474
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Solubilisation and Enhanced Oral Absorption of Curcumin Using a Natural Non-Nutritive Sweetener Mogroside V

, , ORCID Icon, , , , ORCID Icon & show all
Pages 1031-1045 | Received 28 Oct 2022, Accepted 02 Feb 2023, Published online: 23 Feb 2023

References

  • Degot P, Huber V, Hofmann E, Hahn M, Touraud D, Kunz W. Solubilization and extraction of curcumin from Curcuma Longa using green, sustainable, and food-approved surfactant-free microemulsions. Food Chem. 2021;336:127660. doi:10.1016/j.foodchem.2020.127660
  • Fu DW, Fu JJ, Li JJ, et al. Efficient encapsulation of curcumin into spent brewer’s yeast using a pH-driven method. Food Chem. 2022;394:133537. doi:10.1016/j.foodchem.2022.133537
  • Chin KY. The spice for joint inflammation: anti-inflammatory role of curcumin in treating osteoarthritis. Drug Des Devel Ther. 2016;10:3029–3042. doi:10.2147/DDDT.S117432
  • Abrahams S, Haylett WL, Johnson G, Carr JA, Bardien S. Antioxidant effects of curcumin in models of neurodegeneration, aging, oxidative and nitrosative stress: a review. Neuroscience. 2019;406:1–21. doi:10.1016/j.neuroscience.2019.02.020
  • Walker BC, Mittal S. Antitumor Activity of Curcumin in Glioblastoma. Int J Mol Sci. 2020;21(24). doi:10.3390/ijms21249435
  • Reyhaneh M-M, Hassanian SM, Rahmani F, et al. Phytosomal curcumin elicits anti-tumor properties through suppression of angiogenesis, cell proliferation and induction of oxidative stress in colorectal cancer. Curr Pharm Des. 2018;24:4626.
  • Yu H, Huang Q. Investigation of the absorption mechanism of solubilized curcumin using Caco-2 cell monolayers. J Agric Food Chem. 2011;59(17):9120–9126. doi:10.1021/jf201451m
  • Shin MS, Yu JS, Lee J, et al. A hydroxypropyl methylcellulose-based solid dispersion of curcumin with enhanced bioavailability and its hepatoprotective activity. Biomolecules. 2019;9(7). doi:10.3390/biom9070281
  • Mashaqbeh H, Obaidat R, Al-Shar’i N. Evaluation and characterization of curcumin-beta-cyclodextrin and cyclodextrin-based nanosponge inclusion complexation. Polymers. 2021;13(23). doi:10.3390/polym13234073
  • Cui J, Zhou J, Huang L, Jing J, Wang N, Wang L. Curcumin encapsulation and protection based on lysozyme nanoparticles. Food Sci Nutr. 2019;7(8):2702–2707. doi:10.1002/fsn3.1129
  • Feng T, Wei Y, Lee RJ, Zhao L. Liposomal curcumin and its application in cancer. Int J Nanomedicine. 2017;12:6027–6044. doi:10.2147/IJN.S132434
  • Ganguly R, Kunwar A, Dutta B, et al. Heat-induced solubilization of curcumin in kinetically stable pluronic P123 micelles and vesicles: an exploit of slow dynamics of the micellar restructuring processes in the aqueous pluronic system. Colloids Surf B Biointerfaces. 2017;152:176–182. doi:10.1016/j.colsurfb.2017.01.023
  • Butnariu M, Quispe C, Koirala N, et al. Bioactive effects of curcumin in human immunodeficiency virus infection along with the most effective isolation techniques and type of nanoformulations. Int J Nanomedicine. 2022;17:3619–3632. doi:10.2147/IJN.S364501
  • Ghezzi M, Pescina S, Padula C, et al. Polymeric micelles in drug delivery: an insight of the techniques for their characterization and assessment in biorelevant conditions. J Control Release. 2021;332:312–336. doi:10.1016/j.jconrel.2021.02.031
  • Zhang Q, Polyakov NE, Chistyachenko YS, et al. Preparation of curcumin self-micelle solid dispersion with enhanced bioavailability and cytotoxic activity by mechanochemistry. Drug Deliv. 2018;25(1):198–209. doi:10.1080/10717544.2017.1422298
  • Zhang J, Tozuka Y, Uchiyama H, et al. NMR investigation of a novel excipient, alpha-glucosylhesperidin, as a suitable solubilizing agent for poorly water-soluble drugs. J Pharm Sci. 2011;100(10):4421–4431. doi:10.1002/jps.22606
  • Tozuka Y, Higashi K, Morita T, et al. Transglycosylated rutin-specific non-surface-active nanostructure affects absorption enhancement of flurbiprofen. Eur J Pharm Biopharm. 2012;82(1):120–126. doi:10.1016/j.ejpb.2012.05.005
  • Zhang J, Higashi K, Ueda K, et al. Drug solubilization mechanism of alpha-glucosyl stevia by NMR spectroscopy. Int J Pharm. 2014;465(1–2):255–261. doi:10.1016/j.ijpharm.2014.01.035
  • Luo Y, Gong C, Wei M, et al. Evaluation of mogroside V as a promising carrier in drug delivery: improving the bioavailability and liver distribution of silybin. AAPS Pharm Sci Tech. 2020;21(4):123. doi:10.1208/s12249-020-01645-9
  • Zhang F, Koh GY, Jeansonne DP, et al. A novel solubility-enhanced curcumin formulation showing stability and maintenance of anticancer activity. J Pharm Sci. 2011;100(7):2778–2789. doi:10.1002/jps.22512
  • Pawar RS, Krynitsky AJ, Rader JI. Sweeteners from plants—with emphasis on Stevia rebaudiana (Bertoni) and Siraitia grosvenorii (Swingle). Anal Bioanal Chem. 2013;405(13):4397–4407.
  • Suez J, Korem T, Zeevi D, et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature. 2014;514(7521):181–186. doi:10.1038/nature13793
  • Suez J, Cohen Y, Valdes-Mas R, et al. Personalized microbiome-driven effects of non-nutritive sweeteners on human glucose tolerance. Cell. 2022. doi:10.1016/j.cell.2022.07.016
  • Jia Z, Yang X. A minor, sweet cucurbitane glycoside from Siraitia grosvenorii. Nat Prod Commun. 2009;4(6):769–772.
  • Poppler AC, Lubtow MM, Schlauersbach J, Wiest J, Meinel L, Luxenhofer R. Loading-dependent structural model of polymeric micelles encapsulating curcumin by solid-state NMR spectroscopy. Angew Chem Int Ed Engl. 2019;58(51):18540–18546. doi:10.1002/anie.201908914
  • Bhujbal SV, Mitra B, Jain U, et al. Pharmaceutical amorphous solid dispersion: a review of manufacturing strategies. Acta Pharm Sin B. 2021;11(8):2505–2536. doi:10.1016/j.apsb.2021.05.014
  • Hancock BC, Zografi G. Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci. 1997;86:1.
  • Metre S, Mukesh S, Samal SK, Chand M, Sangamwar AT. Enhanced biopharmaceutical performance of rivaroxaban through polymeric amorphous solid dispersion. Mol Pharm. 2018;15(2):652–668. doi:10.1021/acs.molpharmaceut.7b01027
  • Kadota K, Okamoto D, Sato H, Onoue S, Otsu S, Tozuka Y. Hybridization of polyvinylpyrrolidone to a binary composite of curcumin/alpha-glucosyl stevia improves both oral absorption and photochemical stability of curcumin. Food Chem. 2016;213:668–674. doi:10.1016/j.foodchem.2016.07.025
  • Dedroog S, Pas T, Vergauwen B, Huygens C, Van den Mooter G. Solid-state analysis of amorphous solid dispersions: why DSC and XRPD may not be regarded as stand-alone techniques. J Pharm Biomed Anal. 2020;178:112937. doi:10.1016/j.jpba.2019.112937
  • Aditya NP, Hamilton IE, Norton IT. Amorphous nano-curcumin stabilized oil in water emulsion: physico chemical characterization. Food Chem. 2017;224:191–200. doi:10.1016/j.foodchem.2016.12.082
  • Shimizu S, Pires PAR, Fish H, Halstead TK, El Seoud OA. Proton and carbon-13 NMR study of the aggregation of benzyl(2-acylaminoethyl)dimethylammonium chloride surfactants in D2O. Phys Chem Chem Phys. 2003;5(16). doi:10.1039/b303622g
  • Andrade-Dias C, Lima S, Teixeira-Dias JJ. From simple amphiphilic to surfactant behavior: analysis of (1)H NMR chemical shift variations. J Colloid Interface Sci. 2007;316(1):31–36. doi:10.1016/j.jcis.2007.07.049
  • Luchetti L, Mancini G. NMR investigation on the various aggregates formed by a gemini chiral surfactant. Langmuir. 2000;16(1):161–165. doi:10.1021/la990713z
  • Makriyannis A, Pavlopoulos S. Structural chemistry using NMR spectroscopy, pharmaceuticals. Encyclopedia Spectroscopy Spectrometry. 1999;8:2261–2271.
  • Song IS, Cha JS, Choi MK. Characterization, in vivo and in vitro evaluation of solid dispersion of curcumin containing d-alpha-tocopheryl polyethylene glycol 1000 succinate and mannitol. Molecules. 2016;21(10). doi:10.3390/molecules21101386
  • More SK, Pawar AP. Preparation, optimization and preliminary pharmacokinetic study of curcumin encapsulated turmeric oil microemulsion in zebra fish. Eur J Pharm Sci. 2020;155:105539. doi:10.1016/j.ejps.2020.105539
  • Ji H, Tang J, Li M, Ren J, Zheng N, Wu L. Curcumin-loaded solid lipid nanoparticles with Brij78 and TPGS improved in vivo oral bioavailability and in situ intestinal absorption of curcumin. Drug Deliv. 2016;23(2):459–470. doi:10.3109/10717544.2014.918677
  • Chen H, Wu J, Sun M, et al. N-trimethyl chitosan chloride-coated liposomes for the oral delivery of curcumin. J Liposome Res. 2012;22(2):100–109. doi:10.3109/08982104.2011.621127
  • Ji-Jin GU, Deng YJ. Preparation of curcumin liposomes and its oral pharmacokinetics in rats. J Chengdu Med Colle. 2010;5:97–100.
  • Tozuka Y, Kishi J, Takeuchi H. Anomalous dissolution property enhancement of naringenin from spray-dried particles with α-glucosylhesperidin. Adv Powder Tech. 2010;21(3):305–309. doi:10.1016/j.apt.2009.12.013
  • Uchiyama H, Tozuka Y, Imono M, Takeuchi H. Improvement of dissolution and absorption properties of poorly water-soluble drug by preparing spray-dried powders with alpha-glucosyl hesperidin. Int J Pharm. 2010;392(1–2):101–106. doi:10.1016/j.ijpharm.2010.03.037
  • Uchiyama H, Tozuka Y, Imono M, Takeuchi H. Transglycosylated stevia and hesperidin as pharmaceutical excipients: dramatic improvement in drug dissolution and bioavailability. Eur J Pharm Biopharm. 2010;76(2):238–244. doi:10.1016/j.ejpb.2010.07.006
  • Tozuka Y, Imono M, Uchiyama H, Takeuchi H. A novel application of alpha-glucosyl hesperidin for nanoparticle formation of active pharmaceutical ingredients by dry grinding. Eur J Pharm Biopharm. 2011;79(3):559–565. doi:10.1016/j.ejpb.2011.07.006
  • Sato H, Fujimori M, Suzuki H, et al. Absorption improvement of tranilast by forming highly soluble nano-size composite structures associated with alpha-glucosyl rutin via spray drying. Eur J Pharm Biopharm. 2015;92:49–55. doi:10.1016/j.ejpb.2015.02.021
  • Fujimori M, Kadota K, Kato K, et al. Low hygroscopic spray-dried powders with trans-glycosylated food additives enhance the solubility and oral bioavailability of ipriflavone. Food Chem. 2016;190:1050–1055. doi:10.1016/j.foodchem.2015.06.081
  • Kadota K, Semba K, Shakudo R, et al. Inhibition of photodegradation of highly dispersed folic acid nanoparticles by the antioxidant effect of transglycosylated rutin. J Agric Food Chem. 2016;64(15):3062–3069. doi:10.1021/acs.jafc.6b00334
  • Tozuka Y, Imono M, Uchiyama H, et al. Dry powder formulation with α-glycosyltransferase-treated stevia for the effective absorption of hydrophobic bioactive compounds in crude drugs. Powder Tech. 2013;240:2–6. doi:10.1016/j.powtec.2012.07.014
  • Uchiyama H, Tozuka Y, Asamoto F, Takeuchi H. Fluorescence investigation of a specific structure formed by aggregation of transglycosylated stevias: solubilizing effect of poorly water-soluble drugs. Eur J Pharm Sci. 2011;43(1–2):71–77. doi:10.1016/j.ejps.2011.03.014
  • Fujimori M, Kadota K, Tozuka Y. Mixed micelle system produced by interaction between transglycosylated stevia and an ionic surfactant improves dissolution profile of mefenamic acid. J Pharm Sci. 2017;106(4):1117–1123. doi:10.1016/j.xphs.2016.12.024
  • Uchiyama H, Wada Y, Hatanaka Y, et al. Solubility and permeability improvement of quercetin by an interaction between alpha-glucosyl stevia nanoaggregates and hydrophilic polymer. J Pharm Sci. 2019;108(6):2033–2040. doi:10.1016/j.xphs.2019.01.007
  • Wan ZL, Wang JM, Wang LY, Yang XQ, Yuan Y. Enhanced physical and oxidative stabilities of soy protein-based emulsions by incorporation of a water-soluble stevioside-resveratrol complex. J Agric Food Chem. 2013;61(18):4433–4440. doi:10.1021/jf4003945
  • Wang H, He Y, Hou Y, Geng Y, Wu X. Novel self-nanomicellizing formulation based on Rebaudioside A: a potential nanoplatform for oral delivery of naringenin. Mater Sci Eng C Mater Biol Appl. 2020;112:110926. doi:10.1016/j.msec.2020.110926
  • Uchiyama H, Dowaki M, Kadota K, Arima H, Sugiyama K, Tozuka Y. Single-stranded beta-1,3-1,6-glucan as a carrier for improved dissolution and membrane permeation of poorly water-soluble compounds. Carbohydr Polym. 2020;247:116698. doi:10.1016/j.carbpol.2020.116698
  • Uchiyama H, Kadota K, Nakanishi A, Tandia M, Tozuka Y. A simple blending with alpha-glycosylated naringin produces enhanced solubility and absorption of pranlukast hemihydrate. Int J Pharm. 2019;567:118490. doi:10.1016/j.ijpharm.2019.118490