789
Views
4
CrossRef citations to date
0
Altmetric
REVIEW

The Dual Effect of 3D-Printed Biological Scaffolds Composed of Diverse Biomaterials in the Treatment of Bone Tumors

ORCID Icon, , , , , & ORCID Icon show all
Pages 293-305 | Received 21 Sep 2022, Accepted 03 Jan 2023, Published online: 15 Jan 2023

References

  • McGovern JA-O, Griffin M, Hutmacher DA-O. Animal models for bone tissue engineering and modelling disease. Dis Mod Mechan. 2018;11(4). doi:10.1242/dmm.033084
  • Kwakwa KA, Vanderburgh JP, Guelcher SA, et al. Engineering 3D models of tumors and bone to understand tumor-induced bone disease and improve treatments. Curr Osteoporos Rep. 2017;15(4):247–254. doi:10.1007/s11914-017-0385-9
  • Aboulafia AJ, Levine AM, Schmidt D, et al. Surgical therapy of bone metastases. Semin Oncol. 2007;34(3):206–214. doi:10.1053/j.seminoncol.2007.03.002
  • Johnson RW, Schipani E, Giaccia AJ. HIF targets in bone remodeling and metastatic disease. Pharmacol Ther. 2015;150:169–177. doi:10.1016/j.pharmthera.2015.02.002
  • Zhao X, Wu Q, Gong X, et al. Osteosarcoma: a review of current and future therapeutic approaches. Biomed Eng Online. 2021;20(1):24. doi:10.1186/s12938-021-00860-0
  • Li Y, Yang Y, Huang Z, et al. Bone defect reconstruction with autologous bone inactivated with liquid nitrogen after resection of primary limb malignant tumors: an observational study. Medicine. 2020;99(24):e20442. doi:10.1097/MD.0000000000020442
  • Liu W, Wang B, Zhang S, Li Y, Hu B, Shao Z. Wrist reconstruction after En bloc resection of bone tumors of the distal radius. Orthop Surg. 2021;13(2):376–383. doi:10.1111/os.12737
  • Huang Y, Yu X, He L, et al. 3D porous acellular cartilage matrix scaffold with surface mediated sustainable release of TGF-β3 for cartilage engineering. Chinese Chemical Letters. 2020;31(7):1797–1800.
  • Ma H, Luo J, Sun Z, et al. 3D printing of biomaterials with mussel-inspired nanostructures for tumor therapy and tissue regeneration. Biomaterials. 2016;111:138–148. doi:10.1016/j.biomaterials.2016.10.005
  • Yuan J, Ye Z, Zeng Y, et al. Bifunctional scaffolds for tumor therapy and bone regeneration: synergistic effect and interplay between therapeutic agents and scaffold materials. Mater Today Bio. 2022;15:100318. doi:10.1016/j.mtbio.2022.100318
  • Kim H, Hwangbo H, Koo Y, Kim G. Fabrication of mechanically reinforced gelatin/hydroxyapatite bio-composite scaffolds by core/shell nozzle printing for bone tissue engineering. Int J Mol Sci. 2020;21(9):3401.
  • Daneshmandi S, Dibazar SP, Fateh S. Effects of 3-dimensional culture conditions (collagen-chitosan nano-scaffolds) on maturation of dendritic cells and their capacity to interact with T-lymphocytes. J Immunotoxicol. 2016;13(2):235–242. doi:10.3109/1547691X.2015.1045636
  • Ye M, Mohanty P, Ghosh G. Biomimetic apatite-coated porous PVA scaffolds promote the growth of breast cancer cells. Mater Sci Eng C Mater Biol Appl. 2014;44:310–316. doi:10.1016/j.msec.2014.08.044
  • Woodard JR, Hilldore AJ, Lan SK, et al. The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity. Biomaterials. 2007;28(1):45–54. doi:10.1016/j.biomaterials.2006.08.021
  • Gu Y, Zhang J, Zhang X, et al. Three-dimensional printed mg-doped β-TCP bone tissue engineering scaffolds: effects of magnesium ion concentration on osteogenesis and angiogenesis in vitro. Tissue Eng Regen Med. 2019;16(4):415–429. doi:10.1007/s13770-019-00192-0
  • Yang C, Ma H, Wang Z, et al. 3D printed wesselsite nanosheets functionalized scaffold facilitates NIR-II photothermal therapy and vascularized bone regeneration. Adv Sci. 2021;8(20):e2100894. doi:10.1002/advs.202100894
  • Ahangar P, Aziz M, Rosenzweig DH, et al. Advances in personalized treatment of metastatic spine disease. Ann Transl Med. 2019;7(10):223. doi:10.21037/atm.2019.04.41
  • Gu BK, Choi DJ, Park SJ, Kim YJ, Kim CH. 3D bioprinting technologies for tissue engineering applications. Adv Exp Med Biol. 2018;1078:15–28.
  • Butscher A, Bohner M, Hofmann S, et al. Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing. Acta Biomater. 2011;7(3):907–920. doi:10.1016/j.actbio.2010.09.039
  • Elviri L, Foresti R, Bergonzi C, et al. Highly defined 3D printed chitosan scaffolds featuring improved cell growth. Biomed Mater. 2017;12(4):045009. doi:10.1088/1748-605X/aa7692
  • Roohani-Esfahani SI, Newman P, Zreiqat H. Design and fabrication of 3D printed scaffolds with a mechanical strength comparable to cortical bone to repair large bone defects. Sci Rep. 2016;6:19468. doi:10.1038/srep19468
  • Zheng P, Ding J. Calcium ion nanomodulators for mitochondria-targeted multimodal cancer therapy. Asian J Pharm Sci. 2022;17(1):1–3. doi:10.1016/j.ajps.2021.10.004
  • Eliaz N, Metoki N. Calcium phosphate bioceramics: a review of their history, structure, properties, coating technologies and biomedical applications. Materials. 2017;10(4). doi:10.3390/ma10040334
  • Barabaschi GD, Manoharan V, Li Q, Bertassoni LE. Engineering pre-vascularized scaffolds for bone regeneration. Adv Exp Med Biol. 2015;881:79–94.
  • Koester KJ, Ager JW, Ritchie RO. The true toughness of human cortical bone measured with realistically short cracks. Nat Mater. 2008;7(8):672–677. doi:10.1038/nmat2221
  • Sandberg OH, Aspenberg P. Inter-trabecular bone formation: a specific mechanism for healing of cancellous bone. Acta Orthop. 2016;87(5):459–465. doi:10.1080/17453674.2016.1205172
  • Mann FA, Payne JT. Bone healing. Semin Vet Med Surg Small Anim. 1989;4(4):312–321.
  • Andrulewicz-Botulińska E, Wiśniewska R, Brzóska MM, et al. Beneficial impact of zinc supplementation on the collagen in the bone tissue of cadmium-exposed rats. J Appl Toxicol. 2018;38(7):996–1007. doi:10.1002/jat.3608
  • Henry JP, Bordoni B. Histology, osteoblasts. In: StatPearls. Treasure Island (FL): StatPearls PublishingCopyright © 2022, StatPearls Publishing LLC; 2022.
  • Young MF. Bone matrix proteins: their function, regulation, and relationship to osteoporosis. Osteoporos Int. 2003;14(Suppl 3):S35–42. doi:10.1007/s00198-002-1342-7
  • Fang Y, Liu Z, Wang H, et al. Implantable sandwich-like scaffold/fiber composite spatiotemporally releasing combretastatin A4 and doxorubicin for efficient inhibition of postoperative tumor recurrence. ACS Appl Mater Interfaces. 2022;14(24):27525–27537. doi:10.1021/acsami.2c02103
  • Vičić I, Belev B. The pathogenesis of bone metastasis in solid tumors: a review. Croat Med J. 2021;62(3):270–282. doi:10.3325/cmj.2021.62.270
  • Wu YH, Gugala Z, Barry MM, et al. Optimization and characterization of a bone culture model to study prostate cancer bone metastasis. Mol Cancer Ther. 2022;21(8):1360–1368. doi:10.1158/1535-7163.MCT-21-0684
  • Jiang Z, Liu Y, Shi R, et al. Versatile polymer-initiating biomineralization for tumor blockade therapy. Adv Mater. 2022;34(19):e2110094. doi:10.1002/adma.202110094
  • Zhou X, Zhu W, Nowicki M, et al. 3D bioprinting a cell-laden bone matrix for breast cancer metastasis study. ACS Appl Mater Interfaces. 2016;8(44):30017–30026. doi:10.1021/acsami.6b10673
  • Sari M, Hening P, Ana ID, et al. Bioceramic hydroxyapatite-based scaffold with a porous structure using honeycomb as a natural polymeric Porogen for bone tissue engineering. Biomater Res. 2021;25(1):2. doi:10.1186/s40824-021-00203-z
  • Dang W, Chen W-C, Ju E, et al. 3D printed hydrogel scaffolds combining glutathione depletion-induced ferroptosis and photothermia-augmented chemodynamic therapy for efficiently inhibiting postoperative tumor recurrence. J Nanobiotechnol. 2022;20(1):266. doi:10.1186/s12951-022-01454-1
  • Liu Y, Li T, Ma H, et al. 3D-printed scaffolds with bioactive elements-induced photothermal effect for bone tumor therapy. Acta Biomater. 2018;73:531–546. doi:10.1016/j.actbio.2018.04.014
  • Lu D, Liu Y, Li W, et al. Development and application of 3D bioprinted scaffolds supporting induced pluripotent stem cells. Biomed Res Int. 2021;2021:4910816. doi:10.1155/2021/4910816
  • Fang Z, Chen J, Pan J, et al. The development tendency of 3D-printed bioceramic scaffolds for applications ranging from bone tissue regeneration to bone tumor therapy. Front Bioeng Biotechnol. 2021;9:754266. doi:10.3389/fbioe.2021.754266
  • Xu Z, Yuan L, Liu Q, et al. Crosslinking effect of dialdehyde cholesterol modified starch nanoparticles on collagen hydrogel. Carbohydr Polym. 2022;285:119237. doi:10.1016/j.carbpol.2022.119237
  • Liu Y, Yu Q, Chang J, et al. Nanobiomaterials: from 0D to 3D for tumor therapy and tissue regeneration. Nanoscale. 2019;11(29):13678–13708. doi:10.1039/c9nr02955a
  • Mirzaali MJ, Moosabeiki V, Rajaai SM, et al. Additive manufacturing of biomaterials-design principles and their implementation. Materials. 2022;15(15):5457. doi:10.3390/ma15155457
  • Awad A, Fina F, Goyanes A, et al. 3D printing: principles and pharmaceutical applications of selective laser sintering. Int J Pharm. 2020;586:119594. doi:10.1016/j.ijpharm.2020.119594
  • Parulski C, Jennotte O, Lechanteur A, et al. Challenges of fused deposition modeling 3D printing in pharmaceutical applications: where are we now? Adv Drug Deliv Rev. 2021;175:113810. doi:10.1016/j.addr.2021.05.020
  • Lee JY, Choi CS, Hwang KT, et al. Optimization of hybrid ink formulation and ipl sintering process for ink-jet 3D printing. Nanomaterials. 2021;11(5):1295.
  • Kelly CN, Miller AT, Hollister SJ, et al. Design and structure–function characterization of 3D printed synthetic porous biomaterials for tissue engineering. Adv Healthcare Mater. 2018;7(7):1701095. doi:10.1002/adhm.201701095
  • Vaezi M, Seitz H, Yang S. A review on 3D micro-additive manufacturing technologies. Int J Adv Manufactur Technol. 2013;67(5):1721–1754. doi:10.1007/s00170-012-4605-2
  • Ma H, Feng C, Chang J, et al. 3D-printed bioceramic scaffolds: from bone tissue engineering to tumor therapy. Acta Biomaterialia. 2018;79:37–59. doi:10.1016/j.actbio.2018.08.026
  • Nikolova MP, Chavali MS. Recent advances in biomaterials for 3D scaffolds: a review. Bioact Mater. 2019;4:271–292. doi:10.1016/j.bioactmat.2019.10.005
  • Kumar A, Nune KC, Murr LE, et al. Biocompatibility and mechanical behaviour of three-dimensional scaffolds for biomedical devices: process–structure–property paradigm. Int Mater Rev. 2016;61(1):20–45. doi:10.1080/09506608.2015.1128310
  • Lin C, Wang Y, Huang Z, et al. Advances in filament structure of 3D bioprinted biodegradable bone repair scaffolds. Int J Bioprint. 2021;7(4):426. doi:10.18063/ijb.v7i4.426
  • Li Z, Xu W, Yang J, et al. A tumor microenvironments-adapted polypeptide hydrogel/nanogel composite boosts antitumor molecularly targeted inhibition and immunoactivation. Adv Mater. 2022;34(21):e2200449. doi:10.1002/adma.202200449
  • Yamada S, Heymann D, Bouler JM, Daculsi G. Osteoclastic resorption of calcium phosphate ceramics with different hydroxyapatite/beta-tricalcium phosphate ratios. Biomaterials. 1997;18(15):1037–1041. doi:10.1016/S0142-9612(97)00036-7
  • Samavedi S, Whittington AR, Goldstein AS. Calcium phosphate ceramics in bone tissue engineering: a review of properties and their influence on cell behavior. Acta Biomaterialia. 2013;9(9):8037–8045. doi:10.1016/j.actbio.2013.06.014
  • Barba A, Maazouz Y, Diez-Escudero A, et al. Osteogenesis by foamed and 3D-printed nanostructured calcium phosphate scaffolds: effect of pore architecture. Acta Biomater. 2018;79:135–147. doi:10.1016/j.actbio.2018.09.003
  • Khalaf AT, Wei Y, Wan J, et al. Bone tissue engineering through 3D bioprinting of bioceramic scaffolds: a review and update. Life. 2022;12(6):903. doi:10.3390/life12060903
  • Yang Y, Li M, Zhou B, et al. Novel therapeutic strategy for bacteria-contaminated bone defects: reconstruction with multi-biofunctional GO/Cu-incorporated 3D scaffolds. Adv Therapeut. 2022;5(7):2200043. doi:10.1002/adtp.202200043
  • Huang J, Best SM, Bonfield W, et al. In vitro assessment of the biological response to nano-sized hydroxyapatite. J Mater Sci Mater Med. 2004;15(4):441–445. doi:10.1023/B:JMSM.0000021117.67205.cf
  • Filová E, Suchý T, Sucharda Z, et al. Support for the initial attachment, growth and differentiation of MG-63 cells: a comparison between nano-size hydroxyapatite and micro-size hydroxyapatite in composites. Int J Nanomedicine. 2014;9:3687–3706. doi:10.2147/IJN.S56661
  • Salinas AJ, Esbrit P, Vallet-Regí M. A tissue engineering approach based on the use of bioceramics for bone repair. Biomater Sci. 2013;1(1):40–51. doi:10.1039/C2BM00071G
  • Ni SY, Lin K, Chang J, et al. Beta-CaSiO3/beta-Ca-3(PO4)(2) composite materials for hard tissue repair: in vitro studies. J Biomed Mater Res A. 2008;85A(1):72–82. doi:10.1002/jbm.a.31390
  • Lu JX, Descamps M, Dejou J, et al. The biodegradation mechanism of calcium phosphate biomaterials in bone. J Biomed Mater Res. 2002;63(4):408–412. doi:10.1002/jbm.10259
  • Yang Y, Chu L, Yang S, et al. Dual-functional 3D-printed composite scaffold for inhibiting bacterial infection and promoting bone regeneration in infected bone defect models. Acta Biomater. 2018;79:265–275. doi:10.1016/j.actbio.2018.08.015
  • Yang Y, Yang S, Wang Y, et al. Anti-infective efficacy, cytocompatibility and biocompatibility of a 3D-printed osteoconductive composite scaffold functionalized with quaternized chitosan. Acta Biomater. 2016;46:112–128. doi:10.1016/j.actbio.2016.09.035
  • Liu F, Kang H, Liu Z, et al. 3D printed multi-functional scaffolds based on Poly(ε-Caprolactone) and hydroxyapatite composites. Nanomaterials. 2021;11(9):2456.
  • Kang H, Jiang X, Liu Z, et al. Biodegradable 3D printed scaffolds of modified poly (Trimethylene Carbonate) composite materials with Poly (L-Lactic Acid) and hydroxyapatite for bone regeneration. Nanomaterials. 2021;11(12):3215. doi:10.3390/nano11123215
  • Wang X, Ao Q, Tian X, et al. 3D bioprinting technologies for hard tissue and organ engineering. Materials. 2016;9(10):802. doi:10.3390/ma9100802
  • Kim Y, Lee E-J, Kotula AP, et al. Engineering 3D printed scaffolds with tunable hydroxyapatite. J Funct Biomater. 2022;13(2):34. doi:10.3390/jfb13020034
  • Le Nihouannen D, Duval L, Lecomte A, et al. Interactions of total bone marrow cells with increasing quantities of macroporous calcium phosphate ceramic granules. J Mater Sci Mater Med. 2007;18(10):1983–1990. doi:10.1007/s10856-007-3098-2
  • Dang W, Yi K, Ju E, et al. 3D Printed bioceramic scaffolds as a universal therapeutic platform for synergistic therapy of osteosarcoma. ACS Appl Mater Interfaces. 2021;13(16):18488–18499. doi:10.1021/acsami.1c00553
  • Wu SC, Hsu H-C, Hsu S-K, et al. Preparation and characterization of four different compositions of calcium phosphate scaffolds for bone tissue engineering. Mater Charact. 2011;62(5):526–534. doi:10.1016/j.matchar.2011.03.014
  • Zhao NB, Wang Y, Qin L, et al. Effect of composition and macropore percentage on mechanical and in vitro cell proliferation and differentiation properties of 3D printed HA/beta-TCP scaffolds. RSC Adv. 2017;7(68):43186–43196. doi:10.1039/C7RA07204J
  • Sa M-W, Nguyen B-NB, Moriarty RA, et al. Fabrication and evaluation of 3D printed BCP scaffolds reinforced with ZrO 2 for bone tissue applications. Biotechnol Bioeng. 2018;115(4):989–999. doi:10.1002/bit.26514
  • Wang XQ, Zhang L, Ke X, et al. 45S5 Bioglass analogue reinforced akermanite ceramic favorable for additive manufacturing mechanically strong scaffolds. RSC Adv. 2015;5(124):102727–102735. doi:10.1039/C5RA19272B
  • Rainer A, Giannitelli SM, Abbruzzese F, et al. Fabrication of bioactive glass-ceramic foams mimicking human bone portions for regenerative medicine. Acta Biomater. 2008;4(2):362–369. doi:10.1016/j.actbio.2007.08.007
  • Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27(15):2907–2915. doi:10.1016/j.biomaterials.2006.01.017
  • Dang W, Jin Y, Yi K, et al. Hemin particles-functionalized 3D printed scaffolds for combined photothermal and chemotherapy of osteosarcoma. Chem Enginer J. 2021;422:129919. doi:10.1016/j.cej.2021.129919
  • Ravanbakhsh M, Labbaf S, Karimzadeh F, et al. Mesoporous bioactive glasses for the combined application of osteosarcoma treatment and bone regeneration. Mater Sci Engineer C. 2019;104:109994. doi:10.1016/j.msec.2019.109994
  • Wu C, Zhou Y, Chang J, et al. Delivery of dimethyloxallyl glycine in mesoporous bioactive glass scaffolds to improve angiogenesis and osteogenesis of human bone marrow stromal cells. Acta Biomater. 2013;9(11):9159–9168. doi:10.1016/j.actbio.2013.06.026
  • Wu C, Chang J, Xiao Y. Mesoporous bioactive glasses as drug delivery and bone tissue regeneration platforms. Ther Deliv. 2011;2(9):1189–1198. doi:10.4155/tde.11.84
  • Zhang Y, Xia L, Zhai D, et al. Mesoporous bioactive glass nanolayer-functionalized 3D-printed scaffolds for accelerating osteogenesis and angiogenesis. Nanoscale. 2015;7(45):19207–19221. doi:10.1039/C5NR05421D
  • Wu CT, Fan W, Zhou Y, et al. 3D-printing of highly uniform CaSiO3 ceramic scaffolds: preparation, characterization and in vivo osteogenesis. J Mater Chem. 2012;22(24):12288–12295. doi:10.1039/c2jm30566f
  • Zhao W, Wang J, Zhai W, et al. The self-setting properties and in vitro bioactivity of tricalcium silicate. Biomaterials. 2005;26(31):6113–6121. doi:10.1016/j.biomaterials.2005.04.025
  • Li T, Peng M, Yang Z, et al. 3D-printed IFN-gamma-loading calcium silicate-beta-tricalcium phosphate scaffold sequentially activates M1 and M2 polarization of macrophages to promote vascularization of tissue engineering bone. Acta Biomaterialia. 2018;71:96–107. doi:10.1016/j.actbio.2018.03.012
  • Li ZH, Wang C, Li C, et al. What we have achieved in the design of 3D printed metal implants for application in orthopedics? Personal experience and review. Rapid Prototyp J. 2018;24(8):1365–1379. doi:10.1108/RPJ-10-2017-0205
  • Zadpoor AA. Mechanics of additively manufactured biomaterials. J Mech Behav Biomed Mater. 2017;70:1–6. doi:10.1016/j.jmbbm.2017.03.018
  • Ma LM, Wang X, Zhao N, et al. Integrating 3D printing and biomimetic mineralization for personalized enhanced osteogenesis, angiogenesis, and osteointegration. ACS Appl Mater Interfaces. 2018;10(49):42146–42154. doi:10.1021/acsami.8b17495
  • Xiong ZX, Liu W, Qian H, et al. Tantalum nanoparticles reinforced PCL scaffolds using direct 3D printing for bone tissue engineering. Front Mater. 2021;8. doi:10.3389/fmats.2021.609779
  • Meenashisundaram GK, Wang N, Maskomani S, et al. Fabrication of Ti plus Mg composites by three-dimensional printing of porous Ti and subsequent pressureless infiltration of biodegradable Mg. Mater Sci Engineer C. 2020;108:110478. doi:10.1016/j.msec.2019.110478
  • Wang X, Zhai D, Yao X, et al. 3D printing of pink bioceramic scaffolds for bone tumor tissue therapy. Appl Mater Today. 2022;27:101443. doi:10.1016/j.apmt.2022.101443
  • Lin HM, Shi S, Lan X, et al. Scaffold 3D-printed from metallic nanoparticles-containing ink simultaneously eradicates tumor and repairs tumor-associated bone defects. Small Methods. 2021;5(9):2100536. doi:10.1002/smtd.202100536
  • Brown A, Zaky S, Ray H, et al. Porous magnesium/PLGA composite scaffolds for enhanced bone regeneration following tooth extraction. Acta Biomater. 2015;11:543–553. doi:10.1016/j.actbio.2014.09.008
  • Lai Y, Li Y, Cao H, et al. Osteogenic magnesium incorporated into PLGA/TCP porous scaffold by 3D printing for repairing challenging bone defect. Biomaterials. 2019;197:207–219. doi:10.1016/j.biomaterials.2019.01.013
  • Long J, Zhang W, Chen Y, et al. Multifunctional magnesium incorporated scaffolds by 3D-Printing for comprehensive postsurgical management of osteosarcoma. Biomaterials. 2021;275:120950. doi:10.1016/j.biomaterials.2021.120950
  • Wang H, Su K, Su L, et al. Comparison of 3D-printed porous tantalum and titanium scaffolds on osteointegration and osteogenesis. Mater Sci Eng C Mater Biol Appl. 2019;104:109908. doi:10.1016/j.msec.2019.109908
  • Li JR, Kuppler RJ, Zhou HC. Selective gas adsorption and separation in metal-organic frameworks. Chem Soc Rev. 2009;38(5):1477–1504. doi:10.1039/b802426j
  • Zhang K, Meng X, Cao Y, et al. Metal-organic framework nanoshuttle for synergistic photodynamic and low-temperature photothermal therapy. Adv Funct Mater. 2018;28(42):1804634. doi:10.1002/adfm.201804634
  • Dang W, Ma B, Li B, et al. 3D printing of metal-organic framework nanosheets-structured scaffolds with tumor therapy and bone construction. Biofabrication. 2020;12(2):025005. doi:10.1088/1758-5090/ab5ae3
  • Zhang Y, Yu W, Ba Z, et al. 3D-printed scaffolds of mesoporous bioglass/gliadin/polycaprolactone ternary composite for enhancement of compressive strength, degradability, cell responses and new bone tissue ingrowth. Int J Nanomedicine. 2018;13:5433–5447. doi:10.2147/IJN.S164869
  • Fairag R, Li L, Ramirez-GarciaLuna JL, et al. A composite lactide-mineral 3D-printed scaffold for bone repair and regeneration. Front Cell Dev Biol. 2021;9:654518. doi:10.3389/fcell.2021.654518
  • Zhu C, He M, Sun D, et al. 3D-printed multifunctional polyetheretherketone bone scaffold for multimodal treatment of osteosarcoma and osteomyelitis. ACS Appl Mater Interfaces. 2021;13(40):47327–47340. doi:10.1021/acsami.1c10898
  • Liu C, Qin W, Wang Y, et al. 3D printed gelatin/sodium alginate hydrogel scaffolds doped with nano-attapulgite for bone tissue repair. Int J Nanomedicine. 2021;16:8417–8432. doi:10.2147/IJN.S339500
  • Monavari M, Medhekar R, Nawaz Q, et al. A 3D printed bone tissue engineering scaffold composed of alginate dialdehyde-gelatine reinforced by lysozyme loaded cerium doped mesoporous silica-calcia nanoparticles. Macromol Biosci. 2022;22(9):e2200113. doi:10.1002/mabi.202200113
  • Pelaz B, Alexiou C, Alvarez-Puebla RA, et al. Diverse applications of nanomedicine. ACS Nano. 2017;11(3):2313–2381. doi:10.1021/acsnano.6b06040
  • Sarkar N, Bose S. Liposome-encapsulated curcumin-loaded 3D printed scaffold for bone tissue engineering. ACS Appl Mater Interfaces. 2019;11(19):17184–17192. doi:10.1021/acsami.9b01218
  • Celikkin EX. Enhancing X-ray Attenuation of 3D Printed Gelatin Methacrylate (GelMA) Hydrogels Utilizing Gold Nanoparticles for Bone Tissue Engineering Applications. Polymers. 2019;11. doi:10.3390/polym11020367
  • Zhang Y, Zhai D, Xu M, et al. 3D-printed bioceramic scaffolds with antibacterial and osteogenic activity. Biofabrication. 2017;9(2):025037. doi:10.1088/1758-5090/aa6ed6
  • Suleman A, Kondiah PPD, Mabrouk M, et al. The application of 3D-printing and nanotechnology for the targeted treatment of osteosarcoma. Front Mater. 2021;8. doi:10.3389/fmats.2021.668834
  • Jasemi A, Kamyab Moghadas B, Khandan A, et al. A porous calcium-zirconia scaffolds composed of magnetic nanoparticles for bone cancer treatment: fabrication, characterization and FEM analysis. Ceramic Int. 2022;48(1):1314–1325. doi:10.1016/j.ceramint.2021.09.216
  • Dong X, Heidari A, Mansouri A, et al. Investigation of the mechanical properties of a bony scaffold for comminuted distal radial fractures: addition of akermanite nanoparticles and using a freeze-drying technique. J Mech Behav Biomed Mater. 2021;121:104643. doi:10.1016/j.jmbbm.2021.104643
  • Monshi M, Esmaeili S, Kolooshani A, et al. A novel three-dimensional printing of electroconductive scaffolds for bone cancer therapy application. Nanomed J. 2020;7(2):138–148.
  • Sharafabadi AK, Abdellahi M, Kazemi A, et al. A novel and economical route for synthesizing akermanite (Ca2MgSi2O7) nano-bioceramic. Mater Sci Engineer C. 2017;71:1072–1078. doi:10.1016/j.msec.2016.11.021
  • Salmani MM, Hashemian M, Khandan A. Therapeutic effect of magnetic nanoparticles on calcium silicate bioceramic in alternating field for biomedical application. Ceramic Int. 2020;46(17):27299–27307. doi:10.1016/j.ceramint.2020.07.215
  • Zhuang H, Qin C, Zhang M, et al. 3D-printed bioceramic scaffolds with Fe 3 S 4 microflowers for magnetothermal and chemodynamic therapy of bone tumor and regeneration of bone defects. Biofabrication. 2021;13(4):045010. doi:10.1088/1758-5090/ac19c7