501
Views
7
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Multifunctional Nano-Realgar Hydrogel for Enhanced Glioblastoma Synergistic Chemotherapy and Radiotherapy: A New Paradigm of an Old Drug

, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 743-763 | Received 01 Nov 2022, Accepted 02 Feb 2023, Published online: 14 Feb 2023

References

  • van Solinge TS, Nieland L, Chiocca EA, Broekman MLD. Advances in local therapy for glioblastoma — taking the fight to the tumour. Nat Rev Neurol. 2022;18(4):221–236. doi:10.1038/s41582-022-00621-0
  • Madani F, Esnaashari SS, Webster TJ, Khosravani M, Adabi M. Polymeric nanoparticles for drug delivery in glioblastoma: state of the art and future perspectives. J Control Release. 2022;349:649–661. doi:10.1016/j.jconrel.2022.07.023
  • Madhavan K, Balakrishnan I, Lakshmanachetty S, et al. Venetoclax Cooperates with Ionizing Radiation to Attenuate Diffuse Midline Glioma Tumor Growth. Clin Cancer Res. 2022;28(11):2409–2424. doi:10.1158/1078-0432.Ccr-21-4002
  • van den Bent MJ, Tesileanu CMS, Wick W, et al. Adjuvant and concurrent temozolomide for 1p/19q non-co-deleted anaplastic glioma (CATNON; EORTC study 26053-22054): second interim analysis of a randomised, open-label, Phase 3 study. Lancet Oncology. 2021;22(6):813–823. doi:10.1016/s1470-2045(21)00090-5
  • Erel-Akbaba G, Carvalho LA, Tian T, et al. Radiation-Induced Targeted Nanoparticle-Based Gene Delivery for Brain Tumor Therapy. Acs Nano. 2019;13(4):4028–4040. doi:10.1021/acsnano.8b08177
  • Zhang J, Chen Y, Fang J. Targeting thioredoxin reductase by micheliolide contributes to radiosensitizing and inducing apoptosis of HeLa cells. Free Radic Biol Med. 2022;186:99–109. doi:10.1016/j.freeradbiomed.2022.05.007
  • Cheng K, Sano M, Jenkins CH, et al. Synergistically Enhancing the Therapeutic Effect of Radiation Therapy with Radiation Activatable and Reactive Oxygen Species-Releasing Nanostructures. ACS Nano. 2018;12(5):4946–4958. doi:10.1021/acsnano.8b02038
  • Rey S, Schito L, Koritzinsky M, Wouters BG. Molecular targeting of hypoxia in radiotherapy. Adv Drug Deliv Rev. 2017;109:45–62. doi:10.1016/j.addr.2016.10.002
  • Kaushik N, Kaushik NK, Choi EH, Kim JH. Blockade of Cellular Energy Metabolism through 6-Aminonicotinamide Reduces Proliferation of Non-Small Lung Cancer Cells by Inducing Endoplasmic Reticulum Stress. Biology. 2021;10(11). doi:10.3390/biology10111088
  • Sharma PK, Bhardwaj R, Dwarakanath BS, Varshney R. Metabolic oxidative stress induced by a combination of 2-DG and 6-AN enhances radiation damage selectively in malignant cells via non-coordinated expression of antioxidant enzymes. Cancer Lett. 2010;295(2):154–166. doi:10.1016/j.canlet.2010.02.021
  • Varshney R, Adhikari JS, Dwarakanath BS. Contribution of oxidative stress to radiosensitization by a combination of 2-DG and 6-AN in human cancer cell line. Indian J Exp Biol. 2003;41(12):1384–1391.
  • Koutcher JA, Alfieri AA, Matei C, Meyer KL, Street JC, Martin DS. Effect of 6-aminonicotinamide on the pentose phosphate pathway: 31P NMR and tumor growth delay studies. Magnetic resonance in medicine. 1996-Dec. 1996;36(6):887–892. doi:10.1002/mrm.1910360611
  • Wen S, Ovais M, Li X, et al. Tailoring bismuth-based nanoparticles for enhanced radiosensitivity in cancer therapy. Nanoscale. 2022;14(23):8245–8254. doi:10.1039/d2nr01500e
  • Zhou X, You M, Wang F, et al. Multifunctional Graphdiyne–Cerium Oxide Nanozymes Facilitate MicroRNA Delivery and Attenuate Tumor Hypoxia for Highly Efficient Radiotherapy of Esophageal Cancer. Adv Mater. 2021;33(24):e2100556. doi:10.1002/adma.202100556
  • Bhardwaj P, Goda JS, Pai V, et al. Ultrasound augments on-demand breast tumor radiosensitization and apoptosis through a tri-responsive combinatorial delivery theranostic platform. Nanoscale. 2021;13(40):17077–17092. doi:10.1039/d1nr04211d
  • Zhang X-D, Luo Z, Chen J, et al. Ultrasmall Au 10−12 (SG) 10−12 Nanomolecules for High Tumor Specificity and Cancer Radiotherapy. Adv Mater. 2014;26(26):4565–4568. doi:10.1002/adma.201400866
  • Zhao J, Wang Y, Huang X, et al. Liu Shen Wan inhibits influenza virus-induced secondary Staphylococcus aureus infection in vivo and in vitro. J Ethnopharmacol. 2021;277:114066. doi:10.1016/j.jep.2021.114066
  • Ma W, Yue J, Liang S, et al. Realgar increases defenses against infection by Enterococcus faecalis in Caenorhabditis elegans. J Ethnopharmacol. 2021;268:113559. doi:10.1016/j.jep.2020.113559
  • Xu W, Chen Z, Shen X, Pi C. Reno-Protective Effect of Realgar Nanoparticles on Lupus Nephritis of MRL/Lpr Mice through STAT1. Iranian J Immunol Spr. 2019;16(2):170–181. doi:10.22034/iji.2019.80260
  • Ma H, Kou J, Zhu D, Yan Y, Yu B. Liu-Shen-Wan, a traditional Chinese medicine, improves survival in sepsis induced by cecal ligation and puncture via reducing TNF-alpha levels, MDA content and enhancing macrophage phagocytosis. Int Immunopharmacol. 2006;6(8):1355–1362. doi:10.1016/j.intimp.2006.03.003
  • Dagher T, Maslah N, Edmond V, et al. JAK2(V617F) myeloproliferative neoplasm eradication by a novel interferon/arsenic therapy involves PML. J Exp Med. 2021;218:(2)e20201268. doi:10.1084/jem.20201268
  • Cui Z, Zhang Y, Xia K, et al. Nanodiamond autophagy inhibitor allosterically improves the arsenical-based therapy of solid tumors. Nat Commun. 2018;9(1):4347. doi:10.1038/s41467-018-06749-2
  • Kutny MA, Alonzo TA, Gerbing RB, et al. Arsenic Trioxide Consolidation Allows Anthracycline Dose Reduction for Pediatric Patients With Acute Promyelocytic Leukemia: report From the Children’s Oncology Group Phase III Historically Controlled Trial AAML0631. J Clin Oncol. 2017;35(26):3021–3029. doi:10.1200/JCO.2016.71.6183
  • Dilda PJ, Hogg PJ. Arsenical-based cancer drugs. Cancer Treat Rev. 2007;33(6):542–564. doi:10.1016/j.ctrv.2007.05.001
  • Wang T, Meng J, Wang C, et al. Inhibition of Murine Breast Cancer Metastases by Hydrophilic As4S4 Nanoparticles Is Associated With Decreased ROS and HIF-1alpha Downregulation. Front Oncol. 2019;9:333. doi:10.3389/fonc.2019.00333
  • Zhu HH, Wu DP, Jin J, et al. Oral tetra-arsenic tetra-sulfide formula versus intravenous arsenic trioxide as first-line treatment of acute promyelocytic leukemia: a multicenter randomized controlled trial. J Clin Oncol. 2013;31(33):4215–4221. doi:10.1200/JCO.2013.48.8312
  • Wang T, Zhang X, Jia M, et al. Hydrophilic Realgar Nanocrystals Prolong the Survival of Refractory Acute Myeloid Leukemia Mice Through Inducing Multi-Lineage Differentiation and Apoptosis. Int J Nanomedicine. 2022;17:2191–2202. doi:10.2147/IJN.S358469
  • Wang S, Liu X, Wang S, et al. Imatinib co-loaded targeted realgar nanocrystal for synergistic therapy of chronic myeloid leukemia. J Control Release. 2021;338:190–200. doi:10.1016/j.jconrel.2021.08.035
  • Cholujova D, Bujnakova Z, Dutkova E, et al. Realgar nanoparticles versus ATO arsenic compounds induce in vitro and in vivo activity against multiple myeloma. Br J Haematol. 2017;179(5):756–771. doi:10.1111/bjh.14974
  • Tian Y, Wang X, Xi R, et al. Enhanced antitumor activity of realgar mediated by milling it to nanosize. Int J Nanomedicine. 2014;9:745–757. doi:10.2147/IJN.S56391
  • Shi D, Pu S, Yin H, et al. Fluorescent Realgar Nanoclusters for Nuclear Targeting-Triggered Tumor Theranostics. ACS Applied Nano Materials. 2022;5(5):6485–6499. doi:10.1021/acsanm.2c00577
  • Wu JZ, Chen G, Shao YB, et al. Fluorescent Realgar Quantum Dots: new Life for an Old Drug. Nano. 2016;11. doi:10.1142/s1793292016500053
  • Wang H, Liu Z, Gou Y, et al. Apoptosis and necrosis induced by novel realgar quantum dots in human endometrial cancer cells via endoplasmic reticulum stress signaling pathway. Int J Nanomedicine. 2015;10:5505–5512. doi:10.2147/IJN.S83838
  • Wang J, Loh KP, Wang Z, et al. Fluorescent nanogel of arsenic sulfide nanoclusters. Angew Chem Int Ed Engl. 2009;48(34):6282–6285. doi:10.1002/anie.200900586
  • Wang JZ, Lin M, Zhang TY, et al. Arsenic(II) sulfide quantum dots prepared by a wet process from its bulk. J Am Chem Soc. 2008;130(35):11596. doi:10.1021/ja804436w
  • Zhang Y, Feng Z, Liu J, et al. Polarization of tumor-associated macrophages by TLR7/8 conjugated radiosensitive peptide hydrogel for overcoming tumor radioresistance. Bioactive Materials. 2022;16:359–371. doi:10.1016/j.bioactmat.2021.12.033
  • Luo FQ, Xu W, Zhang JY, et al. An Injectable Nanocomposite Hydrogel Improves Tumor Penetration and Cancer Treatment Efficacy. Acta Biomater. 2022;147:235–244. doi:10.1016/j.actbio.2022.05.042
  • Hivare P, Gangrade A, Swarup G, et al. Peptide functionalized DNA hydrogel enhances neuroblastoma cell growth and differentiation. Nanoscale. 2022;14(24):8611–8620. doi:10.1039/d1nr07187d
  • Wen Y, Liu Y, Zhang H, et al. A responsive porous hydrogel particle-based delivery system for oncotherapy. Nanoscale. 2019;11(6):2687–2693. doi:10.1039/c8nr09990a
  • Zhang W, Shi Y, Li H, et al. In situ injectable nano-complexed hydrogel based on chitosan/dextran for combining tumor therapy via hypoxia alleviation and TAMs polarity regulation. Carbohydr Polym. 2022:288119418. doi:10.1016/j.carbpol.2022.119418
  • Wu S, Yang Y, Wang S, et al. Dextran and peptide-based pH-sensitive hydrogel boosts healing process in multidrug-resistant bacteria-infected wounds. Carbohydr Polym. 2022;278:118994. doi:10.1016/j.carbpol.2021.118994
  • Zhang M, Chen G, Lei M, Lei J, Li D, Zheng H. A pH-sensitive oxidized-dextran based double drug-loaded hydrogel with high antibacterial properties. Int J Biol Macromol. 2021;182:385–393. doi:10.1016/j.ijbiomac.2021.03.169
  • Zhang X, Zhang T, Ma X, et al. The design and synthesis of dextran-doxorubicin prodrug-based pH-sensitive drug delivery system for improving chemotherapy efficacy. Asian J Pharm Sci. 2020;15(5):605–616. doi:10.1016/j.ajps.2019.10.001
  • Chatterjee S, Hui PC, Wat E, Kan CW, Leung PC, Wang W. Drug delivery system of dual-responsive PF127 hydrogel with polysaccharide-based nano-conjugate for textile-based transdermal therapy. Carbohydr Polym. 2020;236:116074. doi:10.1016/j.carbpol.2020.116074
  • Qu J, Zhao X, Ma PX, Guo B. pH-responsive self-healing injectable hydrogel based on N-carboxyethyl chitosan for hepatocellular carcinoma therapy. Acta Biomater. 2017;58:168–180. doi:10.1016/j.actbio.2017.06.001
  • Liu T, Sun L, Zhang Y, Wang Y, Zheng J. Imbalanced GSH/ROS and sequential cell death. J Biochem Mol Toxicol. 2022;36(1):e22942. doi:10.1002/jbt.22942
  • Zheng CY, Lam SK, Li YY, Ho JC. Arsenic trioxide-induced cytotoxicity in small cell lung cancer via altered redox homeostasis and mitochondrial integrity. Int J Oncol. 2015;46(3):1067–1078. doi:10.3892/ijo.2015.2826
  • Hou Y, Jin J, Duan H, et al. Targeted therapeutic effects of oral inulin-modified double-layered nanoparticles containing chemotherapeutics on orthotopic colon cancer. Biomaterials. 2022;283:121440. doi:10.1016/j.biomaterials.2022.121440
  • Yang Z, Luo H, Cao Z, et al. Dual-targeting hybrid nanoparticles for the delivery of SN38 to Her2 and CD44 overexpressed human gastric cancer. Nanoscale. 2016;8(22):11543–11558. doi:10.1039/c6nr01749e
  • Xue X, You S, Zhang Q, et al. Mitaplatin increases sensitivity of tumor cells to cisplatin by inducing mitochondrial dysfunction. Mol Pharm. 2012;9(3):634–644. doi:10.1021/mp200571k
  • Yong Y, Zhang C, Gu Z, et al. Polyoxometalate-Based Radiosensitization Platform for Treating Hypoxic Tumors by Attenuating Radioresistance and Enhancing Radiation Response. ACS Nano. 2017;11(7):7164–7176. doi:10.1021/acsnano.7b03037
  • Robillard L, Liao M, Minh N, Harding TC, Simmons AD, Dusek RL. The Multi-Kinase Inhibitor Lucitanib Enhances the Antitumor Activity of Coinhibitory and Costimulatory Immune Pathway Modulators in Syngeneic Models. J Immunother. 2022;45(8):335–348. doi:10.1097/cji.0000000000000427
  • Dowsett M, Nielsen TO, A’Hern R, et al. Assessment of Ki67 in breast cancer: recommendations from the International Ki67 in Breast Cancer working group. J Natl Cancer Inst. 2011;103(22):1656–1664. doi:10.1093/jnci/djr393
  • Yang L, Friedland S, Corson N, Xu L. GPR56 Inhibits Melanoma Growth by Internalizing and Degrading Its Ligand TG2. Cancer Res. 2014;74(4):1022–1031. doi:10.1158/0008-5472.Can-13-1268
  • Li X, Zhao S, Fu Y, et al. miR-34a-5p functions as a tumor suppressor in head and neck squamous cell cancer progression by targeting Flotillin-2. Int J Biol Sci. 2021;17(15):4327–4339. doi:10.7150/ijbs.64851
  • Bellinzona M, Roser F, Matthies C, Samii M, Saini M. Biopolymer-mediated suramin chemotherapy in the treatment of experimental brain tumours. Acta Oncol. 2004;43(3):259–263. doi:10.1080/02841860310023129