell adhesion events differ between osteoporotic and non-osteoporotic osteoblasts. J Orthop Res. 2001;19(6):993–1000. doi:10.1016/S0736-0266(01)00045-6
  • Cheung WH, Miclau T, Chow SK-H, et al. Fracture healing in osteoporotic bone. Injury. 2016;47(Suppl 2):S21–6. doi:10.1016/S0020-1383(16)47004-X
  • Thormann U, El Khawassna T, Ray S, et al. Differences of bone healing in metaphyseal defect fractures between osteoporotic and physiological bone in rats. Injury. 2014;45:487–493. doi:10.1016/j.injury.2013.10.033
  • Sajkiewicz P, Heljak MK, Gradys A, et al. Degradation and related changes in supermolecular structure of poly(caprolactone) in vivo conditions. Polym Degrad Stab. 2018;157:70–79. doi:10.1016/j.polymdegradstab.2018.09.023
  • Seyednejad H, Gawlitta D, Kuiper RV, et al. In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(ε-caprolactone). Biomaterials. 2012;33:4309–4318. doi:10.1016/j.biomaterials.2012.03.002
  • Bölgen N, Menceloğlu YZ, Acatay K, et al. In vitro and in vivo degradation of non-woven materials made of poly(epsilon-caprolactone) nanofibers prepared by electrospinning under different conditions. J Biomater Sci Polym Ed. 2005;16:1537–1555. doi:10.1163/156856205774576655
  • Sung HJ, Meredith C, Johnson C, et al. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis. Biomaterials. 2004;25:5735–5742. doi:10.1016/j.biomaterials.2004.01.066
  • Garbuz DS, Hu Y, Kim WY, et al. Enhanced gap filling and osteoconduction associated with alendronate-calcium phosphate-coated porous tantalum. J Bone Joint Surg Am. 2008;90:1090–1100. doi:10.2106/JBJS.G.00415
  • Niu S, Cao X, Zhang Y, et al. Peri-implant and systemic effects of high-/low-affinity bisphosphonate-hydroxyapatite composite coatings in a rabbit model with peri-implant high bone turnover. BMC Musculoskelet Disord. 2012;13(1):97. doi:10.1186/1471-2474-13-97
  • Nakao S, Minamide A, Kawakami M, et al. The influence of alendronate on spine fusion in an osteoporotic animal model. Spine. 2011;36(18):1446–1452. doi:10.1097/BRS.0b013e3181f49c47
  • Oliveira D, Hassumi JS, Gomes-Ferreira PH, et al. Short term sodium alendronate administration improves the peri-implant bone quality in osteoporotic animals. J Appl Oral Sci. 2017;25:42–52. doi:10.1590/1678-77572016-0165
  • Im S, Lim SH, Lee JI, et al. Effective dosage and administration schedule of oral alendronate for non-nociceptive symptoms in rats with chronic constriction injury. J Korean Med Sci. 2010;25:938–944. doi:10.3346/jkms.2010.25.6.938
  • Weiss SG, Kuchar GO, Gerber JT, et al. Dose of alendronate directly increases trabeculae expansivity without altering bone volume in rat femurs. World J Orthop. 2018;9:190–197. doi:10.5312/wjo.v9.i10.190