543
Views
4
CrossRef citations to date
0
Altmetric
REVIEW

How Advanced are Cancer Immuno-Nanotherapeutics? A Comprehensive Review of the Literature

, , , , ORCID Icon & ORCID Icon
Pages 35-48 | Received 01 Sep 2022, Accepted 14 Dec 2022, Published online: 05 Jan 2023

References

  • Fitzmaurice C, Abate D, Abbasi N.; Collaboration GBoDC. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2017: a systematic analysis for the global burden of disease study. JAMA Oncol. 2019;5(12):1749–1768. doi:10.1001/jamaoncol.2019.2996
  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7–30.
  • Sawyers C. Targeted cancer therapy. Nature. 2004;432(7015):294–297.
  • Lakshmanan V-K, Jindal S, Packirisamy G, et al. Nanomedicine-based cancer immunotherapy: recent trends and future perspectives. Cancer Gene Ther. 2021;28(9):911–923.
  • Wang S, Sun Z, Hou Y. Engineering nanoparticles toward the modulation of emerging cancer immunotherapy. Adv Healthc Mater. 2021;10(5):2000845.
  • Yadav D, Kwak M, Chauhan PS, Puranik N, Lee PCW, Jin J-O. Cancer Immunotherapy by Immune Checkpoint Blockade and Its Advanced Application Using Bio-Nanomaterials. Semin Cancer Biol. 2022; 86(Pt 2):909–922. doi:10.1016/j.semcancer.2022.02.01
  • Janssen LM, Ramsay EE, Logsdon CD, Overwijk WW. The immune system in cancer metastasis: friend or foe? J Immunother Cancer. 2017;5(1):1–14.
  • Singh K, Yadav D, Jain M, Singh PK, Jin J-O. Immunotherapy for the breast cancer treatment: current evidence and therapeutic options. Endocr Metab Immune Disord Drug Targets. 2021;22(2):212–224.
  • Yang Z, Ma Y, Zhao H, Yuan Y, Kim BY. Nanotechnology platforms for cancer immunotherapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020;12(2):e1590.
  • Jo SD, Nam G-H, Kwak G, Yang Y, Kwon IC. Harnessing designed nanoparticles: current strategies and future perspectives in cancer immunotherapy. Nano Today. 2017;17:23–37. doi:10.1016/j.nantod.2017.10.008
  • Russell LM, Liu CH, Grodzinski P. Nanomaterials innovation as an enabler for effective cancer interventions. Biomaterials. 2020;242:119926.
  • Hejmady S, Pradhan R, Alexander A, et al. Recent advances in targeted nanomedicine as promising antitumor therapeutics. Drug Discov Today. 2020;25(12):2227–2244.
  • Jia R, Teng L, Gao L, et al. Advances in multiple stimuli-responsive drug-delivery systems for cancer therapy. Int J Nanomedicine. 2021;16:1525.
  • Zhang C, Pu K. Molecular and nanoengineering approaches towards activatable cancer immunotherapy. Chem Soc Rev. 2020;49(13):4234–4253.
  • Zhang C, Pu K. Recent progress on activatable nanomedicines for immunometabolic combinational cancer therapy. Small Struct. 2020;1(2):2000026.
  • De Bousser E, Callewaert N, Festjens N, Cell Engaging T. Immunotherapies, highlighting Chimeric Antigen Receptor (CAR) T cell therapy. Cancers. 2021;13(23):6067.
  • Su L, Chen G, Liu Z, Min Y, Wang AZ. Delivery strategies to overcome tumor immunotherapy resistance. In: Systemic Drug Delivery Strategies. Academic Press; 2022:529–547.
  • Chuang ST, Conklin B, Stein JB, Pan G, Lee KB. Nanotechnology-enabled immunoengineering approaches to advance therapeutic applications. Nano Converg. 2022;9(1):1–31.
  • Johnson DB, Nebhan CA, Moslehi JJ, Balko JM. Immune-checkpoint inhibitors: long-term implications of toxicity. Nat Rev Clin Oncol. 2022;19(4):254–267.
  • Buss CG, Bhatia SN. Nanoparticle delivery of immunostimulatory oligonucleotides enhances response to checkpoint inhibitor therapeutics. Proc Natl Acad Sci U S A. 2020;117(24):13428–13436.
  • Mortezaee K, Majidpoor J. NK and cells with NK-like activities in cancer immunotherapy-clinical perspectives. Medical Oncol. 2022;39(9):1–17.
  • Downs-Canner SM, Meier J, Vincent BG, Serody JS, Cell B. Function in the tumor microenvironment. Annu Rev Immunol. 2022;40:169–193.
  • Huppert LA, Green MD, Kim L, et al. Tissue-specific tregs in cancer metastasis: opportunities for precision immunotherapy. Cell Mol Immunol. 2022;19(1):33–45.
  • Biswas S, editor. Tumor Microenvironment and Myelomonocytic Cells. Rijeka: InTech; 2012:1.
  • Shields CW, Evans MA, Wang LL-W, et al. Cellular backpacks for macrophage immunotherapy. Sci Adv. 2020;6(18):eaaz6579.
  • Di Somma S, Napolitano F, Portella G, Malfitano AM. Cross talk of macrophages with tumor microenvironment cells and modulation of macrophages in cancer by virotherapy. Biomedicines. 2021;9(10):1309.
  • Xu Z, Chen Y, Ma L, et al. Role of exosomal non-coding RNAs from tumor cells and tumor-associated macrophages in the tumor microenvironment. Mol Ther. 2022;30:3133–3154.
  • Groth C, Hu X, Weber R, et al. Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression. Br J Cancer. 2019;120(1):16–25.
  • Srivastava MK, Zhu L, Harris-White M, et al. Targeting myeloid-derived suppressor cells augments antitumor activity against lung cancer. Immuno Targets Ther. 2012;1:7.
  • Song W, Das M, Chen X. Nanotherapeutics for immuno-oncology: a crossroad for new paradigms. Trends Cancer. 2020;6(4):288–298.
  • Filli MS, Ibrahim AA, Aquib M, et al. The impact of physicochemical characteristics on therapeutic efficacy of anticancer nanomaterials: a review. Int J Pharm Sci Drug Res. 2019;11:61–70.
  • Chauhan PS, Yadav D, Koul B, Mohanta YK, Jin J-O. Recent advances in nanotechnology: a novel therapeutic system for the treatment of Alzheimer’s disease. Curr Drug Metab. 2020;21(14):1144–1151.
  • Chauhan PS, Yadav D, Tayal S, Jin J-O. Therapeutic advancements in the management of diabetes mellitus with special reference to nanotechnology. Curr Pharm Des. 2020;26(38):4909–4916.
  • Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology. 2018;16(1):1–33.
  • Chenthamara D, Subramaniam S, Ramakrishnan SG, et al. Therapeutic efficacy of nanoparticles and routes of administration. Biomater Res. 2019;23(1):20.
  • Wang J, Li Y, Nie G. Multifunctional biomolecule nanostructures for cancer therapy. Nature Rev Mater. 2021;6(9):766–783.
  • Gao W, Hu C-MJ, Fang RH, Zhang L. Liposome-like nanostructures for drug delivery. J Mater Chem B Mater Biol Med. 2013;1(48):6569–6585.
  • Guimarães D, Cavaco-Paulo A, Nogueira E. Design of liposomes as drug delivery system for therapeutic applications. Int J Pharm. 2021;601:120571.
  • Guimarães D, Lager F, Renault G, et al. Folate-Targeted Liposomal Formulations Improve Effects of Methotrexate in Murine Collagen-Induced Arthritis. Biomedicines. 2022;10(2):229.
  • Gagliardi A, Giuliano E, Venkateswararao E, et al. Biodegradable polymeric nanoparticles for drug delivery to solid tumors. Front Pharmacol. 2021;12:601626.
  • El-Say KM, El-Sawy HS. Polymeric nanoparticles: promising platform for drug delivery. Int J Pharm. 2017;528(1–2):675–691.
  • Choudhary S, Gupta L, Rani S, Dave K, Gupta U. Impact of dendrimers on solubility of hydrophobic drug molecules. Front Pharmacol. 2017;8:261.
  • Caminade AM, Turrin CO. Dendrimers for drug delivery. J Mater Chem B. 2014;2(26):4055–4066.
  • Alli S, Kumar Vemula S, Reddy Veerareddy P. Role of microspheres in drug delivery-an overview. Drug Deliv Lett. 2013;3(3):191–199.
  • Singh C, Purohit S, Singh M, Pandey B. Design and evaluation of microspheres: a Review. Jddr. 2013;2(2):18–27.
  • Farooq MU, Novosad V, Rozhkova EA, et al. Gold nanoparticles-enabled efficient dual delivery of anticancer therapeutics to HeLa cells. Sci Rep. 2018;8(1):1–12.
  • Yafout M, Ousaid A, Khayati Y, El Otmani IS. Gold nanoparticles as a drug delivery system for standard chemotherapeutics: a new lead for targeted pharmacological cancer treatments. Sci Afr. 2021;11:e00685.
  • Lombardo D, Kiselev MA, Caccamo MT. Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine. J Nanomater. 2019;2019. doi:10.1155/2019/3702518
  • Maiti D, Tong X, Mou X, Yang K. Carbon-based nanomaterials for biomedical applications: a recent study. Front Pharmacol. 2019;9:1401.
  • Chandrakala V, Aruna V, Angajala G. Review on metal nanoparticles as nanocarriers: current challenges and perspectives in drug delivery systems. Emergent Mater. 2022;5:1593–1615.
  • Iqbal MT, Halasz K, Bhatia D. Metallic nanoparticles for targeted drug delivery. NMCT. 2017;1:3–5.
  • Zhang Y, Huang Y, Li S. Polymeric micelles: nanocarriers for cancer-targeted drug delivery. AAPS Pharm Sci Tech. 2014;15(4):862–871.
  • Xu W, Ling P, Zhang T. Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. J Drug Deliv. 2013;2013:340315.
  • Ahmad Z, Shah A, Siddiq M, Kraatz H-B. Polymeric micelles as drug delivery vehicles. RSC Adv. 2014;4(33):17028–17038.
  • Shi Z, Zhou Y, Fan T, Lin Y, Zhang H, Mei L. Inorganic nano-carriers based smart drug delivery systems for tumor therapy. Smart Mater Med. 2020;1:32–47.
  • Hu J, Wang J, Wang G, Yao Z, Dang X. Pharmacokinetics and antitumor efficacy of DSPE-PEG2000 polymeric liposomes loaded with quercetin and temozolomide: analysis of their effectiveness in enhancing the chemosensitization of drug-resistant glioma cells. Int J Mol Med. 2016;37(3):690–702.
  • Nakhaei P, Margiana R, Bokov DO, et al. Liposomes: structure, biomedical applications, and stability parameters with emphasis on cholesterol. Front Bioeng Biotechnol. 2021;9:748.
  • Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomedicine. 2015;10:975–999.
  • Deshpande PP, Biswas S, Torchilin VP. Current trends in the use of liposomes for tumor targeting. Nanomedicine. 2013;8(9):1509–1528.
  • Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and challenges of liposome assisted drug delivery. Front Pharmacol. 2015;6:286.
  • Glassman PM, Muzykantov VR. Pharmacokinetic and pharmacodynamic properties of drug delivery systems. J Pharmacol Exp Ther. 2019;370(3):570–580.
  • Gurunathan S, Kang M-H, Qasim M, Kim J-H. Nanoparticle-mediated combination therapy: two-in-one approach for cancer. Int J Mol Sci. 2018;19(10):3264.
  • Khan I, Saeed K, Khan I. Nanoparticles: properties, applications and toxicities. Arab J Chem. 2019;12(7):908–931.
  • Masood F. Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater Sci Eng C Mater Biol Appl. 2016;60:569–578.
  • Majumder N, Das GN, Das SK. Polymeric micelles for anticancer drug delivery. Ther Deliv. 2020;11(10):613–635.
  • Jhaveri AM, Torchilin VP. Multifunctional polymeric micelles for delivery of drugs and siRNA. Front Pharmacol. 2014;5:77.
  • Movassaghian S, Merkel OM, Torchilin VP. Applications of polymer micelles for imaging and drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015;7(5):691–707.
  • Abbasi E, Aval SF, Akbarzadeh A, et al. Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett. 2014;9(1):247.
  • Franiak-Pietryga I, Ziemba B, Sikorska H, et al. Maltotriose-modified poly(propylene imine) Glycodendrimers as a potential novel platform in the treatment of chronic lymphocytic Leukemia. A proof-of-concept pilot study in the animal model of CLL. Toxicol Appl Pharmacol. 2020;403:115139.
  • Varde NK, Pack DW. Microspheres for controlled release drug delivery. Expert Opin Biol Ther. 2004;4(1):35–51.
  • Rauti R, Musto M, Bosi S, Prato M, Ballerini L. Properties and behavior of carbon nanomaterials when interfacing neuronal cells: how far have we come? Carbon N Y. 2019;143:430–446.
  • Gurunathan S, Han JW, Dayem AA, Eppakayala V, Kim JH. Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. Int J Nanomedicine. 2012;7:5901–5914.
  • Sarkar P, Ghosal K, Chakraborty D, Sarkar K. Chapter 20 - Biocompatibility and biomedical applications of various carbon-based materials. In: Thomas S, Sarathchandran C, Ilangovan SA, Moreno-Piraján JC, editors. Handbook of Carbon-Based Nanomaterials. Elsevier; 2021:829–875.
  • Debnath SK, Srivastava R. Drug delivery with carbon-based nanomaterials as versatile nanocarriers: progress and prospects. Front Nanotechnol. 2021;3:644564.
  • Wilczewska AZ, Niemirowicz K, Markiewicz KH, Car H. Nanoparticles as drug delivery systems. Pharmacol Rep. 2012;64(5):1020–1037.
  • Mody VV, Cox A, Shah S, Singh A, Bevins W, Parihar H. Magnetic nanoparticle drug delivery systems for targeting tumor. Appl Nanosci. 2014;4(4):385–392.
  • Iram S, Zahera M, Khan S, et al. Gold nanoconjugates reinforce the potency of conjugated cisplatin and doxorubicin. Colloids Surf B Biointerfaces. 2017;160:254–264.
  • Kollur SP, Prasad SK, Pradeep S, et al. Luteolin-fabricated ZnO nanostructures showed PLK-1 mediated anti-breast cancer activity. Biomolecules. 2021;11(3):385.
  • Kumari M, Sharma N, Manchanda R, et al. PGMD/curcumin nanoparticles for the treatment of breast cancer. Sci Rep. 2021;11(1):1–17.
  • Sharma N, Singhal M, Kumari RM, et al. Diosgenin loaded polymeric nanoparticles with potential anticancer efficacy. Biomolecules. 2020;10(12):1679.
  • Sharma N, Kumari RM, Gupta N, Syed A, Bahkali AH, Nimesh S. Poly-(lactic-co-glycolic) acid nanoparticles for synergistic delivery of epirubicin and paclitaxel to human lung cancer cells. Molecules. 2020;25(18):4243.
  • Kishimoto TK, Maldonado RA. Nanoparticles for the induction of antigen-specific immunological tolerance. Front Immunol. 2018;9:230.
  • Thorp EB, Boada C, Jarbath C, Luo X. Nanoparticle platforms for antigen-specific immune tolerance. Front Immunol. 2020;11:945.
  • Yang R, Xu J, Xu L, et al. Cancer cell membrane-coated adjuvant nanoparticles with mannose modification for effective anticancer vaccination. ACS Nano. 2018;12(6):5121–5129.
  • Ribas A, Dummer R, Puzanov I, et al. Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy. Cell. 2018;174(4):1031–1032.
  • Wu C-C, Wang YA, Livingston JA, Zhang J, Futreal PA. Prediction of biomarkers and therapeutic combinations for anti-PD-1 immunotherapy using the global gene network association. Nat Commun. 2022;13(1):1–14.
  • Gun SY, Lee SWL, Sieow JL, Wong SC. Targeting immune cells for cancer therapy. Redox Biol. 2019;25:101174.
  • Li Y, Bolinger J, Yu Y, et al. Intracellular delivery and biodistribution study of CRISPR/Cas9 ribonucleoprotein loaded bioreducible lipidoid nanoparticles. Biomater sci. 2019;7(2):596–606.
  • Kuang X, Wang Z, Luo Z, et al. Ag nanoparticles enhance immune checkpoint blockade efficacy by promoting of immune surveillance in melanoma. J Colloid Interface Sci. 2022;616:189–200.
  • Chen W, Jiang M, Yu W, et al. CpG-based nanovaccines for cancer immunotherapy. Int J Nanomedicine. 2021;16:5281–5299.
  • Habault J, Poyet J-L. Recent advances in cell penetrating peptide-based anticancer therapies. Molecules. 2019;24(5):927.
  • Dacoba TG, Anfray C, Mainini F, et al. Arginine-based Poly(I:C)-loaded nanocomplexes for the polarization of macrophages toward M1-antitumoral effectors. Front Immunol. 2020;11:1412.
  • Abudula T, Bhatt K, Eggermont LJ, O’Hare N, Memic A, Bencherif SA. Supramolecular self-assembled peptide-based vaccines: current state and future perspectives. Front Chem. 2020;8:598160.
  • Wooldridge JE, Ballas Z, Krieg AM, Weiner GJ. Immunostimulatory oligodeoxynucleotides containing CpG motifs enhance the efficacy of monoclonal antibody therapy of lymphoma. Blood. 1997;89(8):2994–2998.
  • Bailly C, Thuru X, Quesnel B. Combined cytotoxic chemotherapy and immunotherapy of cancer: modern times. NAR Cancer. 2020;2(1):zcaa002.
  • Gupta B, Kim JO. Recent progress in cancer immunotherapy approaches based on nanoparticle delivery devices. J Pharmaceut Invest. 2021;51(4):399–412.
  • Duwa R, Jeong J-H, Yook S. Immunotherapeutic strategies for the treatment of ovarian cancer: current status and future direction. J Industr Enginer Chem. 2021;94:62–77.
  • Wang C, Wang J, Zhang X, et al. In situ formed reactive oxygen species-responsive scaffold with gemcitabine and checkpoint inhibitor for combination therapy. Sci Transl Med. 2018;10:429.
  • Min Y, Roche KC, Tian S, et al. Antigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapy. Nat Nanotechnol. 2017;12(9):877–882.
  • Peng Z, Lv X, Huang S. Photoimmunotherapy: a New Paradigm in Solid Tumor Immunotherapy. Cancer Control. 2022;29:10732748221088825. doi:10.1177/10732748221088825
  • Guo R, Wang S, Zhao L, et al. Engineered nanomaterials for synergistic photo-immunotherapy. Biomaterials. 2022;282:121425. doi:10.1016/j.biomaterials.2022.121425
  • Hwang J, An E-K, Zhang W, et al. Recombinant programmed cell death protein 1 functions as an immune check point blockade and enhances anti-cancer immunity. Biomaterials. 2022;285:121550. doi:10.1016/j.biomaterials.2022.121550
  • Hwang J, An E-K, Zhang W, Kim HJ, Eom Y, Jin J-O. Dual-functional alginate and collagen–based injectable hydrogel for the treatment of cancer and its metastasis. J Nanobiotechnology. 2022;20(1):1–16. doi:10.1186/s12951-022-01458-x
  • Hwang J, An E-K, Kim S-J, Zhang W, Jin J-O. Escherichia coli mimetic gold nanorod-mediated photo-and immunotherapy for treating cancer and its metastasis. ACS nano. 2022;16(5):8472–8483. doi:10.1021/acsnano.2c03379
  • Hwang J, Zhang W, Park H-B, Yadav D, Jeon YH, Jin J-O. Escherichia coli adhesin protein-conjugated thermal responsive hybrid nanoparticles for photothermal and immunotherapy against cancer and its metastasis. J Immunother Cancer. 2021;9(7):e002666. doi:10.1136/jitc-2021-002666
  • Xu L, Zhang W, Park H-B, et al. Indocyanine green and poly I: c containing thermo-responsive liposomes used in immune-photothermal therapy prevent cancer growth and metastasis. J Immunother Cancer. 2019;7(1):1–14. doi:10.1186/s40425-019-0702-1
  • Chen Q, Xu L, Liang C, Wang C, Peng R, Liu Z. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat Commun. 2016;7(1):13193. doi:10.1038/ncomms13193
  • Devi GR. siRNA-based approaches in cancer therapy. Cancer Gene Ther. 2006;13(9):819–829. doi:10.1038/sj.cgt.7700931
  • Lam JKW, Chow MYT, Zhang Y, Leung SWS. siRNA versus miRNA as therapeutics for gene silencing. Mol Ther Nucleic Acids. 2015;4(9):e252–e252.
  • Singh A, Trivedi P, Jain NK. Advances in siRNA delivery in cancer therapy. Artif Cells, Nanomed Biotechnol. 2018;46(2):274–283.
  • Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–264.
  • Wang D, Wang T, Liu J, et al. Acid-activatable versatile micelleplexes for PD-L1 blockade-enhanced cancer photodynamic immunotherapy. Nano Lett. 2016;16(9):5503–5513.
  • He M, Yang T, Wang Y, et al. Immune checkpoint inhibitor-based strategies for synergistic cancer therapy. Adv Healthc Mater. 2021;10(9):2002104.
  • Emens LA, Middleton G. The interplay of immunotherapy and chemotherapy: harnessing potential synergies. Cancer Immunol Res. 2015;3(5):436–443.
  • Parato KA, Senger D, Forsyth PA, Bell JC. Recent progress in the battle between oncolytic viruses and tumours. Nat Rev Cancer. 2005;5(12):965–976.
  • Lin E, Nemunaitis J. Oncolytic viral therapies. Cancer Gene Ther. 2004;11(10):643–664.
  • Yin J, Markert JM, Leavenworth JW. Modulation of the intratumoral immune landscape by oncolytic herpes simplex virus virotherapy. Front Oncol. 2017;7:136.
  • Bommareddy PK, Aspromonte S, Zloza A, Rabkin SD, Kaufman HL. MEK inhibition enhances oncolytic virus immunotherapy through increased tumor cell killing and T cell activation. Sci Transl Med. 2018;10(471):eaau0417.
  • Allison AC. Immunological adjuvants and their modes of action. Arch Immunol Ther Exp. 1997;45(2–3):141–147.
  • Awate S, Babiuk L, Mutwiri G. Mechanisms of Action of adjuvants. Front Immunol. 2013;4. doi:10.3389/fimmu.2013.00114
  • Mace TA, Shakya R, Pitarresi JR, et al. IL-6 and PD-L1 antibody blockade combination therapy reduces tumour progression in murine models of pancreatic cancer. Gut. 2018;67(2):320–332.
  • Liu T, Han C, Wang S, et al. Cancer-associated fibroblasts: an emerging target of anti-cancer immunotherapy. J Hematol Oncol. 2019;12(1):86.
  • Wu X, Tao P, Zhou Q, et al. IL-6 secreted by cancer-associated fibroblasts promotes epithelial-mesenchymal transition and metastasis of gastric cancer via JAK2/STAT3 signaling pathway. Oncotarget. 2017;8(13):20741–20750.
  • Fallon JK, Vandeveer AJ, Schlom J, Greiner JW. Enhanced antitumor effects by combining an IL-12/anti-DNA fusion protein with avelumab, an anti-PD-L1 antibody. Oncotarget. 2017;8(13):20558–20571.
  • Vaughan HJ, Green JJ, Tzeng SY. Cancer-targeting nanoparticles for combinatorial nucleic acid delivery. Adv Mater. 2020;32(13):e1901081.
  • Navya PN, Kaphle A, Srinivas SP, Bhargava SK, Rotello VM, Daima HK. Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Converg. 2019;6(1):23.