1,635
Views
13
CrossRef citations to date
0
Altmetric
REVIEW

Nanotherapeutic and Stem Cell Therapeutic Strategies in Neurodegenerative Diseases: A Promising Therapeutic Approach

, , ORCID Icon & ORCID Icon
Pages 611-626 | Received 26 Oct 2022, Accepted 12 Jan 2023, Published online: 03 Feb 2023

References

  • Heemels MT. Neurodegenerative diseases. Nature. 2016;539(7628):179. doi:10.1038/539179a
  • Vaquer-Alicea J, Diamond MI. Propagation of protein aggregation in neurodegenerative diseases. Annu Rev Biochem. 2019;88:785–810. doi:10.1146/annurev-biochem-061516-045049
  • Karabiyik CFR, Park S, Pavel M, Rubinsztein D. Autophagy in ageing and ageing-related neurodegenerative diseases. Ageing Neur Dis. 2021;1(1):2.
  • Dugger BN, Dickson DW. Pathology of neurodegenerative diseases. Cold Spring Harb Perspect Biol. 2017;9(7):a028035. doi:10.1101/cshperspect.a028035
  • Sivandzade F, Cucullo L. Regenerative stem cell therapy for neurodegenerative diseases: an overview. Int J Mol Sci. 2021;22(4). doi:10.3390/ijms22042153
  • Furtado D, Bjornmalm M, Ayton S, Bush AI, Kempe K, Caruso F. Overcoming the blood-brain barrier: the role of nanomaterials in treating neurological diseases. Adv Mater. 2018;30(46):e1801362. doi:10.1002/adma.201801362
  • Chen J, Yuan M, Madison CA, Eitan S, Wang Y. Blood-brain barrier crossing using magnetic stimulated nanoparticles. J Control Release. 2022;345:557–571. doi:10.1016/j.jconrel.2022.03.007
  • Saraiva C, Praca C, Ferreira R, Santos T, Ferreira L, Bernardino L. Nanoparticle-mediated brain drug delivery: overcoming blood-brain barrier to treat neurodegenerative diseases. J Control Release. 2016;235:34–47. doi:10.1016/j.jconrel.2016.05.044
  • Kumar A, Narayanan K, Chaudhary RK, et al. Current Perspective of Stem Cell Therapy in Neurodegenerative and Metabolic Diseases. Mol Neurobiol. 2017;54(9):7276–7296. doi:10.1007/s12035-016-0217-4
  • Martinez B, Peplow PV. Biomaterial and tissue-engineering strategies for the treatment of brain neurodegeneration. Neural Regen Res. 2022;17(10):2108–2116. doi:10.4103/1673-5374.336132
  • Joyce N, Annett G, Wirthlin L, Olson S, Bauer G, Nolta JA. Mesenchymal stem cells for the treatment of neurodegenerative disease. Regen Med. 2010;5(6):933–946. doi:10.2217/rme.10.72
  • De Gioia R, Biella F, Citterio G, et al. Neural stem cell transplantation for neurodegenerative diseases. Int J Mol Sci. 2020;21(9):3103. doi:10.3390/ijms21093103
  • Yang L, Chueng SD, Li Y, et al. A biodegradable hybrid inorganic nanoscaffold for advanced stem cell therapy. Nat Commun. 2018;9(1):3147. doi:10.1038/s41467-018-05599-2
  • Yamanaka S. Pluripotent stem cell-based cell therapy-promise and challenges. Cell Stem Cell. 2020;27(4):523–531. doi:10.1016/j.stem.2020.09.014
  • Vissers C, Ming GL, Song H. Nanoparticle technology and stem cell therapy team up against neurodegenerative disorders. Adv Drug Deliv Rev. 2019;148:239–251. doi:10.1016/j.addr.2019.02.007
  • Wei M, Li S, Le W. Nanomaterials modulate stem cell differentiation: biological interaction and underlying mechanisms. J Nanobiotechnology. 2017;15(1):75. doi:10.1186/s12951-017-0310-5
  • Guo Z, Sun C, Yang H, et al. Regulation of neural differentiation of ADMSCs using graphene-mediated wireless-localized electrical signals driven by electromagnetic induction. Adv Sci. 2022;9(14):e2104424. doi:10.1002/advs.202104424
  • Zhong H, Wu YX, Yu S, et al. Two-photon CQDs-based dual-mode nanoprobe for fluorescence imaging and magnetic resonance imaging of intracellular wide pH. Anal Chem. 2021;93(14):5691–5699. doi:10.1021/acs.analchem.0c04605
  • Adhikari A, Mondal S, Das M, et al. Incorporation of a biocompatible nanozyme in cellular antioxidant enzyme cascade reverses huntington’s like disorder in preclinical model. Adv Healthc Mater. 2021;10(7):e2001736. doi:10.1002/adhm.202001736
  • Singh N, Savanur MA, Srivastava S, D’silva P, Mugesh G. A redox modulatory Mn3 O4 nanozyme with multi-enzyme activity provides efficient cytoprotection to human cells in a Parkinson’s disease model. Angew Chem Int Ed Engl. 2017;56(45):14267–14271. doi:10.1002/anie.201708573
  • Debnath K, Pradhan N, Singh BK, Jana NR, Jana NR. Poly(trehalose) nanoparticles prevent amyloid aggregation and suppress polyglutamine aggregation in a huntington’s disease model mouse. ACS Appl Mater Interfaces. 2017;9(28):24126–24139. doi:10.1021/acsami.7b06510
  • Qiao S, Liu Y, Han F, et al. An intelligent neural stem cell delivery system for neurodegenerative diseases treatment. Adv Healthc Mater. 2018;7(12):e1800080. doi:10.1002/adhm.201800080
  • Chandrasekaran R, Madheswaran T, Tharmalingam N, Bose RJ, Park H, Ha DH. Labeling and tracking cells with gold nanoparticles. Drug Discov Today. 2021;26(1):94–105. doi:10.1016/j.drudis.2020.10.020
  • Li W, Qiu J, Li XL, et al. BBB pathophysiology-independent delivery of siRNA in traumatic brain injury. Sci Adv. 2021;7(1):eabd6889.
  • Polo Y, Luzuriaga J, Iturri J, et al. Nanostructured scaffolds based on bioresorbable polymers and graphene oxide induce the aligned migration and accelerate the neuronal differentiation of neural stem cells. Nanomedicine. 2021;31:102314. doi:10.1016/j.nano.2020.102314
  • Parmar M, Grealish S, Henchcliffe C. The future of stem cell therapies for Parkinson disease. Nat Rev Neurosci. 2020;21(2):103–115. doi:10.1038/s41583-019-0257-7
  • Parmar M. Towards stem cell based therapies for Parkinson’s disease. Development. 2018;145(1). doi:10.1242/dev.156117
  • Chan HJ, Yanshree RJ, Tipoe GL, Fung ML, Lim LW, Lim LW. Therapeutic potential of human stem cell implantation in alzheimer’s disease. Int J Mol Sci. 2021;22(18):10151. doi:10.3390/ijms221810151
  • Wang Y, Ji X, Leak RK, Chen F, Cao G. Stem cell therapies in age-related neurodegenerative diseases and stroke. Ageing Res Rev. 2017;34:39–50. doi:10.1016/j.arr.2016.11.002
  • Cone AS, Yuan X, Sun L, et al. Mesenchymal stem cell-derived extracellular vesicles ameliorate Alzheimer’s disease-like phenotypes in a preclinical mouse model. Theranostics. 2021;11(17):8129–8142. doi:10.7150/thno.62069
  • Hattiangady B, Kuruba R, Shuai B, Grier R, Shetty AK. Hippocampal neural stem cell grafting after status epilepticus alleviates chronic epilepsy and abnormal plasticity, and maintains better memory and mood function. Aging Dis. 2020;11(6):1374–1394. doi:10.14336/AD.2020.1020
  • Fayazi N, Sheykhhasan M, Soleimani Asl S, Najafi R. Stem cell-derived exosomes: a new strategy of neurodegenerative disease treatment. Mol Neurobiol. 2021;58(7):3494–3514. doi:10.1007/s12035-021-02324-x
  • Sherman LS, Romagano MP, Williams SF, Rameshwar P. Mesenchymal stem cell therapies in brain disease. Semin Cell Dev Biol. 2019;95:111–119. doi:10.1016/j.semcdb.2019.03.003
  • Staff NP, Jones DT, Singer W. Mesenchymal stromal cell therapies for neurodegenerative diseases. Mayo Clin Proc. 2019;94(5):892–905. doi:10.1016/j.mayocp.2019.01.001
  • Andrzejewska A, Dabrowska S, Lukomska B, Janowski M. Mesenchymal stem cells for neurological disorders. Adv Sci. 2021;8(7):2002944. doi:10.1002/advs.202002944
  • Gonzalez R, Hamblin MH, Lee JP. Neural stem cell transplantation and CNS diseases. CNS Neurol Disord Drug Targets. 2016;15(8):881–886. doi:10.2174/1871527315666160815164247
  • Ford E, Pearlman J, Ruan T, et al. Human pluripotent stem cells-based therapies for neurodegenerative diseases: current status and challenges. Cells. 2020;9(11):2517. doi:10.3390/cells9112517
  • Abdi S, Javanmehr N, Ghasemi-Kasman M, Bali HY, Pirzadeh M. Stem cell-based therapeutic and diagnostic approaches in alzheimer’s disease. Curr Neuropharmacol. 2021;20(6):1093–1115.
  • Carradori D, Eyer J, Saulnier P, Preat V, Des Rieux A. The therapeutic contribution of nanomedicine to treat neurodegenerative diseases via neural stem cell differentiation. Biomaterials. 2017;123:77–91. doi:10.1016/j.biomaterials.2017.01.032
  • Nguyen TT, Dung Nguyen TT, Vo TK, et al. Nanotechnology-based drug delivery for central nervous system disorders. Biomed Pharmacother. 2021;143:112117. doi:10.1016/j.biopha.2021.112117
  • Tosi G, Vandelli MA, Forni F, Ruozi B. Nanomedicine and neurodegenerative disorders: so close yet so far. Expert Opin Drug Deliv. 2015;12(7):1041–1044. doi:10.1517/17425247.2015.1041374
  • Rezaei A, Rafieian F, Akbari-Alavijeh S, Kharazmi MS, Jafari SM. Release of bioactive compounds from delivery systems by stimuli-responsive approaches; triggering factors, mechanisms, and applications. Adv Colloid Interface Sci. 2022;307:102728. doi:10.1016/j.cis.2022.102728
  • Cardoso BD, Cardoso VF, Lanceros-Mendez S, Castanheira EMS. Solid magnetoliposomes as multi-stimuli-responsive systems for controlled release of doxorubicin: assessment of lipid formulations. Biomedicines. 2022;10(5):1207. doi:10.3390/biomedicines10051207
  • Decoteau W, Heckman KL, Estevez AY, et al. Cerium oxide nanoparticles with antioxidant properties ameliorate strength and prolong life in mouse model of amyotrophic lateral sclerosis. Nanomedicine. 2016;12(8):2311–2320. doi:10.1016/j.nano.2016.06.009
  • Cormode DP, Gao L, Koo H. Emerging biomedical applications of enzyme-like catalytic nanomaterials. Trends Biotechnol. 2018;36(1):15–29. doi:10.1016/j.tibtech.2017.09.006
  • Wei M, Lee J, Xia F, et al. Chemical design of nanozymes for biomedical applications. Acta Biomater. 2021;126:15–30. doi:10.1016/j.actbio.2021.02.036
  • Zhang L, Wei PF, Song YH, et al. MnFe2O4 nanoparticles accelerate the clearance of mutant huntingtin selectively through ubiquitin-proteasome system. Biomaterials. 2019;216:119248. doi:10.1016/j.biomaterials.2019.119248
  • Arotcarena ML, Soria FN, Cunha A, et al. Acidic nanoparticles protect against alpha-synuclein-induced neurodegeneration through the restoration of lysosomal function. Aging Cell. 2022;21(4):e13584. doi:10.1111/acel.13584
  • Xu Q, Gao J, Wang S, Wang Y, Liu D, Wang J. Quantum dots in cell imaging and their safety issues. J Mater Chem B. 2021;9(29):5765–5779. doi:10.1039/D1TB00729G
  • Labrador-Paez L, Ximendes EC, Rodriguez-Sevilla P, et al. Core-shell rare-earth-doped nanostructures in biomedicine. Nanoscale. 2018;10(27):12935–12956. doi:10.1039/C8NR02307G
  • Egawa EY, Kitamura N, Nakai R, Arima Y, Iwata H. A DNA hybridization system for labeling of neural stem cells with SPIO nanoparticles for MRI monitoring post-transplantation. Biomaterials. 2015;54:158–167. doi:10.1016/j.biomaterials.2015.03.017
  • Nicholls FJ, Rotz MW, Ghuman H, Macrenaris KW, Meade TJ, Modo M. DNA-gadolinium-gold nanoparticles for in vivo T1 MR imaging of transplanted human neural stem cells. Biomaterials. 2016;77:291–306. doi:10.1016/j.biomaterials.2015.11.021
  • Zhang C, Xie B, Zou Y, et al. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional biomaterials for cell fate regulation. Adv Drug Deliv Rev. 2018;132:33–56. doi:10.1016/j.addr.2018.06.020
  • Hao M, Zhang Z, Liu C, et al. Hydroxyapatite nanorods function as safe and effective growth factors regulating neural differentiation and neuron development. Adv Mater. 2021;33(33):e2100895. doi:10.1002/adma.202100895
  • Xia L, Zhu W, Wang Y, He S, Chai R. Regulation of neural stem cell proliferation and differentiation by graphene-based biomaterials. Neural Plast. 2019;2019:3608386. doi:10.1155/2019/3608386
  • Lee JM, Kang WS, Lee KG, et al. Combinatorial biophysical cue sensor array for controlling neural stem cell fate. Biosens Bioelectron. 2020;156:112125. doi:10.1016/j.bios.2020.112125
  • Wei M, Li S, Yang Z, Zheng W, Le W. Gold nanoparticles enhance the differentiation of embryonic stem cells into dopaminergic neurons via mTOR/p70S6K pathway. Nanomedicine. 2017;12(11):1305–1317. doi:10.2217/nnm-2017-0001
  • Ma W, Xie X, Shao X, et al. Tetrahedral DNA nanostructures facilitate neural stem cell migration via activating RHOA/ROCK2 signalling pathway. Cell Prolif. 2018;51(6):e12503. doi:10.1111/cpr.12503
  • Park SJ, Kim S, Kim SY, et al. Highly efficient and rapid neural differentiation of mouse embryonic stem cells based on retinoic acid encapsulated porous nanoparticle. ACS Appl Mater Interfaces. 2017;9(40):34634–34640. doi:10.1021/acsami.7b09760
  • Yang D, Li T, Xu M, et al. Graphene oxide promotes the differentiation of mouse embryonic stem cells to dopamine neurons. Nanomedicine. 2014;9(16):2445–2455. doi:10.2217/nnm.13.197
  • Hung HS, Yang YC, Chang CH, et al. Neural differentiation potential of mesenchymal stem cells enhanced by biocompatible chitosan-gold nanocomposites. Cells. 2022;11(12):1861. doi:10.3390/cells11121861
  • Ren H, Li J, Peng A, et al. Water-soluble, alanine-modified fullerene C60 promotes the proliferation and neuronal differentiation of neural stem cells. Int J Mol Sci. 2022;23(10):5714. doi:10.3390/ijms23105714
  • Marei HE, Elnegiry AA, Zaghloul A, et al. Nanotubes impregnated human olfactory bulb neural stem cells promote neuronal differentiation in Trimethyltin-induced neurodegeneration rat model. J Cell Physiol. 2017;232(12):3586–3597. doi:10.1002/jcp.25826
  • Semeano AT, Tofoli FA, Correa-Velloso JC, et al. Effects of magnetite nanoparticles and static magnetic field on neural differentiation of pluripotent stem cells. Stem Cell Rev Rep. 2022;18(4):1337–1354. doi:10.1007/s12015-022-10332-0
  • Chang Y, Cho B, Lee E, et al. Electromagnetized gold nanoparticles improve neurogenesis and cognition in the aged brain. Biomaterials. 2021;278:121157. doi:10.1016/j.biomaterials.2021.121157
  • Zhang S, Hao M, Gao W, et al. Neuron-like cell differentiation of hADSCs promoted by a copper sulfide nanostructure mediated plasmonic effect driven by near-infrared light. Nanoscale. 2020;12(17):9833–9841. doi:10.1039/D0NR02319A
  • Qu A, Sun M, Kim JY, et al. Stimulation of neural stem cell differentiation by circularly polarized light transduced by chiral nanoassemblies. Nat Biomed Eng. 2021;5(1):103–113. doi:10.1038/s41551-020-00634-4
  • Yoo J, Lee E, Kim HY, et al. Electromagnetized gold nanoparticles mediate direct lineage reprogramming into induced dopamine neurons in vivo for Parkinson’s disease therapy. Nat Nanotechnol. 2017;12(10):1006–1014. doi:10.1038/nnano.2017.133
  • Cong W, Bai R, Li YF, Wang L, Chen C. Selenium nanoparticles as an efficient nanomedicine for the therapy of huntington’s disease. ACS Appl Mater Interfaces. 2019;11(38):34725–34735. doi:10.1021/acsami.9b12319
  • Gholamigeravand B, Shahidi S, Afshar S, et al. Synergistic effects of adipose-derived mesenchymal stem cells and selenium nanoparticles on streptozotocin-induced memory impairment in the rat. Life Sci. 2021;272:119246. doi:10.1016/j.lfs.2021.119246
  • Soleimani Asl S, Amiri I, Samzadeh-Kermani A, Abbasalipourkabir R, Gholamigeravand B, Shahidi S. Chitosan-coated Selenium nanoparticles enhance the efficiency of stem cells in the neuroprotection of streptozotocin-induced neurotoxicity in male rats. Int J Biochem Cell Biol. 2021;141:106089. doi:10.1016/j.biocel.2021.106089
  • Zhao X, Glass Z, Chen J, Yang L, Kaplan DL, Xu Q. mRNA delivery using bioreducible lipidoid nanoparticles facilitates neural differentiation of human mesenchymal stem cells. Adv Healthc Mater. 2021;10(4):e2000938. doi:10.1002/adhm.202000938
  • Kuo YC, Shih-Huang CY, Rajesh R. Enhanced integrin affinity and neural differentiation of induced pluripotent stem cells using Ln5-P4-grafted amphiphilic solid lipid nanoparticles. Mater Sci Eng C Mater Biol Appl. 2021;118:111339. doi:10.1016/j.msec.2020.111339
  • Wu D, Zhang Y, Xu X, et al. RGD/TAT-functionalized chitosan-graft-PEI-PEG gene nanovector for sustained delivery of NT-3 for potential application in neural regeneration. Acta Biomater. 2018;72:266–277. doi:10.1016/j.actbio.2018.03.030
  • Marcuzzo S, Isaia D, Bonanno S, et al. FM19G11-loaded gold nanoparticles enhance the proliferation and self-renewal of ependymal stem progenitor cells derived from ALS mice. Cells. 2019;8(3):279. doi:10.3390/cells8030279
  • Ma W, Shao X, Zhao D, et al. Self-assembled tetrahedral DNA nanostructures promote neural stem cell proliferation and neuronal differentiation. ACS Appl Mater Interfaces. 2018;10(9):7892–7900. doi:10.1021/acsami.8b00833
  • Ferreira R, Fonseca MC, Santos T, et al. Retinoic acid-loaded polymeric nanoparticles enhance vascular regulation of neural stem cell survival and differentiation after ischaemia. Nanoscale. 2016;8(15):8126–8137. doi:10.1039/C5NR09077F
  • Zhang R, Wang Z, Yang Z, et al. RNA-silencing nanoprobes for effective activation and dynamic imaging of neural stem cell differentiation. Theranostics. 2019;9(18):5386–5395. doi:10.7150/thno.35032
  • Wei M, Li S, Yang Z, Cheng C, Li T, Le W. Tetrahedral DNA nanostructures functionalized by multivalent microRNA132 antisense oligonucleotides promote the differentiation of mouse embryonic stem cells into dopaminergic neurons. Nanomedicine. 2021;34:102375. doi:10.1016/j.nano.2021.102375
  • Zhang R, Li Y, Hu B, Lu Z, Zhang J, Zhang X. Traceable nanoparticle delivery of small interfering RNA and retinoic acid with temporally release ability to control neural stem cell differentiation for Alzheimer’s disease therapy. Adv Mater. 2016;28(30):6345–6352. doi:10.1002/adma.201600554
  • Xu Z, Qu A, Wang W, et al. Facet-dependent biodegradable Mn3 O4 nanoparticles for ameliorating Parkinson’s disease. Adv Healthc Mater. 2021;10(23):e2101316. doi:10.1002/adhm.202101316
  • Yu D, Ma M, Liu Z, et al. MOF-encapsulated nanozyme enhanced siRNA combo: control neural stem cell differentiation and ameliorate cognitive impairments in Alzheimer’s disease model. Biomaterials. 2020;255:120160. doi:10.1016/j.biomaterials.2020.120160
  • Chung TH, Hsu SC, Wu SH, et al. Dextran-coated iron oxide nanoparticle-improved therapeutic effects of human mesenchymal stem cells in a mouse model of Parkinson’s disease. Nanoscale. 2018;10(6):2998–3007. doi:10.1039/C7NR06976F
  • Moayeri A, Darvishi M, Amraei M. Homing of Super Paramagnetic Iron Oxide Nanoparticles (SPIONs) labeled adipose-derived stem cells by magnetic attraction in a rat model of Parkinson’s disease. Int J Nanomed. 2020;15:1297–1308. doi:10.2147/IJN.S238266
  • Discher DE, Mooney DJ, Zandstra PW. Growth factors, matrices, and forces combine and control stem cells. Science. 2009;324(5935):1673–1677. doi:10.1126/science.1171643
  • Faissner A, Reinhard J. The extracellular matrix compartment of neural stem and glial progenitor cells. Glia. 2015;63(8):1330–1349. doi:10.1002/glia.22839
  • Yang L, Lee JH, Rathnam C, Hou Y, Choi JW, Lee KB. Dual-enhanced raman scattering-based characterization of stem cell differentiation using graphene-plasmonic hybrid nanoarray. Nano Lett. 2019;19(11):8138–8148. doi:10.1021/acs.nanolett.9b03402
  • Asheghali D, Lee SJ, Furchner A, et al. Enhanced neuronal differentiation of neural stem cells with mechanically enhanced touch-spun nanofibrous scaffolds. Nanomedicine. 2020;24:102152. doi:10.1016/j.nano.2020.102152
  • Lu X, Sun C, Chen L, et al. Stemness maintenance and massproduction of neural stem cells on Poly L-Lactic acid nanofibrous membrane based on piezoelectriceffect. Small. 2022;18(13):e2107236. doi:10.1002/smll.202107236
  • Rawat S, Jain KG, Gupta D, et al. Graphene nanofiber composites for enhanced neuronal differentiation of human mesenchymal stem cells. Nanomedicine. 2021;16(22):1963–1982. doi:10.2217/nnm-2021-0121
  • Rahimzadegan M, Mohammadi Q, Shafieian M, Sabzevari O, Hassannejad Z. Influence of reducing agents on in situ synthesis of gold nanoparticles and scaffold conductivity with emphasis on neural differentiation. Mater Sci Eng C Mater Biol Appl. 2021;134:112634.
  • Hsieh FY, Shrestha LK, Ariga K, Hsu SH. Neural differentiation on aligned fullerene C60 nanowhiskers. Chem Commun. 2017;53(80):11024–11027. doi:10.1039/C7CC06395D
  • Schulte C, Rodighiero S, Cappelluti MA, et al. Conversion of nanoscale topographical information of cluster-assembled zirconia surfaces into mechanotransductive events promotes neuronal differentiation. J Nanobiotechnol. 2016;14:18. doi:10.1186/s12951-016-0171-3
  • Silantyeva EA, Nasir W, Carpenter J, Manahan O, Becker ML, Willits RK. Accelerated neural differentiation of mouse embryonic stem cells on aligned GYIGSR-functionalized nanofibers. Acta Biomater. 2018;75:129–139. doi:10.1016/j.actbio.2018.05.052
  • Zhang S, Sun P, Lin K, et al. Extracellular nanomatrix-induced self-organization of neural stem cells into miniature substantia nigra-like structures with therapeutic effects on parkinsonian rats. Adv Sci. 2019;6(24):1901822. doi:10.1002/advs.201901822
  • Dai X, Zhao X, Liu Y, et al. Controlled synthesis and surface engineering of janus chitosan-gold nanoparticles for photoacoustic imaging-guided synergistic gene/photothermal therapy. Small. 2021;17(11):e2006004. doi:10.1002/smll.202006004
  • Jung S, Harris N, Niyonshuti II, et al. Photothermal response induced by nanocage-coated artificial extracellular matrix promotes neural stem cell differentiation. Nanomaterials. 2021;11(5):1216. doi:10.3390/nano11051216
  • Li Z, Meng Z, Zhao Z. Silk fibroin nanofibrous scaffolds incorporated with microRNA-222 loaded chitosan nanoparticles for enhanced neuronal differentiation of neural stem cells. Carbohydr Polym. 2022;277:118791. doi:10.1016/j.carbpol.2021.118791
  • Wang L, Liu X, Fu J, et al. Release of methylene blue from graphene oxide-coated electrospun nanofibrous scaffolds to modulate functions of neural progenitor cells. Acta Biomater. 2019;88:346–356. doi:10.1016/j.actbio.2019.02.036
  • Zhao H, Xu J, Peng K, et al. Supramolecular nanofibers for encapsulation and in situ differentiation of neural stem cells. Adv Healthc Mater. 2020;9(1):e1901295. doi:10.1002/adhm.201901295
  • Mabrouk M, Ismail E, Beherei H, et al. Biocompatibility of hydroxyethyl cellulose/glycine/RuO2 composite scaffolds for neural-like cells. Int J Biol Macromol. 2022;209(Pt B):2097–2108. doi:10.1016/j.ijbiomac.2022.04.190
  • Ranjan VD, Qiu L, Lee JW, et al. A microfiber scaffold-based 3D in vitro human neuronal culture model of Alzheimer’s disease. Biomater Sci. 2020;8(17):4861–4874. doi:10.1039/D0BM00833H
  • Chen X, Wang Y, Zhou G, Hu X, Han S, Gao J. The combination of nanoscaffolds and stem cell transplantation: paving a promising road for spinal cord injury regeneration. Biomed Pharmacother. 2021;143:112233. doi:10.1016/j.biopha.2021.112233
  • Qu W, Chen B, Shu W, et al. Polymer-based scaffold strategies for spinal cord repair and regeneration. Front Bioeng Biotechnol. 2020;8:590549. doi:10.3389/fbioe.2020.590549
  • Ma Q, Yang L, Jiang Z, et al. Three-dimensional stiff graphene scaffold on neural stem cells behavior. ACS Appl Mater Interfaces. 2016;8(50):34227–34233. doi:10.1021/acsami.6b12305
  • Kim GJ, Lee KJ, Choi JW, An JH. Modified industrial three-dimensional polylactic acid scaffold cell chip promotes the proliferation and differentiation of human neural stem cells. Int J Mol Sci. 2022;23(4):2204.
  • Guo W, Wang S, Yu X, et al. Construction of a 3D rGO-collagen hybrid scaffold for enhancement of the neural differentiation of mesenchymal stem cells. Nanoscale. 2016;8(4):1897–1904. doi:10.1039/C5NR06602F
  • Aarntzen EH, Srinivas M, Punt CJ, Figdor CG, Oyen WJ, De Vries IJ. Insight into the dynamics, localization and magnitude of antigen-specific immune responses by [(18)F]FLT PET imaging. Oncoimmunology. 2012;1(5):744–745. doi:10.4161/onci.19533
  • Bagno L, Hatzistergos KE, Balkan W, Hare JM. Mesenchymal stem cell-based therapy for cardiovascular disease: progress and challenges. Mol Ther. 2018;26(7):1610–1623. doi:10.1016/j.ymthe.2018.05.009
  • Kim J, Chhour P, Hsu J, et al. Use of nanoparticle contrast agents for cell tracking with computed tomography. Bioconjug Chem. 2017;28(6):1581–1597. doi:10.1021/acs.bioconjchem.7b00194
  • Zhang B, Yan W, Zhu Y, et al. Nanomaterials in neural-stem-cell-mediated regenerative medicine: imaging and treatment of neurological diseases. Adv Mater. 2018;30(17):e1705694. doi:10.1002/adma.201705694
  • Yim MS, Hwang YS, Bang JK, et al. Morphologically homogeneous, pH-responsive gold nanoparticles for non-invasive imaging of HeLa cancer. Nanomedicine. 2021;34:102394. doi:10.1016/j.nano.2021.102394
  • Matsuda H. MRI morphometry in Alzheimer’s disease. Ageing Res Rev. 2016;30:17–24. doi:10.1016/j.arr.2016.01.003
  • Johnson KA, Fox NC, Sperling RA, Klunk WE. Brain imaging in Alzheimer disease. Cold Spring Harb Perspect Med. 2012;2(4):a006213. doi:10.1101/cshperspect.a006213
  • Gao T, Wang P, Gong T, et al. Reporter genes for brain imaging using MRI, SPECT and PET. Int J Mol Sci. 2022;23(15):8443.
  • Kim KY, Chang KA. Therapeutic potential of magnetic nanoparticle-based human adipose-derived stem cells in a mouse model of Parkinson’s disease. Int J Mol Sci. 2021;22(2):654.
  • Islam J, So KH, Kc E, et al. Transplantation of human embryonic stem cells alleviates motor dysfunction in AAV2-Htt171-82Q transfected rat model of Huntington’s disease. Stem Cell Res Ther. 2021;12(1):585. doi:10.1186/s13287-021-02653-7
  • Hour FQ, Moghadam AJ, Shakeri-Zadeh A, Bakhtiyari M, Shabani R, Mehdizadeh M. Magnetic targeted delivery of the SPIONs-labeled mesenchymal stem cells derived from human Wharton’s jelly in Alzheimer’s rat models. J Control Release. 2020;321:430–441. doi:10.1016/j.jconrel.2020.02.035
  • Wang Y, Jiang J, Fu X, et al. Fe3O4@polydopamine nanoparticle-loaded human umbilical cord mesenchymal stem cells improve the cognitive function in Alzheimer’s disease mice by promoting hippocampal neurogenesis. Nanomedicine. 2022;40:102507. doi:10.1016/j.nano.2021.102507
  • Li Y, Li Y, Ji W, et al. Positively charged polyprodrug amphiphiles with enhanced drug loading and reactive oxygen species-responsive release ability for traceable synergistic therapy. J Am Chem Soc. 2018;140(11):4164–4171. doi:10.1021/jacs.8b01641
  • Kim T, Lee N, Arifin DR, et al. In vivo Micro-CT imaging of human mesenchymal stem cells labeled with Gold-Poly-L-Lysine nanocomplexes. Adv Funct Mater. 2017;27(3). doi:10.1002/adfm.201604213
  • Cole LE, Ross RD, Tilley JM, Vargo-Gogola T, Roeder RK. Gold nanoparticles as contrast agents in x-ray imaging and computed tomography. Nanomedicine. 2015;10(2):321–341. doi:10.2217/nnm.14.171
  • Perets N, Betzer O, Shapira R, et al. Golden exosomes selectively target brain pathologies in neurodegenerative and neurodevelopmental disorders. Nano Lett. 2019;19(6):3422–3431. doi:10.1021/acs.nanolett.8b04148
  • Dippold D, Cai A, Hardt M, et al. Investigation of the batch-to-batch inconsistencies of Collagen in PCL-Collagen nanofibers. Mater Sci Eng C Mater Biol Appl. 2019;95:217–225. doi:10.1016/j.msec.2018.10.057
  • Wang X, Zhong X, Li J, Liu Z, Cheng L. Inorganic nanomaterials with rapid clearance for biomedical applications. Chem Soc Rev. 2021;50(15):8669–8742. doi:10.1039/d0cs00461h
  • Jang SE, Qiu L, Cai X, et al. Aggregation-induced emission (AIE) nanoparticles labeled human embryonic stem cells (hESCs)-derived neurons for transplantation. Biomaterials. 2021;271:120747. doi:10.1016/j.biomaterials.2021.120747
  • Huang D, Cao Y, Yang X, et al. A nanoformulation-mediated multifunctional stem cell therapy with improved beta-amyloid clearance and neural regeneration for Alzheimer’s disease. Adv Mater. 2021;33(13):e2006357. doi:10.1002/adma.202006357